首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 407 毫秒
1.
The rates at which mass accumulates into protostellar cores can now be predicted in numerical simulations. Our purpose here is to develop methods to compare the statistical properties of the predicted protostars with the observable parameters. This requires (1) an evolutionary scheme to convert numerically derived mass accretion rates into evolutionary tracks and (2) a technique to compare the tracks to the observed statistics of protostars. Here, we use a 3D Kolmogorov–Smirnov test to quantitatively compare model evolutionary tracks and observations of Class 0 protostars.
We find that the wide range of accretion functions and time-scales associated with gravoturbulent simulations naturally overcome difficulties associated with schemes that use a fixed accretion pattern. This implies that the location of a protostar on an evolutionary track does not precisely determine the present age or final accrued mass. Rather, we find that predictions of the final mass for protostars from observed   T bol– L bol  values are uncertain by a factor of 2 and that the bolometric temperature is not always a reliable measure of the evolutionary stage. Furthermore, we constrain several parameters of the evolutionary scheme and estimate a lifetime of Class 0 sources of  2–6 × 104 yr  , which is related to the local free-fall time and thus to the local density at the onset of the collapse. Models with Mach numbers smaller than six are found to best explain the observational data. Generally, only a probability of 70 per cent was found that our models explain the current observations. This is caused by not well-understood selection effects in the observational sample and the simplified assumptions in the models.  相似文献   

2.
Minimal models of cooling neutron stars with accreted envelopes   总被引:1,自引:0,他引:1  
We study the 'minimal' cooling scenario of superfluid neutron stars with nucleon cores, where the direct Urca process is forbidden and enhanced cooling is produced by neutrino emission due to the Cooper pairing of neutrons. Extending our recent previous work, we include the effects of surface accreted envelopes of light elements. We employ the phenomenological density-dependent critical temperatures   T cp(ρ)  and   T cnt(ρ)  of singlet-state proton and triplet-state neutron pairing in a stellar core, as well as the critical temperature   T cns(ρ)  of singlet-state neutron pairing in a stellar crust. We show that the presence of accreted envelopes simplifies the interpretation of observations of thermal radiation from isolated neutron stars in the scenario of our recent previous work and widens the class of models for nucleon superfluidity in neutron star interiors consistent with the observations.  相似文献   

3.
We present a mini-survey of ultrahigh-resolution spectroscopy (UHRS) of CH towards three southern molecular cloud envelopes. The sightlines are selected to probe physically similar gas in different Galactic environments. With a velocity resolution of ∼0.5 km s−1  ( R =575 000)  these observations resolve most kinematic components of the absorption lines. We do, however, detect one line component in the Lupus region, which is not resolved and for which an upper limit of   b <0.3 km s-1  is found. We find a correlation between distance of the absorbing gas from the Galactic mid-plane and the fractional abundance of CH. We show that this correlation can be explained as being a result of a fall-off in the ultraviolet radiation field intensity and propose that CH observations in carefully selected sightlines might allow a mapping of the variations in the interstellar radiation field.  相似文献   

4.
We present 3D simulations of rotationally induced line variability arising from complex circumstellar environment of classical T Tauri stars (CTTS) using the results of the 3D magnetohydrodynamics (MHD) simulations of Romanova et al., who considered accretion on to a CTTS with a misaligned dipole magnetic axis with respect to the rotational axis. The density, velocity and temperature structures of the MHD simulations are mapped on to the radiative transfer grid, and corresponding line source function and the observed profiles of neutral hydrogen lines (Hβ, Paβ and Brγ) are computed using the Sobolev escape probability method. We study the dependency of line variability on inclination angles ( i ) and magnetic axis misalignment angles (Θ). We find the line profiles are relatively insensitive to the details of the temperature structure of accretion funnels, but are influenced more by the mean temperature of the flow and its geometry. By comparing our models with the Paβ profiles of 42 CTTS observed by Folha & Emerson, we find that models with a smaller misaligngment angle  (Θ < ∼15°)  are more consistent with the observations which show that majority of Paβ are rather symmetric around the line centre. For a high inclination system with a small dipole misalignment angle  (Θ≈ 15°)  , only one accretion funnel (on the upper hemisphere) is visible to an observer at any given rotational phase. This can cause an anticorrelation of the line equivalent to the width in the blue wing  ( v < 0)  and that in the red wing  ( v > 0)  over half of a rotational period, and a positive correlation over the other half. We find a good overall agreement of the line variability behaviour predicted by our model and those from observations.  相似文献   

5.
We present ultra-high-resolution ( R = 900 000) observations of interstellar Na  i and K  i absorption lines towards κ Vel (HD 81188) which show clear evidence for temporal variation between 1994 and 2000. Specifically, the column densities of K0 and Na0 in the main velocity component have increased by 40 and 16 per cent, respectively, over this period. Earlier work had suggested that this component actually consists of two unresolved sub-components; this result is confirmed here, and the overall line profile is found to be consistent with only one of these sub-components having increased in strength since 1994. We argue that this variation is consistent with the line of sight gradually probing a cold, dense interstellar filament of the kind recently proposed by Heiles to explain other observations of small-scale structure in the interstellar medium.  相似文献   

6.
The shape of the dark matter halo in the early-type galaxy NGC 2974   总被引:1,自引:0,他引:1  
We present H  i observations of the elliptical galaxy NGC 2974, obtained with the Very Large Array. These observations reveal that the previously detected H  i disc in this galaxy is in fact a ring. By studying the harmonic expansion of the velocity field along the ring, we constrain the elongation of the halo and find that the underlying gravitational potential is consistent with an axisymmetric shape.
We construct mass models of NGC 2974 by combining the H  i rotation curve with the central kinematics of the ionized gas, obtained with the integral-field spectrograph SAURON. We introduce a new way of correcting the observed velocities of the ionized gas for asymmetric drift, and hereby disentangle the random motions of the gas caused by gravitational interaction from those caused by turbulence. To reproduce the observed flat rotation curve of the H  i gas, we need to include a dark halo in our mass models. A pseudo-isothermal sphere provides the best model to fit our data, but we also tested an NFW halo and modified Newtonian dynamics, which fit the data marginally worse.
The mass-to-light ratio M / L I increases in NGC 2974 from 4.3 M/L, I at one effective radius to 8.5 M/L, I at 5  R e. This increase of M / L already suggests the presence of dark matter: we find that within 5  R e at least 55 per cent of the total mass is dark.  相似文献   

7.
We have conducted ultra-deep optical and deep near-infrared observations of a field around the z =1.226 radio-quiet quasar 104420.8+055739 from the Clowes–Campusano LQG of 18 quasars at z ∼1.3, in search of associated galaxy clustering. Galaxies at these redshifts are distinguished by their extremely red colours, with I − K >3.75, and we find a factor ∼11 overdensity of such galaxies in a 2.25×2.25 arcmin2 field centred on the quasar. In particular, we find 15–18 galaxies that have colours consistent with being a population of passively evolving massive ellipticals at the quasar redshift. They form 'fingers' in the V − K K , I − K K colour–magnitude plots at V − K ≃6.9, I − K ≃4.3 comparable to the red sequences observed in other z ≃1.2 clusters. We find suggestive evidence for substructure among the red sequence galaxies in the K image, in the form of two compact groups, 40 arcsec to the north, and 60 arcsec to the south-east of the quasar. An examination of the wider optical images indicates that this substructure is significant, and that the clustering extends to form a large-scale structure 2–3  h −1 Mpc across. We find evidence for a high (≳50 per cent) fraction of blue galaxies in this system, in the form of 15–20 'red outlier' galaxies with I − K >3.75 and V − I <2.00, which we suggest are dusty, star-forming galaxies at the quasar redshift. Within 30 arcsec of the quasar we find a concentration of blue ( V − I <1) galaxies in a band that bisects the two groups of red sequence galaxies. This band of blue galaxies is presumed to correspond to a region of enhanced star formation. We explain this distribution of galaxies as the early stages of a cluster merger which has triggered both the star formation and the quasar.  相似文献   

8.
We present a submillimetre continuum survey for accretion discs around seven embedded protostars in the Perseus and Serpens molecular clouds. Observations were made at frequencies between 339 and 357 GHz using the James Clerk Maxwell Telescope–Caltech Submillimeter Observatory single-baseline interferometer on Mauna Kea, Hawaii. All the objects in our survey show compact dust emission on scales ≲1 arcsec, assumed to arise in a circumstellar accretion disc. We compare the properties of this compact component with evolutionary indicators, such as the ratio of compact to extended emission, and bolometric temperature. We find that discs of mass ∼0.01 M have formed by the Class 0 stage, and that similar mass discs are observed in Class I and Class II sources. A trend is observed whereby the ratio of compact to extended emission in our sources increases from Class 0 to Class II sources. For three of the objects in the survey, NGC 1333 IRAS2:CR1 and SVS13 in Perseus, and FIRS1 in Serpens, the signal-to-noise ratio is sufficient to allow us to model the brightness distributions with elliptical Gaussian and power-law disc models. The Gaussian fits give semimajor half-power radii of approximately 90 to 140 au, at the assumed distance of 350 pc to the Perseus and Serpens clouds.  相似文献   

9.
We quantify the galaxy environments around a sample of 0.5≤ z ≤0.8 radio-quiet quasars using the amplitude of the spatial galaxy–quasar correlation function, B gq. The quasars exist in a wide variety of environments; some sources are located in clusters as rich as Abell class 1–2 clusters, whereas others exist in environments comparable to the field. We find that, on average, the quasars prefer poorer clusters of ≈Abell class 0, which suggests that quasars are biased tracers of mass compared with galaxies. The mean B gq for the sample is found to be indistinguishable from the mean amplitude for a sample of radio-loud quasars matched in redshift and optical luminosity. These observations are consistent with recent studies of the hosts of radio-quiet quasars at low to intermediate redshifts, and suggest that the mechanism for the production of powerful radio jets in radio-loud quasars is controlled by processes deep within the active galactic nucleus itself, and is unrelated to the nature of the hosts or their environments.  相似文献   

10.
Hydrostatic equilibrium of the multiphase interstellar medium in the solar vicinity is reconsidered, with the regular and turbulent magnetic fields treated separately. The regular magnetic field strength required to support the gas is consistent with independent estimates, provided that energy equipartition is maintained between turbulence and random magnetic fields. Our results indicate that a mid-plane value of B 0=4 μG for the regular magnetic field near the Sun leads to more attractive models than B 0=2 μG . The vertical profiles of both the regular and random magnetic fields contain disc and halo components, the parameters of which we have determined. The layer at 1≲| z |≲4 kpc can be overpressured and an outflow at a speed of about 50 km s−1 may occur there, presumably associated with a Galactic fountain flow, if B 0≃2 μG .
We show that hydrostatic equilibrium in a warped disc must produce asymmetric density distributions in z , in rough agreement with H  i observations in the outer Galaxy. This asymmetry may be a useful diagnostic of the details of the warping mechanism in the Milky Way and other galaxies. We find indications that gas and magnetic field pressures are different above and below the warped midplane in the outer Galaxy, and quantify the difference in terms of turbulent velocity and/or magnetic field strength.  相似文献   

11.
We present spectroscopy of the eclipsing recurrent nova U Sco. The radial velocity semi-amplitude of the primary star was found to be     from the motion of the wings of the He  ii λ 4686-Å emission line. By detecting weak absorption features from the secondary star, we find its radial velocity semi-amplitude to be     . From these parameters, we obtain a mass of     for the white dwarf primary star and a mass of     for the secondary star. The radius of the secondary is calculated to be     , confirming that it is evolved. The inclination of the system is calculated to be     , consistent with the deep eclipse seen in the light-curves. The helium emission lines are double-peaked, with the blueshifted regions of the disc being eclipsed prior to the redshifted regions, clearly indicating the presence of an accretion disc. The high mass of the white dwarf is consistent with the thermonuclear runaway model of recurrent nova outbursts, and confirms that U Sco is the best Type Ia supernova progenitor currently known. We predict that U Sco is likely to explode within ∼700 000 yr.  相似文献   

12.
X-ray and extreme-ultraviolet emission from the coronae of Capella   总被引:1,自引:0,他引:1  
The primary objective of this work is the analysis and interpretation of coronal observations of Capella obtained in 1999 September with the High Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory and the Extreme Ultraviolet Explorer ( EUVE ). He-like lines of O (O  vii ) are used to derive a density of 1.7×1010 cm−3 for the coronae of the binary, consistent with the upper limits derived from Fe  xxi , Ne  ix and Mg  xi line ratios. Previous estimates of the electron density based on Fe  xxi should be considered as upper limits. We construct emission measure distributions and compare the theoretical and observed spectra to conclude that the coronal material has a temperature distribution that peaks around 4–6 MK , implying that the coronae of Capella were significantly cooler than in the previous years. In addition, we present an extended line list with over 100 features in the 5–24 Å wavelength range, and find that the X-ray spectrum is very similar to that of a solar flare observed with SMM . The observed to theoretical Fe  xvii 15.012-Å line intensity reveals that opacity has no significant effect on the line flux. We derive an upper limit to the optical depth, which we combine with the electron density to derive an upper limit of 3000 km for the size of the Fe  xvii emitting region. In the same context, we use the Si  iv transition region lines of Capella from HST /Goddard High-Resolution Spectrometer observations to show that opacity can be significant at T =105 K , and derive a path-length of ≈75 km for the transition region. Both the coronal and transition region observations are consistent with very small emitting regions, which could be explained by small loops over the stellar surfaces.  相似文献   

13.
M-star spectra, at wavelengths beyond 1.35 μm, are dominated by water vapour, yet terrestrial water vapour makes it notoriously difficult to obtain accurate measurement from ground-based observations. We have used the short-wavelength spectrometer on the Infrared Space Observatory at four wavelength settings to cover the  2.5–3.0 μm  region for a range of M stars. The observations show a good match with previous ground-based observations and with synthetic spectra based on the Partridge & Schwenke line list, although not with the SCAN line list. We have used a least-squared minimization technique to systematically find best-fitting parameters for the sample of stars. The temperatures that we find indicate a relatively hot temperature scale for M dwarfs. We consider that this could be a consequence of problems with the Partridge & Schwenke line list which leads to synthetic spectra predicting water bands that are too strong for a given temperature. Such problems need to be solved in the next generation of water vapour line lists, which will extend the calculation of water vapour to higher energy levels with the good convergence necessary for reliable modelling of hot water vapour. Then water bands can assume their natural role as the primary tool for the spectroscopic analysis of M stars.  相似文献   

14.
We have carried out observations of the X-ray transient GX 339−4 during its high–soft and low–hard X-ray spectral states. Our high-resolution spectroscopic observation in 1999 April suggests that the H α line has a single-peaked profile in the low–hard state as speculated in our previous paper. The He  ii λ 4686 line, however, has a double-peaked profile in both the high–soft and low–hard states. This suggests that the line-emission mechanism is different in the two states. Our interpretation is that double-peaked lines are emitted from a temperature-inversion layer on the accretion disc surface when it is irradiatively heated by soft X-rays. Single-peaked lines may be emitted from outflow/wind matter driven by hard X-ray heating. We have constructed a simple plane-parallel model and we use it to illustrate that a temperature-inversion layer can be formed at the disc surface under X-ray illumination. We also discuss the conditions required for the formation of temperature inversion and line emission. Based on the velocity separations measured for the double-peaked lines in the high–soft state, we propose that GX 339−4 is a low-inclination binary system. The orbital inclination is about 15° if the orbital period is 14.8 h.  相似文献   

15.
We report on Australia Telescope Compact Array observations of the massive star-forming region G305.2+0.2 at 1.2 cm. We detected emission in five molecules towards G305A, confirming its hot core nature. We determined a rotational temperature of 26 K for methanol. A non-local thermodynamic equilibrium excitation calculation suggests a kinematic temperature of the order of 200 K. A time-dependent chemical model is also used to model the gas-phase chemistry of the hot core associated with G305A. A comparison with the observations suggest an age of between  2 × 104  and  1.5 × 105 yr  . We also report on a feature to the south-east of G305A which may show weak Class I methanol maser emission in the line at 24.933 GHz. The more evolved source G305B does not show emission in any of the line tracers, but strong Class I methanol maser emission at 24.933 GHz is found 3 arcsec to the east. Radio continuum emission at 18.496 GHz is detected towards two H  ii regions. The implications of the non-detection of radio continuum emission towards G305A and G305B are also discussed.  相似文献   

16.
It is expected that an average protostar will undergo at least one impulsive interaction with a neighbouring protostar whilst a large fraction of its mass is still in a massive, extended disc. If protostars are formed individually within a cluster before falling together and interacting, there should be no preferred orientation for such interactions. As star formation within clusters is believed to be coeval, it is probable that, during interactions, both protostars possess massive, extended discs.   We have used an SPH code to carry out a series of simulations of non-coplanar disc–disc interactions. We find that non-coplanar interactions trigger gravitational instabilities in the discs, which may then fragment to form new companions to the existing stars. (This is different from coplanar interactions, in which most of the new companion stars form after material in the discs has been swept up into a shock layer, and this then fragments.) The original stars may also capture each other, leading to the formation of a small- N cluster. If every star undergoes a randomly oriented disc–disc interaction, then the outcome will be the birth of many new stars and substellar objects. Approximately two-thirds of the stars will end up in multiple systems.  相似文献   

17.
We describe ISAAC/ESO-VLT observations of the Hαλ6563 Balmer line of 33 field galaxies from the Canada–France Redshift Survey (CFRS) with redshifts selected between 0.5 and 1.1. We detect Hα in emission in 30 galaxies and compare the properties of this sample with the low-redshift sample of CFRS galaxies at   z ∼ 0.2  . We find that the Hα luminosity,   L (Hα)  , is tightly correlated to   M ( B AB)  in the same way for both the low- and high-redshift samples.   L (Hα)  is also correlated to L ([O  ii ]λ3727), and again the relation appears to be similar at low and high redshifts. The ratio L (lsqb;O  ii ])/   L (Hα)  decreases for brighter galaxies by as much as a factor of 2 on average. Derived from the Hα luminosity function, the comoving Hα luminosity density increases by a factor 12 from  〈 z 〉= 0.2  to  〈 z 〉= 1.3  . Our results confirm a strong rise of the star formation rate (SFR) at   z < 1.3  , proportional to  (1 + z )4.1±0.3  (with   H 0= 50 km s−1 Mpc−1, q 0= 0.5  ). We find an average  SFR(2800 Å)/SFR (Hα)  ratio of 3.2 using the Kennicutt SFR transformations. This corresponds to the dust correction that is required to make the near-ultraviolet data consistent with the reddening-corrected Hα data within the self-contained, I -selected CFRS sample.  相似文献   

18.
We present results from two high-resolution hydrodynamical simulations of protocluster regions at   z ≃ 2.1  . The simulations have been compared to observational results for the so-called Spiderweb galaxy system, the core of a putative protocluster region at   z = 2.16  , found around a radio galaxy. The simulated regions have been chosen so as to form a poor cluster with   M 200≃ 1014  h −1 M  (C1) and a rich cluster with   M 200≃ 2 × 1015  h −1 M  (C2) at   z = 0  . The simulated protoclusters show evidence of ongoing assembly of a dominating central galaxy. The stellar mass of the brightest cluster galaxy of the C2 system is in excess with respect to observational estimates for the Spiderweb galaxy, with a total star formation rate which is also larger than indicated by observations. We find that the projected velocities of galaxies in the C2 cluster are consistent with observations, while those measured for the poorer cluster C1 are too low compared with the observed velocities. We argue that the Spiderweb complex resembles the high-redshift progenitor of a rich galaxy cluster. Our results indicate that the included supernovae feedback is not enough to suppress star formation in these systems, supporting the need of introducing active galactic nuclei feedback. According to our simulations, a diffuse atmosphere of hot gas in hydrostatic equilibrium should already be present at this redshift, and enriched at a level comparable to that of nearby galaxy clusters. The presence of this gas should be detectable with future deep X-ray observations.  相似文献   

19.
The northern section of the molecular cloud complex NGC 6334 has been mapped in the CO and CS spectral line emission and in continuum emission at a wavelength of 1300 μm. Our observations highlight the two dominant sources, I and I(N), and a host of weaker sources. NGC 6334 I is associated with a cometary ultracompact H  ii region and a hot, compact core ≤10 arcsec in size. Mid-infrared and CH3OH observations indicate that it is also associated with at least two protostellar sources, each of which may drive a molecular outflow. For region I we confirm the extreme high-velocity outflow first discovered by Bachiller & Cernicharo and find that it is very energetic with a mechanical luminosity of 390 L. A dynamical age for the outflow is ∼3000 yr. We also find a weaker outflow originating from the vicinity of NGC 6334 I. In CO and CS this outflow is quite prominent to the north-west, but much less so on the eastern side of I, where there is very little molecular gas. Spectral survey data show a molecular environment at position I which is rich in methanol, methyl formate and dimethyl ether, with lines ranging in energy up to 900 K above the ground state. NGC 6334 I(N) is more dense than I, but cooler, and has none of the high-excitation lines observed toward I. I(N) also has an associated outflow, but it is less energetic than the outflow from I. The fully sampled continuum map shows a network of filaments, voids and cores, many of which are likely to be sites of star formation. A striking feature is a narrow, linear ridge which defines the western boundary. It is unclear if there is a connection between this filament and the many potential sites of star formation, or if the filament existed prior to the star formation activity.  相似文献   

20.
We present SCUBA 850-μm, JCMT  CO( J =2→1)  , B -band imaging and VLA H  i observations of the NGC 7465/4/3 group of galaxies. The 850-μm emission associated with NGC 7465 extends to at least ∼2 R 25 and is well correlated with the H  i . We investigate a range of possible mechanisms by which dust beyond R 25 may be heated to give the observed extended submillimetre emission. By modelling the dust heating by stars in two extreme geometries, we fail to find any reasonable star formation scenario that is consistent with both the 850-μm and optical data. Furthermore, we do not detect any  CO( J =2→1)  emission coincident with the extended dust and atomic gas as would be expected if significant star formation were occurring. We show that shock-heating of dust via cloud–cloud collisions in the stripped interstellar medium of NGC 7465 could be sufficient to explain the extended 850-μm emission and lack of optical emission in the stripped gas, and suggest that cloud–cloud collisions may be an important dust heating mechanism in gas-rich systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号