首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of this study was to map rainfed and irrigated rice-fallow cropland areas across South Asia, using MODIS 250?m time-series data and identify where the farming system may be intensified by the inclusion of a short-season crop during the fallow period. Rice-fallow cropland areas are those areas where rice is grown during the kharif growing season (June–October), followed by a fallow during the rabi season (November–February). These cropland areas are not suitable for growing rabi-season rice due to their high water needs, but are suitable for a short -season (≤3 months), low water-consuming grain legumes such as chickpea (Cicer arietinum L.), black gram, green gram, and lentils. Intensification (double-cropping) in this manner can improve smallholder farmer’s incomes and soil health via rich nitrogen-fixation legume crops as well as address food security challenges of ballooning populations without having to expand croplands. Several grain legumes, primarily chickpea, are increasingly grown across Asia as a source of income for smallholder farmers and at the same time providing rich and cheap source of protein that can improve the nutritional quality of diets in the region. The suitability of rainfed and irrigated rice-fallow croplands for grain legume cultivation across South Asia were defined by these identifiers: (a) rice crop is grown during the primary (kharif) crop growing season or during the north-west monsoon season (June–October); (b) same croplands are left fallow during the second (rabi) season or during the south-east monsoon season (November–February); and (c) ability to support low water-consuming, short-growing season (≤3 months) grain legumes (chickpea, black gram, green gram, and lentils) during rabi season. Existing irrigated or rainfed crops such as rice or wheat that were grown during kharif were not considered suitable for growing during the rabi season, because the moisture/water demand of these crops is too high. The study established cropland classes based on the every 16-day 250?m normalized difference vegetation index (NDVI) time series for one year (June 2010–May 2011) of Moderate Resolution Imaging Spectroradiometer (MODIS) data, using spectral matching techniques (SMTs), and extensive field knowledge. Map accuracy was evaluated based on independent ground survey data as well as compared with available sub-national level statistics. The producers’ and users’ accuracies of the cropland fallow classes were between 75% and 82%. The overall accuracy and the kappa coefficient estimated for rice classes were 82% and 0.79, respectively. The analysis estimated approximately 22.3?Mha of suitable rice-fallow areas in South Asia, with 88.3% in India, 0.5% in Pakistan, 1.1% in Sri Lanka, 8.7% in Bangladesh, 1.4% in Nepal, and 0.02% in Bhutan. Decision-makers can target these areas for sustainable intensification of short-duration grain legumes.  相似文献   

2.
ABSTRACT

Mapping croplands, including fallow areas, are an important measure to determine the quantity of food that is produced, where they are produced, and when they are produced (e.g. seasonality). Furthermore, croplands are known as water guzzlers by consuming anywhere between 70% and 90% of all human water use globally. Given these facts and the increase in global population to nearly 10 billion by the year 2050, the need for routine, rapid, and automated cropland mapping year-after-year and/or season-after-season is of great importance. The overarching goal of this study was to generate standard and routine cropland products, year-after-year, over very large areas through the use of two novel methods: (a) quantitative spectral matching techniques (QSMTs) applied at continental level and (b) rule-based Automated Cropland Classification Algorithm (ACCA) with the ability to hind-cast, now-cast, and future-cast. Australia was chosen for the study given its extensive croplands, rich history of agriculture, and yet nonexistent routine yearly generated cropland products using multi-temporal remote sensing. This research produced three distinct cropland products using Moderate Resolution Imaging Spectroradiometer (MODIS) 250-m normalized difference vegetation index 16-day composite time-series data for 16 years: 2000 through 2015. The products consisted of: (1) cropland extent/areas versus cropland fallow areas, (2) irrigated versus rainfed croplands, and (3) cropping intensities: single, double, and continuous cropping. An accurate reference cropland product (RCP) for the year 2014 (RCP2014) produced using QSMT was used as a knowledge base to train and develop the ACCA algorithm that was then applied to the MODIS time-series data for the years 2000–2015. A comparison between the ACCA-derived cropland products (ACPs) for the year 2014 (ACP2014) versus RCP2014 provided an overall agreement of 89.4% (kappa?=?0.814) with six classes: (a) producer’s accuracies varying between 72% and 90% and (b) user’s accuracies varying between 79% and 90%. ACPs for the individual years 2000–2013 and 2015 (ACP2000–ACP2013, ACP2015) showed very strong similarities with several other studies. The extent and vigor of the Australian croplands versus cropland fallows were accurately captured by the ACCA algorithm for the years 2000–2015, thus highlighting the value of the study in food security analysis. The ACCA algorithm and the cropland products are released through http://croplands.org/app/map and http://geography.wr.usgs.gov/science/croplands/algorithms/australia_250m.html  相似文献   

3.
Irrigation accounts for 70% of global water use by humans and 33–40% of global food production comes from irrigated croplands. Accurate and timely information related to global irrigation is therefore needed to manage increasingly scarce water resources and to improve food security in the face of yield gaps, climate change and extreme events such as droughts, floods, and heat waves. Unfortunately, this information is not available for many regions of the world. This study aims to improve characterization of global rain-fed, irrigated and paddy croplands by integrating information from national and sub-national surveys, remote sensing, and gridded climate data sets. To achieve this goal, we used supervised classification of remote sensing, climate, and agricultural inventory data to generate a global map of irrigated, rain-fed, and paddy croplands. We estimate that 314 million hectares (Mha) worldwide were irrigated circa 2005. This includes 66 Mha of irrigated paddy cropland and 249 Mha of irrigated non-paddy cropland. Additionally, we estimate that 1047 Mha of cropland are managed under rain-fed conditions, including 63 Mha of rain-fed paddy cropland and 985 Mha of rain-fed non-paddy cropland. More generally, our results show that global mapping of irrigated, rain-fed, and paddy croplands is possible by combining information from multiple data sources. However, regions with rapidly changing irrigation or complex mixtures of irrigated and non-irrigated crops present significant challenges and require more and better data to support high quality mapping of irrigation.  相似文献   

4.
Cropland is one of the essential elements of our ecological systems for producing agricultural products. In developing countries, urban expansion is a frequently appearing phenomena, which is a type of land cover land use (LCLU) change. This change can drastically alter the features on the land surface including croplands. It can lead to detrimental consequences which has considerable effects on the social-ecological systems when croplands are lost. Argentina is an extremely agricultural intense developing country, and Buenos Aires province is a top agricultural production site and has been urbanizing during the last 30 years. Thus studying and analyzing the metropolitan area of this province will contribute to our understanding of the relationship between urban expansion and its effect on croplands. So far, no research has used measurable quantitative methodologies on the Buenos Aires metropolitan region (BAMR) to reveal the relationship between urbanization and cropland. By using 30-meter resolution Landsat images of June 1985 and July 2015, this study finds urban land has expanded from 937.16?km2 to 1835.47?km2, and 30.28% of the new urban lands comes from existing croplands.  相似文献   

5.
Global land cover data could provide continuously updated cropland acreage and distribution information, which is essential to a wide range of applications over large geographical regions. Cropland area estimates were evaluated in the conterminous USA from four recent global land cover products: MODIS land cover (MODISLC) at 500-m resolution in 2010, GlobCover at 300-m resolution in 2009, FROM-GLC and FROM-GLC-agg at 30-m resolution based on Landsat imagery circa 2010 against the US Department of Agriculture survey data. Ratio estimators derived from the 30-m resolution Cropland Data Layer were applied to MODIS and GlobCover land cover products, which greatly improved the estimation accuracy of MODISLC by enhancing the correlation and decreasing mean deviation (MDev) and RMSE, but were less effective on GlobCover product. We found that, in the USA, the CDL adjusted MODISLC was more suitable for applications that concern about the aggregated county cropland acreage, while FROM-GLC-agg gave the least deviation from the survey at the state level. Correlation between land cover map estimates and survey estimates is significant, but stronger at the state level than at the county level. In regions where most mismatches happen at the county level, MODIS tends to underestimate, whereas MERIS and Landsat images incline to overestimate. Those uncertainties should be taken into consideration in relevant applications. Excluding interannual and seasonal effects, R2 of the FROM-GLC regression model increased from 0.1 to 0.4, and the slope is much closer to one. Our analysis shows that images acquired in growing season are most suitable for Landsat-based cropland mapping in the conterminous USA.  相似文献   

6.
National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux between land and atmosphere. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale as well as national and continental scales. Existing satellite-based NPP products tend to underestimate NPP on croplands. An Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP over large multi-state regions. The method is documented here and evaluated for corn (Zea mays L.) and soybean (Glycine max L. Merr.) in Iowa and Illinois in 2006 and 2007. The method includes a crop-specific Enhanced Vegetation Index (EVI), shortwave radiation data estimated using the Mountain Climate Simulator (MTCLIM) algorithm, and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that corresponds to the Cropland Data Layer (CDL) land cover product. Results from the modeling framework captured the spatial NPP gradient across croplands of Iowa and Illinois, and also represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 917 g C m−2 yr−1 and 409 g C m−2 yr−1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Site comparisons with flux tower data show AgI-LUE NPP in close agreement with tower-derived NPP, lower than inventory-based NPP, and higher than MOD17A3 NPP. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.  相似文献   

7.
The aim of this study was to assess the contribution of very high spatial resolution (VHSR) Pléiades images to both early season crop identification and the mapping of bare soil surface characteristics due to cultural operations. The study region covering 21 km2 is located west of the peri-urban territory of the Versailles plain and the Alluets plateau (Yvelines, France). About 100 cropped fields were observed on the ground synchronously with two Pléiades images of 3 and 24 April 2013 and one SPOT4 image of 2 April 2013. The GIS structuring of these field data along with vector information about field boundaries was used for delimitating both training and test zones for the support vector machine classifier with polynomial function kernel (pSVM). The pSVM was computed on the spectral bands and NDVI for both single-date Pléiades and the bi-temporal Pléiades pair. For the single-date classifications of crops, the overall per-pixel accuracy reached 87% for the SPOT4 image of 2 April (6 classes), 79% for the Pléiades image of 3 April (6 classes) and 82% for that of 24 April (7 classes). At the earlier date (2–3 April), the Pléiades image very well discriminated cultural operations (>77%, user’s or producer’s accuracies) as well as fallows and grasslands, while winter cereals and rapeseed were better discriminated by the SPOT4 image winter cereals (>70%, user’s or producer’s accuracies). As Pléiades images revealed within-field spatial variations of early phenological stages of winter cereals that could be critical for adjusting management of zones with delayed development during the growing season, they brought information complementary to multispectral images with high spatial resolution. For the bi-temporal Pléiades image, the overall per-pixel accuracy was about 80% (7 classes), winter crops, grasslands and fallows being very well detected while confusions occurred between spring barley at initial stages (2–3 leaves) and bare soils prepared for other spring crops. Using an additional validation field set covering ∼1/3 of the study area croplands, the crop map resulting from the bi-temporal Pléiades pair achieved correct crop prediction for about 89.7% of the validation fields when considering composite classes for winter cereals and for spring crops. Early-season Pléiades images therefore show a considerable potential for anticipating regional crop patterns and detecting soil tillage operations in spring.  相似文献   

8.
This paper presents a new approach to improving land use/cover mapping accuracy in an urban environment. Bi-temporal Landsat TM images (1987 and 1997) were initially classified using the ISODATA method. An NDVI difference image was derived and classified, with each class indicating certain land use/cover changes. Temporal logical reasoning was then performed on the classified NDVI difference map and the initial land use/cover maps. The procedure successfully resolved the confusion between forest clear-cuts/fallow cropland and urban, as well as between forest clear-cuts and cropland. The kappa analysis test led to a Z value of 1.837 with the p-value of 0.026 for the year 1987, and a Z value of 1.924 with the p-value of 0.014 for 1997, indicating significant enhancement at the 95% confidence level.  相似文献   

9.
及时准确地获取耕地空间分布数据对于农业生产管理、产量估算、种植结构调整等具有重要意义。目前的耕地提取多基于多时相中低分辨率影像或单时相高分辨率影像,难以满足耕地破碎,农作物种植模式复杂的区域精度需求。基于此,本研究通过协同国产高分一号(GF-1)、高分二号(GF-2)和高分六号(GF-6)卫星影像,探索米级分辨率尺度下的耕地高精度提取方法。该方法以深度神经网络UNet为基础,通过协同GF-1/6的多时相优势和GF-2影像的高空间分辨率构建了CEUNet(Cropland Extraction UNet)模型,以充分挖掘耕地的时相特征和空间几何特征。同时,将基于CEUNet模型提取的米级耕地结果分别与基于UNet和多源不同分辨率遥感影像的语义分割(UNet_m)、基于UNet和单时相高分辨率影像的语义分割(UNet_s)、基于对象的随机森林分类(OBIA)、基于像元的随机森林分类(RF)提取的耕地结果展开对比,分析所提出的方法在不同区域的适宜性。结果表明,基于CEUNet模型提取的米级耕地总体精度达到92.92%,且基于CEUNet提取的耕地的逐像元验证结果在平均F1-Score值上相较于基于对象和基于像元的随机森林分类分别提升了0.21和0.21,相较于UNet_m和UNet_s分别提升了0.04和0.11,其中针对地块破碎,景观异质性高等区域,CEUNet相较于UNet_m和UNet_s提升了0.09和0.26。本研究提出的CEUNet模型能够充分发挥多源国产高分卫星数据的空间和时间优势,两者结合能够快速、高效地提取不同农业景观及不同种植模式的耕地空间分布信息。  相似文献   

10.
Land-use and land-cover (LULC) conversions have an important impact on land degradation, erosion and water availability. Information on historical land cover (change) is crucial for studying and modelling land- and ecosystem degradation. During the past decades major LULC conversions occurred in Africa, Southeast Asia and South America as a consequence of a growing population and economy. Most distinct is the conversion of natural vegetation into cropland. Historical LULC information can be derived from satellite imagery, but these only date back until approximately 1972. Before the emergence of satellite imagery, landscapes were monitored by black-and-white (B&W) aerial photography. This photography is often visually interpreted, which is a very time-consuming approach. This study presents an innovative, semi-automated method to map cropland acreage from B&W photography. Cropland acreage was mapped on two study sites in Ethiopia and in The Netherlands. For this purpose we used Geographic Object-Based Image Analysis (GEOBIA) and a Random Forest classification on a set of variables comprising texture, shape, slope, neighbour and spectral information. Overall mapping accuracies attained are 90% and 96% for the two study areas respectively. This mapping method increases the timeline at which historical cropland expansion can be mapped purely from brightness information in B&W photography up to the 1930s, which is beneficial for regions where historical land-use statistics are mostly absent.  相似文献   

11.
The vegetation dynamics and land use/land cover types of Birantiya Kalan watershed located in the arid tracts of western Rajasthan have been characterized and evaluated using Remote Sensing and Geographical Information System (GIS). The watershed under study falls in the transitional plain of Luni Basin and is characterized by Aravali ranges in the eastern half and vast alluvial plains in the west. The land use/land cover types, as identified are cropland, fallow, forest, land with scrub, land without scrub, sandy area and the water body. Land with scrub occupied maximum area (39% area of the watershed) in 1996 in place of crop land which was dominant (43% of total area) in the year 1988. During eight years period, seasonal fallow land increased significantly and the areal extent of water body decreased to almost half. Vegetation vigour types have been classified into very poor, poor. moderate, good and very good categories. Moderate vigour type reduced from 62 to 27% and poor type increased from 34 to 68% during the period 1988 to 1996. Other vegetation vigour types have not shown any significant changes. To quantify the changes over the years in both vegetation and land use/land cover, weightages have been given to each type and composite values of both vegetation vigour and land use types for 1996 and 1988 have been calculated. It has been observed that the ratio for vegetation vigour has been found to be 0.85 showing that the overall vegetation have not improved after the treatment. The ratio for land use is found to be 1.01, which indicates negligible change in land use.  相似文献   

12.
Start-of-season data are more and more used to qualify the land surface phenology trends in relation with climate variability and, more rarely, with human land management. In this paper, we compared the phenology of rangeland vs cropped land in the Sahel belt of Africa, using the only currently available global phenology product (MODIS MCD12Q2 – Land Cover Dynamics Yearly), and an enhanced crop mask of Mali. The differences in terms of start-of-season (SOS) are spatially (north south gradient), and temporally (10 years, 2001–2009) analyzed in bioclimatic terms. Our results show that globally the MODIS MCD12Q2 SOS dates of croplands and rangelands differ, and that these differences depend on the bioclimatic zone. In Sahelian and Guinean regions, cropland vegetation begins to grow earlier than rangeland vegetation (8-day and 4-day advance, respectively). Between, in the Sudanian and Sudano-Sahelian parts of Mali, rangeland vegetation greens about one week earlier than croplands. These results are discussed in the context of the land surface heterogeneity at MODIS scale, and in the context of the natural vegetation ecology. These results could help interpreting phenological trends in climate change analysis.  相似文献   

13.
Accurate geo-information of cropland is critical for food security strategy development and grain production management, especially in Africa continent where most countries are food-insecure. Over the past decades, a series of African cropland maps have been derived from remotely-sensed data, existing comparison studies have shown that inconsistencies with statistics and discrepancies among these products are considerable. Yet, there is a knowledge gap about the factors that influence their consistency. The aim of this study is thus to estimate the consistency of five widely-used cropland datasets (MODIS Collection 5, GlobCover 2009, GlobeLand30, CCI-LC 2010, and Unified Cropland Layer) in Africa, and to explore the effects of several limiting factors (landscape fragmentation, climate and agricultural management) on spatial consistency. The results show that total cropland area for Africa derived from GlobeLand30 has the best fitness with FAO statistics, followed by MODIS Collection 5. GlobCover 2009, CCI-LC 2010, and Unified Cropland Layer have poor performances as indicated by larger deviations from statistics. In terms of spatial consistency, disagreement is about 37.9 % at continental scale, and the disparate proportion even exceeds 50 % in approximately 1/3 of the countries at national scale. We further found that there is a strong and significant correlation between spatial agreement and cropland fragmentation, suggesting that regions with higher landscape fragmentation generally have larger disparities. It is also noticed that places with better consistency are mainly distributed in regions with favorable natural environments and sufficient agricultural management such as well-developed irrigated technology. Proportions of complete agreement are thus located in favorable climate zones including Hot-summer Mediterranean climate (Csa), Subtropical highland climate (Cwb), and Temperate Mediterranean climate (Csb). The level of complete agreement keeps rising as the proportion of irrigated cropland increases. Spatial agreement among these datasets has the most significant relationship with cropland fragmentation, and a relatively small association with irrigation area, followed by climate conditions. These results can provide some insights into understanding how different factors influence the consistency of cropland datasets, and making an appropriate selection when using these datasets in different regions. We suggest that future cropland mapping activities should put more effort in those regions with significant disagreement in Sub-Saharan Africa.  相似文献   

14.
Monitoring agricultural land is important for understanding and managing food production, environmental conservation efforts, and climate change. The United States Department of Agriculture's Cropland Data Layer (CDL), an annual satellite imagery-derived land cover map, has been increasingly used for this application since complete coverage of the conterminous United States became available in 2008. However, the CDL is designed and produced with the intent of mapping annual land cover rather than tracking changes over time, and as a result certain precautions are needed in multi-year change analyses to minimize error and misapplication. We highlight scenarios that require special considerations, suggest solutions to key challenges, and propose a set of recommended good practices and general guidelines for CDL-based land change estimation. We also characterize a problematic issue of crop area underestimation bias within the CDL that needs to be accounted for and corrected when calculating changes to crop and cropland areas. When used appropriately and in conjunction with related information, the CDL is a valuable and effective tool for detecting diverse trends in agriculture. By explicitly discussing the methods and techniques for post-classification measurement of land-cover and land-use change using the CDL, we aim to further stimulate the discourse and continued development of suitable methodologies. Recommendations generated here are intended specifically for the CDL but may be broadly applicable to additional remotely-sensed land cover datasets including the National Land Cover Database (NLCD), Moderate Resolution Imaging Spectroradiometer (MODIS)-based land cover products, and other regional, national, and global land cover classification maps.  相似文献   

15.
ABSTRACT

The South Asia (India, Pakistan, Bangladesh, Nepal, Sri Lanka and Bhutan) has a staggering 900 million people (~43% of the population) who face food insecurity or severe food insecurity as per United Nations, Food and Agriculture Organization’s (FAO) the Food Insecurity Experience Scale (FIES). The existing coarse-resolution (≥250-m) cropland maps lack precision in geo-location of individual farms and have low map accuracies. This also results in uncertainties in cropland areas calculated from such products. Thereby, the overarching goal of this study was to develop a high spatial resolution (30-m or better) baseline cropland extent product of South Asia for the year 2015 using Landsat satellite time-series big-data and machine learning algorithms (MLAs) on the Google Earth Engine (GEE) cloud computing platform. To eliminate the impact of clouds, 10 time-composited Landsat bands (blue, green, red, NIR, SWIR1, SWIR2, Thermal, EVI, NDVI, NDWI) were derived for each of the three time-periods over 12 months (monsoon: Days of the Year (DOY) 151–300; winter: DOY 301–365 plus 1–60; and summer: DOY 61–150), taking the every 8-day data from Landsat-8 and 7 for the years 2013–2015, for a total of 30-bands plus global digital elevation model (GDEM) derived slope band. This 31-band mega-file big data-cube was composed for each of the five agro-ecological zones (AEZ’s) of South Asia and formed a baseline data for image classification and analysis. Knowledge-base for the Random Forest (RF) MLAs were developed using spatially well spread-out reference training data (N = 2179) in five AEZs. The classification was performed on GEE for each of the five AEZs using well-established knowledge-base and RF MLAs on the cloud. Map accuracies were measured using independent validation data (N = 1185). The survey showed that the South Asia cropland product had a producer’s accuracy of 89.9% (errors of omissions of 10.1%), user’s accuracy of 95.3% (errors of commission of 4.7%) and an overall accuracy of 88.7%. The National and sub-national (districts) areas computed from this cropland extent product explained 80-96% variability when compared with the National statistics of the South Asian Countries. The full-resolution imagery can be viewed at full-resolution, by zooming-in to any location in South Asia or the world, at www.croplands.org and the cropland products of South Asia downloaded from The Land Processes Distributed Active Archive Center (LP DAAC) of National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS): https://lpdaac.usgs.gov/products/gfsad30saafgircev001/.  相似文献   

16.
为了科学准确地获取京承高速沿线土地利用变化情况,并分析相关建设对沿线生态景观格局的影响,本文选择2006年冬季-2008年夏季间多时相遥感数据和专题数据,进行专题知识引导下的土地利用季相变化检测与信息提取,并结合实地调查数据获得了四个季相的土地利用现状数据。经对其进行土地利用变化及景观格局定量分析,结果表明:由于大力加强现代农业走廊建设,农业用地增加1.06%,裸露农田及废弃地减少6.16%,休闲用地增加1.59%,沿线景观格局得到了优化,并对改善和治理季节性裸露农田、废弃地等起到了示范作用,为都市农业走廊规划与效果评价提供决策依据。  相似文献   

17.
针对PM2.5质量浓度空间分布的季节性差异与土地利用分布的定量关系问题,该文以浙江省杭州市为实验区,收集PM2.5质量浓度实测数据和MODIS气溶胶光学厚度(AOT)遥感数据,并对AOT进行标高订正和水汽校正,建立了PM2.5质量浓度和AOT的回归模型,通过模型得出了杭州市各季节的PM2.5质量浓度空间分布图;在此基础上,进一步分析了杭州市PM2.5浓度与土地利用类型(扬尘地表与非扬尘地表)之间的空间分布相关性。结果表明,杭州市2015年PM2.5质量浓度分布的季节性变化特征是冬季春季秋季夏季;建设用地和交通用地等扬尘地表对PM2.5的浓度贡献较大,特别是在冬季和春季两个季节。该研究结果对于认识空气中PM2.5的来源与时空分布特征具有一定的理论和实践意义。  相似文献   

18.
The knowledge of the surface temperature is important to a range of issues and themes in earth sciences central to urban climatology, global environmental change and human-environment interactions. The study analyses land surface temperature (LST) estimation using temporal ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) datasets (day time and night time) over National Capital Territory Delhi using the surface emissivity information at pixel level. The spatial variations of LST over different land use/land cover (LU/LC) at day time and night time were analysed and relationship between the spatial distribution of LU/LC and vegetation density with LST was developed. Minimum noise fraction (MNF) was used for LU/LC classification which gave better accuracy than classification with original bands. The satellite derived emissivity values were found to be in good agreement with literature and field measured values. It was observed that fallow land, waste land/bare soil, commercial/industrial and high dense built-up area have high surface temperature values during day time, compared to those over water bodies, agricultural cropland, and dense vegetation. During night time high surface temperature values are found over high dense built-up, water bodies, commercial/industrial and low dense built-up than over fallow land, dense vegetation and agricultural cropland. It was found that there is a strong negative correlation between surface temperature and NDVI over dense vegetation, sparse vegetation and low dense built-up area while with fraction vegetation cover, it indicates a moderate negative correlation. The results suggest that the methodology is feasible to estimate NDVI, surface emissivity and surface temperature with reasonable accuracy over heterogeneous urban area. The analysis also indicates that the relationship between the spatial distribution of LU/LC and vegetation density is closely related to the development of urban heat islands (UHI).  相似文献   

19.
耕地是丘陵山区稀缺的土地资源,具有地形条件复杂、种植结构多样的特点,导致了山地耕地信息难以快速、准确获取,并且基于传统的遥感数据及遥感监测方法开展山区耕地信息快速自动提取比较困难。针对这一问题,本文以西南山区贵州省息烽县作为试验区,根据地理空间异质性特征,提出分区控制、分层提取的耕地形态信息提取思路,构建了一种地貌单元约束条件下的分区分层耕地形态信息的提取方法。该方法首先根据地貌-植被特征将试验区划分为平坝区、山坡区、林草区3类地理分区;然后在每类分区基础上,根据耕地所呈现的视觉特征划分为不同的类型,对不同类型的耕地分别设计不同的深度学习模型进行分层提取。试验结果证明,该方法对山区复杂地形背景噪声具有较好的抑制作用,所提取的耕地地块信息相比于传统方法更符合实际耕地的实际分布形态,有效地减少了漏提率和错提率。  相似文献   

20.
The Lower Mississippi Alluvial Valley (LMAV) was home to about ten million hectare bottomland hardwood (BLH) forests in the Southern U.S. It experienced over 80 % area loss of the BLH forests in the past centuries and large-scale afforestation in recent decades. Due to the lack of a high-resolution cropland dataset, impacts of land use change (LUC) on the LMAV ecosystem services have not been fully understood. In this study, we developed a novel framework by integrating the machine learning algorithm, county-level agricultural census, and satellite-based cropland products to reconstruct the LMAV cropland distribution during 1850–2018 at a 30-m resolution. Results showed that the LMAV cropland area increased from 0.78 × 104 km2 in 1850 to 6.64 × 104 km2 in 1980 and then decreased to 6.16 × 104 km2 in 2018. Cropland expansion rate was the largest in the 1960s (749 km2 yr−1) but decreased rapidly thereafter, whereas cropland abandonment rate increased substantially in recent decades with the largest rate of 514 km2 yr−1 in the 2010s. Our dataset has three notable features: (1) the depiction of fine spatial details, (2) the integration of the county-level census, and (3) the inclusion of a machine-learning algorithm trained by satellite-based land cover product. Most importantly, our dataset well captured the continuous increasing trend in cropland area from 1930–1960, which was misrepresented by other cropland datasets reconstructed from the state-level census. Our dataset would be important to accurately evaluate the impacts of historical deforestation and recent afforestation efforts on regional ecosystem services, attribute the observed hydrological changes to anthropogenic and natural driving factors, and investigate how the socioeconomic factors control regional LUC pattern. Our framework and dataset are crucial to developing managerial and policy strategies for conserving natural resources and enhancing ecosystem services in the LMAV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号