首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
This study compares the seasonal and interannual-to-decadal variability in the strength and position of the Kuroshio Extension front(KEF) using high-resolution satellite-derived sea surface temperature(SST) and sea surface height(SSH) data. Results show that the KEF strength has an obvious seasonal variation that is similar at different longitudes, with a stronger(weaker) KEF during the cold(warm) season. However, the seasonal variation in the KEF position is relatively weak and varies with longitude. In contrast, the low-frequency variation of the KEF position is more distinct than that of the KEF strength even though they are well correlated. On both seasonal and interannual-to-decadal time scales, the western part of the KEF(142°–144°E) has the greatest variability in strength, while the eastern part of the KEF(149°–155°E) has the greatest variability in position. In addition, the relationships between wind-forced Rossby waves and the low-frequency variability in the KEF strength and position are also discussed by using the statistical analysis methods and a wind-driven hindcast model. A positive(negative) North Pacific Oscillation(NPO)-like atmospheric forcing generates positive(negative) SSH anomalies over the central North Pacific. These oceanic signals then propagate westward as Rossby waves, reaching the KE region about three years later, favoring a strengthened(weakened) and northward(southward)-moving KEF.  相似文献   

2.
Aim to linking the variability of drought in northwest China to the oceanic influence of North Atlantic SSTs at the background of global warming and at the regional climate change shifting stages, year aridity index variations in northwest China and summer North Atlantic sea surface temperature (SST) variations are examined for the 44 a period of 1961-2004 using singular value decomposition (SVD) analysis. Results show that the SST anomalies (SSTA)in the North Atlantic in summer reflected three basic models. The first SVD mode of SST pattern shows a dipole - like variation with the positive center located at southwest and negative center at northeast of extratropical North Atlantic. And it strongly relates to the positive trend in AI variation in northwest China. The second coupled modes display the coherent positive anomalies in extratropical North Atlantic SST and the marked opposite trend of AI variability between north and south of Xinjiang. In addition, the lag correlation analysis of the first mode of SSTA and geopotential heights at 500 hPa variations also shows that the indication of the former influencing the latter configuration, which result in higher air temperature and less precipitation when the SSTA in the North Atlantic Ocean in summer motivated Eurasian circulation of EA pattern, further to influence the wet - dry variations in northwest China by the ocean-to - atmosphere forcing.  相似文献   

3.
The results of the tropical Pacific response to the sudden onset of the equatorial wind stress anomalies are discussed. The ocean model is a barotropic, non-linearized one that includes reduced-gravity and an equation for the temperature of the ocean mixed-layer. The experiments are based on a state of equilibrium reached through a long running under the action of annual mean wind stress. There are two kinds of westward wind intensity regions: the whole tropical Pacific and the western tropical Pacific, which are all between latitude 6. 8癗 and 6. 8癝.In these cases, the results show that the positive sea surface temperature (SST) anomalies in the Eastern Pacific and the negative SST anomalies in the Western Pacific are produced, and the positive SST anomalies propagate eastward, just as those observed during the actual El Nino phenomena. The propagations of the Kelvin waves and Rossby waves in the ocean are discussed.Another experiment is also carried out in simulating the process of the decay of El Ni  相似文献   

4.
By utilizing multiple datasets from various sources available for the last 100 years, the existence for the interdecadal change of the winter sea surface temperature(SST) variability in the Kuroshio Extension(KE) region is investigated. And its linkage with the Aleutian Low(AL) activity changes is also discussed. The results find that the KE SST variability exhibits the significant ~6 a and ~10 a oscillations with obvious interdecadal change. The ~6 a oscillation is mainly detected during 1930–1950, which is largely impacted by the anomalous surface heat flux forcing and Ekman heat transport associated with the AL intensity variation. The ~10 a oscillation is most evident after the 1980s, which is predominantly triggered by the AL north-south shift through the bridge of oceanic Rossby waves.  相似文献   

5.
The present study reveals the fact that the relationship between the spring(April–May) North Atlantic Oscillation(NAO) and the following summer(June–September) tropical cyclone(TC) genesis frequency over the western North Pacific(WNP) during the period of 1950–2018 was not stationary. It is shown that the relationship between the two has experienced a pronounced interdecadal shift, being weak and insignificant before yet strong and statistically significant after the early 1980 s. Next we compare the spring NAO associated dynamic and thermodynamic conditions, sea surface temperature(SST) anomalies, and atmospheric circulation processes between the two subperiods of 1954–1976 and 1996–2018, so as to illucidate the possible mechanism for this interdecadal variation in the NAO-TC connection. During the latter epoch, when the spring NAO was positive,enhanced low-level vorticity, reduced vertical zonal wind shear, intensified vertical velocity and increased middle-level relative humidity were present over the WNP in the summer, which is conducive to the genesis of WNP TCs. When the spring NAO is negative, the dynamic and thermodynamic factors are disadvantageous for the summertime TC formation and development over the WNP. The results of further analysis indicate that the persistence of North Atlantic tri-pole SST anomalies from spring to the subsequent summer induced by the spring NAO plays a fundamental role in the linkage between the spring NAO and summer atmospheric circulation.During the period of 1996–2018, a remarkable eastward propagating wave-train occurred across the northern Eurasian continent, forced by the anomalous SST tri-pole in the North Atlantic. The East Asian jet flow became greatly intensified, and the deep convection in the tropics was further enhanced via the changes of the local Hadley circulation, corresponding to a positive spring NAO. During the former epoch, the spring NAO-induced tri-pole SST anomalies in the North Atlantic were non-existent, and the related atmospheric circulation anomalies were extremely weak, thereby leading to the linkage between spring NAO and WNP TC genesis frequency in the following summer being insignificant.  相似文献   

6.
Positive SST anomalies usually appear in remote ocean such as the China seas during an ENSO event.By analyzing the monthly data of HadISST from 1950 to 2007,it shows that the interannual component of SST anomalies peak approximately 10 months after SST anomalies peak in the eastern equatorial Pacific.As the ENSO event progresses,the positive SST anomalies spread throughout the China seas and eastward along the Kuroshio extension.Atmospheric reanalysis data demonstrate that changes in the net surface heat flux entering into the China seas are responsible for the SST variability.During El Ni o,the western north Pacific anticyclone is generated,with anomalous southwester lies prevailing along the East Asian coast.This anticyclone reduces the mean surface wind speed which decreases the surface heat flux and then increases the SST.The delays between the developing of this anticyclone and the south Indian Ocean anticyclone with approximately 3–6 months cause the 2–3 months lag of the surface heat flux between the China seas and the Indian Ocean.The northwestern Pacific anticyclone is the key process bridging the warming in the eastern equatorial Pacific and that in the China seas.  相似文献   

7.
The neon flying squid Ommastrephes bartramii is an economically important species in the Northwest Pacific Ocean. The life cycle of O. bartramii is highly susceptible to climatic and oceanic factors. In this study, we have examined the impacts of climate variability and local biophysical environments on the interannual variability of the abundance of the western winter-spring cohort of O. bartramii over the period of 1995–2011. The results showed that the squid had experienced alternant positive and negative Pacific Decadal Oscillation(PDO) over the past 17 years during which five El Ni?o and eight La Ni?a events occurred. The catch per unit effort(CPUE) was positively correlated with the PDO index(PDOI) at a one-year time lag. An abnormally warm temperature during the La Ni?a years over the positive PDO phase provided favorable oceanographic conditions for the habitats of O.bartramii, whereas a lower temperature on the fishing ground during the El Ni?o years over the negative PDO phase generally corresponded to a low CPUE. The same correlation was also found between CPUE and Chl a concentration anomaly. A possible explanation was proposed that the CPUE was likely related to the climateinduced variability of the large-scale circulation in the Northwest Pacific Ocean: high squid abundance often occurred in a year with a significant northward meander of the Kuroshio Current. The Kuroshio Current advected the warmer and food-rich waters into the fishing ground, and multiple meso-scale eddies arising from current instability enhanced the food retention on the fishing ground, all of which were favorable for the life stage development of the western squid stocks. Our results help better understand the potential process that the climatic and oceanographic factors affect the abundance of the winter-spring cohort of O. bartramii in the Northwest Pacific Ocean.  相似文献   

8.
Ommastrephes bartramii is an ecologically dependent species and has great commercial values among the AsiaPacific countries. This squid widely inhabits the North Pacific, one of the most dynamic marine environments in the world, subjecting to multi-scale climatic events such as the Pacific Decadal Oscillation(PDO). Commercial fishery data from the Chinese squid-jigging fleets during 1995–2011 are used to evaluate the influences of climatic and oceanic environmental variations on the spatial distribution of O. bartramii. Significant interannual and seasonal variability are observed in the longitudinal and latitudinal gravity centers(LONG and LATG) of fishing ground of O. bartramii. The LATG mainly occurred in the waters with the suitable ranges of environmental variables estimated by the generalized additive model. The apparent north-south spatial shift in the annual LATG appeares to be associated with the PDO phenomenon and is closely related to the sea surface temperature(SST)and sea surface height(SSH) on the fishing ground, whereas the mixed layer depth(MLD) might contribute limited impacts to the distribution pattern of O. bartramii. The warm PDO regimes tend to yield cold SST and low SSH, resulting in a southward shift of LATG, while the cold PDO phases provid warm SST and elevated SSH,resulting in a northward shift of LATG. A regression model is developed to help understand and predict the fishing ground distributions of O. bartramii and improve the fishery management.  相似文献   

9.
The interannual variations of the monthly sea surface temperature (SST) in the North Pacific (including Equatorial East Pacific) during 1951-1980 are analysed by means of EOF method. The findings are:(1) In the cold and warm ocean current areas, such as the North Pacific Current, the California Current and the Equatorial East Pacific areas, the convergence speeds are the fastest, while in the Kuroshio and the western part of the North Equatorial Current areas they are fast only in winter.(2) The physical features of the first 3 eigenvectors are obvious. The first eigenvector shows that the SST values are high in the south and low in the north in the latitudinal distribution of the SST field. The warm current area, i.e. the northwestern part of the North Pacific is positive and the cold current area, i.e. the southeastern part of the North Pacific including the Eastern Equatorial Pacific is negative. The zero line of the 2nd eigenvector field runs from northeast to southwest, in the same direction as the  相似文献   

10.
Knowledge of sea surface temperature(SST) behaviour is vital for long-term climate scenarios. This study highlights essential outcomes about the distinguishable and unsurprising warming of the SST along the southern border of the Levantine Basin. The analysis is based on monthly SST data for the period 1948–2018. The southern Levantine Basin has undergone SST increase, during the last 71 years. In this study, a consistent warming trend has been found for the analysed SST data series, with a rate of 0.04°C/a, i.e., 0.4°C/(10 a). From 1975 to 1991 the mean annual SST was 17.1°C, and this increased to be 19.2°C, over the period 2002–2018. Results revealed two opposite trends of variability: a decreasing trend(–0.06°C/a) over the period 1975–1991, and an increasing trend(0.2°C/a) from 2002 to 2018. Over the period 1948–2018, positive mean annual SST anomalies had an average of1.8°C, and negative anomalies had an average of –1.1°C. The lowest SST total increase was found from January to April, with values about 0.03°C, while the highest warming appeared from June to September. The driving mechanisms behind the SST changes need to be more investigated, to understand the future trends and impacts of climate change in the Levantine Basin.  相似文献   

11.
We investigate sea level changes in the western North Pacific for twenty-first century climate projections by analyzing the output from 15 coupled models participating in the Coupled Model Intercomparison Project phase 3 (CMIP3). Projected changes in the wind stress due to those in sea level pressure (SLP) result in the projected sea level changes. In the western North Pacific (30?50°N, 145?170°E), the inter-model standard deviation of the sea level change relative to the global mean is comparable to that based on the multi-model ensemble (MME) mean. Whereas a positive SLP change in the eastern North Pacific (40?50°N, 170?150°W) induces a large northward shift of the Kuroshio Extension (KE), a negative SLP change in this region induces a strong intensification of the KE. Large inter-model variability of the SLP projection in the eastern North Pacific causes a large uncertainty of the sea level projection in the western North Pacific. Models with a larger northward shift (intensification) of the KE exhibit a poleward shift (an intensification) of the Aleutian Low (AL) larger than that for the MME mean. However, models that exhibit a larger intensification of the AL do not necessarily show a larger intensification of the KE. Our analysis suggests that the SLP change that induces an intensification of the KE is associated with a teleconnection from the equatorial Pacific, and that the SLP change that induces a northward shift of the KE is characterized by a zonal mean change.  相似文献   

12.
基于IPCC预测结果的北太平洋海表面温度变化分析   总被引:1,自引:1,他引:0  
刘娜  王辉  张蕴斐 《海洋学报》2014,36(7):9-16
利用IPCC-AR4气候模式诊断与比较计划(PCMDI)20C3M试验和A1B情景试验模拟数据,研究了在温室气体排放情景下,北太平洋海表面温度的变化及其对太平洋风应力旋度变化的响应。结果表明,温室气体中等排放A1B情景与20C3M情景相比,北太平洋年平均海表面温度表现为一致增温的趋势,且最大的增温中心位于黑潮及其延伸体区。与20C3M试验相比,CO2增加情景下北太平洋中部东风加强,增加向北的Ekman输送,使得北太平洋内区增温。风应力旋度零线也向北略有移动,导致黑潮延伸体向北移动并得到加强,从而引起延伸体区较强增温。风应力旋度零线的纬度附近产生的Rossby波,向西传播到黑潮延伸体区,进一步加强黑潮延伸体区的温度异常。海洋对北太平洋风应力场变化的局地响应及延迟响应,使黑潮延伸体海域海表面增温远大于周围海区。  相似文献   

13.
Basin-scale variations in oceanic physical variables are thought to organize patterns of biological response across the Pacific Ocean over decadal time scales. Different physical mechanisms can be responsible for the diverse basin-scale patterns of sea-surface temperature (SST), mixed-layer depth, thermocline depth, and horizontal currents, although they are linked in various ways. In light of various theories and observations, we interpret observed basinwide patterns of decadal-scale variations in upper-ocean temperatures. Evidence so far indicates that large-scale perturbations of the Aleutian Low generate temperature anomalies in the central and eastern North Pacific through the combined action of net surface heat flux, turbulent mixing and Ekman advection. The surface-forced temperature anomalies in the central North Pacific subduct and propagate southwestwards in the ocean thermocline to the subtropics but apparently do not reach the equator. The large-scale Ekman pumping resulting from changes of the Aleutian Low forces western-intensified thermocline depth anomalies that are approximately consistent with Sverdrup theory. These thermocline changes are associated with SST anomalies in the Kuroshio/Oyashio Extension that are of the same sign as those in the central North Pacific, but lagged by several years. The physics of the possible feedback from the SST anomalies to the Aleutian Low, which might close a coupled ocean–atmosphere mode of decadal variability, is poorly understood and is an area of active research. The possible responses of North Pacific Ocean ecosystems to these complicated physical patterns is summarized.  相似文献   

14.
This study investigates the long-term variability of the Kuroshio path south of Japan. Sensitivity experiments using a data-assimilative model suggest that the duration of the large meander (LM) strongly depends on the Kuroshio transport; specifically, low transport leads to a long duration of the LM. Actually, we find a good correlation between the duration of the past LMs and the Sverdrup transport estimated by a wind-driven linear baroclinic vorticity model. Then we explore favorable conditions for the LM and find a close relationship between the Kuroshio Extension (KE) state and the LM. That is, a precondition for the LM that the Kuroshio path on the Izu Ridge is fixed at a deep channel located around 34°N is achieved during a stable KE state. In addition, westward propagating signals with negative anomalies in the Kuroshio region and high sea-surface height (SSH) state east of Taiwan are key for generation of a small meander southeast of Kyushu that triggers a subsequent LM. The signals related to the above conditions change the upstream Kuroshio transport and velocity, which are consistent with features indicated by the former observational studies. Using reanalysis data, we construct long-time series of indices for the three conditions, which explain well the past LMs. The indices suggest that long-term non-LM states around 1970 and in the 1990s were attributed to a low-SSH state east of Taiwan and an unstable KE state, respectively.  相似文献   

15.
INTRODUCTIONBeing a current of high temperature and high salinity, the Kuroshio carries a large amount ofheat from low latitude tropical ocean to high latitude ocean, and plays an imPOrtant role in theheat balance in East Asia. The variability of the Kurosl,io can affect the climate of East Asia, aswell as the ocean environment and the fishery resources. A lot of studies showed that the variabilitiies of the Kuroshio were related to the global changes especially to the onset of ENSO.…  相似文献   

16.
Satellite-borne sea surface temperature (SST) data were assimilated with the ensemble Kalman filter (EnKF) in a Northwest Pacific Ocean circulation model to examine the effect of data assimilation. The model domain included the northwestern part of the Pacific Ocean and its marginal seas, such as the Yellow Sea and East/Japan Sea. The performance of the data assimilation was evaluated by comparing the simulated ocean state with that observed. Spatially averaged root-mean-squared errors in the SST and sea surface height (SSH) decreased by 0.44 °C and 4 cm, respectively, by the assimilation. The results of the numerical experiments substantiated the effectiveness of the SST assimilation via the EnKF for all marginal seas, as well as the Kuroshio region. The benefit of the data assimilation depended on the characteristics of each marginal sea. The variation of the SST in the East/Japan Sea and the Kuroshio extension (KE) region were improved 34% and those in the Yellow Sea 12.5%. The variation of the SSH was improved approximately 36% in the KE region. This large improvement was achieved in the deep-water regions because assimilation of SST data corrected the separation point of the western boundary currents, such as the Kuroshio and the East Korea Warm Current, and the associated horizontal surface currents. The SST assimilation via the EnKF also improved the subsurface temperature profiles. The effectiveness of SST assimilation was seasonally dependent, with the improvement being relatively larger in winter than in summer, which was related to the seasonal variation of the vertical mixing and stratification in the ocean surface layer.  相似文献   

17.
通过海气耦合模式CCSM3(The Community Climate System Model version 3),研究在北大西洋高纬度淡水强迫下,北太平洋冬季的海表温度SST、风场及流场的响应及其区域性差异。结果表明:淡水的注入使北太平洋整体变冷,但有部分区域异常增暖;在太平洋东部赤道两侧,SST的变化出现北负南正的偶极子型分布。阿留申低压北移的同时中纬度西风减弱,热带附近东北信风增强。黑潮和南赤道流减弱,北太平洋副热带逆流和北赤道流增强,日本海被南向流控制。风场及流场的改变共同导致了北太平洋SST异常出现复杂的空间差异:北太平洋中高纬度SST的降温主要由大气过程决定,海洋动力过程主要影响黑潮、日本海及副热带逆流区域的SST,太平洋热带地区SST异常由大气与海洋共同主导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号