首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aerobic mineralisation of Corg in surface sedimentsof the deep (>2000 m water depth) eastern Mediterranean Sea has been quantified by analysis of detailedbox core Corg concentration versus depth profiles and the modelling environment for early diageneticproblems MEDIA. The reactive fraction comprises 60–80% of the total Corg reachingthe sediments and is largely oxidised within the surficial 10 cm. A non-reactive C orgfraction (GNR) dominates at depths >10 cm, and makes up20–40% of the total C org flux to the sediments. First-order rateconstants for decomposition of the reactive fraction calculated from theC org profiles range from 5.4 × 10-3 to8.0 × 10-3 y-1 to 8.0 × 10-3 y-1. Total mineralization rates in thesurface sediment are between 1.7 and 2.6 mol C cm-2 y-1 and thus are typical for oligotrophic, deep-seaenvironments. The low fluxes and rapid remineralisation of C org are accompanied by210Pbexcess surface mixed layers which are only 2 cm deep, among the thinnest reported for oxygenated marine sediments.Model results indicate a mismatch between the C org profiles and O2 microprofileswhich were measured onboard ship. This can be attributed to a combination of decompression artefactsaffecting onboard measurement of the O2 profiles or the leakage ofoxygen into the core during handling on deck. Furthermore, the used Db values, based on 210Pb, may not befully appropriate; calculations with higher Db values improve the O2 fits. The surficial sediment13C org values of -22 become less negative with increasing depth and decreasing C orgconcentrations. The major 13C change occurs in the top 3 to 4 cm and coincides with the interval weremost of the organic carbon oxidation takes place. This indicates that the reactive fractionof organic matter, commonly assumed to be marine, has a more negative 13C orgthan the refractory fraction, usually held to be terrestrial. Palaeoproductivity estimates calculated from thesediment data by means of literature algorithms yield low surface productivities(12–88 gC m-2 y-1), which are in good agreement with field measurements of primary productivity in otherstudies. Such values are, however, significantly lower than those indicated by recent productivitymaps of the area derived from satellite imagery (>100 gC m-2 y-1).  相似文献   

2.
3.
In a comprehensive study, we compared depositional conditions, organic matter (OM) composition, and organic carbon turnover in sediments from two different depositional systems along the Chilean continental margin: at ∼23° S off Antofagasta and at ∼36° S off Concepción. Both sites lie within the Chilean coastal upwelling system and have an extended oxygen minimum zone in the water column. However, the northern site (23° S) borders the Atacama Desert, while the southern site (36° S) has a humid hinterland. Eight surface sediment cores (up to 30 cm long) from water depths of 126-1350 m were investigated for excess 210Pb (210Pbxs) activity, total organic and total inorganic carbon concentrations (TOC and TIC, respectively), C/N-ratios, organic carbon isotopic compositions (δ13C), chlorin concentrations, Chlorin Indices (CI), and sulfate reduction rates (SRR). Sediment accumulation rates obtained from 210Pb-analysis were similar in both regions (0.04-0.15 cm yr−1 at 23° S, 0.10-0.19 cm yr−1 at 36° S), although total 210Pbxs fluxes indicated that the vertical particle flux was higher at 36° S than at 23° S. We propose that sediment focusing in isolated deposition centers led to high sediment accumulation rates at 23° S. Furthermore, there were no indications for sediment mixing at 23° S, while bioturbation was intense at 36° S. δ13C-values (−24.5‰ to −20.1‰ vs. VPDB) and C/N-ratios (molar, 8.6-12.8) were characteristic of a predominantly marine origin of the sedimentary OM in both investigated areas. The extent of OM alteration in the water column was partly reflected in the surface sediments as chlorin concentrations decreased and C/N-ratios and CI increased with increasing water depth of the sampling site. SRR were lower at 23° S (areal SRR 0.12-0.60 mmol m−2 d−1) than at 36° S (areal SRR 0.82-1.18 mmol m−2 d−1), which was partly due to the greater water depth of most of the sediments investigated in the northern region and consistent with a lower quality of the sedimentary OM at 23° S. Reaction rate constants for TOC degradation that were obtained from measured SRR (kSRR; 0.0004-0.0022 yr−1) showed a good correspondence to kTOC that were derived from the depth profiles of TOC (0.0003-0.0014 yr−1). Both, kSRR and kTOC, reflect differences in OM composition. At 36° S they were related to the degradation state of bulk OM (represented by C/N-ratios), whereas near 23° S they were related to the freshness of a small fraction of labile OM (represented by CI). Our study shows that although rates of organic carbon accumulation were similar in both investigated sites, the extent and kinetics of organic carbon degradation were closely linked to differing depositional conditions.  相似文献   

4.
In this study, we examined the temporal changes of terrestrially-derived particulate organic carbon (POC) in the lower Mississippi River (MR) and in a very limited account, the upper tributaries (Upper MR, Ohio River, and Missouri River). We used for the first time a combination of lignin-phenols, bulk stable carbon isotopes, and compound-specific isotope analyses (CSIA) to examine POC in the lower MR and upper tributaries.A lack of correlation between POC and lignin phenol abundances (Λ8) was likely due to dilution effects from autochthonous production in the river, which has been shown to be considerably higher than previously expected. The range of δ13C values for p-hydroxycinnamic and ferulic acids in POC in the lower river do support that POM in the lower river does have a significant component of C4 in addition to C3 source materials. A strong correlation between δ13C values of p-hydroxycinnamic, ferulic, and vanillyl phenols suggests a consistent input of C3 and C4 carbon to POC lignin while a lack of correlation between these same phenols and POC bulk δ13C further indicates the considerable role of autochthonous carbon in the lower MR POC budget. Our estimates indicate an annual flux of POC of 9.3 × 108 kg y−1 to the Gulf of Mexico. Total lignin fluxes, based on Λ8 values of POC, were estimated to be 1.2 × 105 kg y−1. If we include the total dissolved organic carbon (DOC) flux (3.1 × 109 kg y−1) reported by [Bianchi T. S., Filley T., Dria K. and Hatcher, P. (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim. Cosmochim. Acta68, 959-967.], we get a total organic carbon flux of 4.0 × 109 kg y−1. This represents 0.82% of the annual total organic carbon supplied to the oceans by rivers (4.9 × 1011 kg).  相似文献   

5.
Lago Verde is a fresh-water maar found on the lower slopes of San Martin volcano, at the Sierra de Los Tuxtlas, Mexico, currently the northernmost remnant of the tropical rain forest in America. 210Pb and 137Cs analyzed in a sediment core were used to reconstruct the historical fluxes of Ag, Cd, Cu, Pb, Hg and Zn to the site during the last ∼ 150 yr. The 210Pbxs-derived sediment accumulation rates, the magnetic susceptibility, C/N ratios and δ13C data evidenced background conditions at the lake until 1960s, when enhanced erosion related to the clearing of large forested areas at Los Tuxtlas promoted higher accumulation rates of a heavier and more magnetic sedimentary material. Recent sediments from Lago Verde were found enriched by Pb (26-fold natural concentration level [NCLs]) and moderately enriched by Cd > Cu > Zn and Hg (6-, 5-, 4- and 4-fold corresponding NCLs, respectively). The fluxes of Cu, Hg, Pb and Zn have significantly increased since 1940s, with peak ratios of total modern to pre-industrial fluxes of 11, 11, 19 and 49, respectively. The lake occupies a relatively pristine, non-industrialized basin, and therefore the increased metal fluxes might be related to long-distance aeolian transport of trace metals.  相似文献   

6.
Oceania supplies ∼40% of the global riverine flux of organic carbon, approximately half of which is injected onto broad continental shelves and processed in shallow deltaic systems. The Gulf of Papua, on the south coast of the large island of New Guinea, is one such deltaic clinoform complex. It receives ∼4 Mt yr−1 particulate terrestrial organic carbon with initial particle Corg loading ∼0.7 mg m−2. Corg loading is reduced to ∼0.3 mg m−2 in the topset-upper foreset zones of the delta despite additional inputs of mangrove and planktonic detritus, and high net sediment accumulation rates of 1-4 cm yr−1. Carbon isotopic analyses (δ13C, Δ14C) of ΣCO2 and Corg demonstrate rapid (<100 yr) remineralization of both terrestrial (δ13C <−28.6) and marine Corg13C ∼−20.5) ranging in average age from modern (bomb) (Δ14C ∼60) to ∼1000 yr (Δ14C ∼−140). Efficient and rapid remineralization in the topset-upper foreset zone is promoted by frequent physical reworking, bioturbation, exposure, and reoxidation of deposits. The seafloor in these regions, particularly <20 m, apparently functions as a periodically mixed, suboxic batch reactor dominated by microbial biomass. Although terrestrial sources can be the primary metabolic substrates at inshore sites, relatively young marine Corg often preferentially dominates pore water ΣCO2 relative to bulk Corg in the upper foreset. Thus a small quantity of young, rapidly recycled marine organic material is often superimposed on a generally older, less reactive terrestrial background. Whereas the pore water ΣCO2 reflects both rapidly cycled marine and terrestrial sources, terrestrial material dominates the slower overall net loss of Corg from particles in the topset-upper foreset zone (i.e. recycled marine Corg leaves little residue). Preferential utilization of Corg subpools and diagenetic fractionation of C isotopes supports the reactive continuum model as a conceptual basis for net decomposition kinetics. Early diagenetic fractionation of C isotopes relative to the bulk sedimentary Corg composition can produce changes in 14C activity independent of radioactive decay. In the Gulf of Papua topset-upper foreset, Δ14C of pore water ΣCO2 averaged ∼ 300‰ greater than Corg sediment between ∼1-3 m depth in deposits. Diagenetic fractionation and decomposition aging of sedimentary Corg compromises simple application of 14C for determination of sediment accumulation rates in diagenetically reactive deposits.  相似文献   

7.
I present a numerical diffusion-advection-reaction model to simulate CO2 chemistry, δ13C, and oxidation of organic carbon and methane in sediment porewater. The model takes into account detailed reaction kinetics of dissolved CO2 compounds, H2O, H+, OH, boron and sulfide compounds. These reactions are usually assumed to be in local equilibrium, which is shown to be a good approximation in most cases. The model also includes a diffusive boundary layer across which chemical species are transported between bottom water and the sediment-water interface. While chemical concentrations and δ13CTCO2 at these locations are frequently assumed equal, I demonstrate that they can be quite different. In this case, shells of benthic foraminifera do not reflect the desired properties of bottom water, even for species living at the sediment-water interface (z = 0 cm). Environmental conditions recorded in their shells are strongly influenced by processes occurring within the sediment. The model is then applied to settings in the Santa Barbara Basin and at Hydrate Ridge (Cascadia Margin), locations of strong organic carbon and methane oxidation. In contrast to earlier studies, I show that a limited contribution of methane-derived carbon to porewater TCO2 in the Santa Barbara Basin cannot be ruled out. Simulation of methane venting shows that at oxidation rates greater than , the δ13C of porewater TCO2 at z > 1 cm is depleted by more than 15‰ relative to bottom water. Depletions of this magnitude have not been observed in living benthic foraminifera, even at methane vents with much higher oxidation rates. This suggests that foraminifera at these sites either calcify at very shallow sediment depth or during times when oxidation rates are much lower than ∼50 μmol cm−2 y−1.  相似文献   

8.
Small rivers draining mountain islands are important in the transfer of terrestrial particulate organic carbon (POC) to the oceans. This input has implications for the geochemical stratigraphic record. We have investigated the stable isotopic composition of POC (δ13Corg) in rivers draining the mountains of Taiwan. In 15 rivers, the suspended load has a mean δ13Corg that ranges from −28.1±0.8 to −22.0±0.2 (on average 37 samples per river) over the interval of our study. To investigate this variability we have supplemented suspended load data with measurements of POC in bedrock and river bed materials, and constraints on the composition of the terrestrial biomass. Fossil POC in bedrock has a range in δ13Corg from −25.4±1.5 to −19.7±2.3 between the major geological formations. Using coupled δ13Corg and N/C we have found evidence in the suspended load for mixing of fossil POC with non-fossil POC from the biosphere. In two rivers outside the Taiwan Central Range anthropogenic land use appears to influence δ13Corg, resulting in more variable and lower values than elsewhere. In all other catchments, we have found that 5 variability in δ13Corg is not controlled by the variable composition of the biomass, but instead by heterogeneous fossil POC.In order to quantify the fraction of suspended load POC derived from non-fossil sources (Fnf) as well as the isotopic composition of fossil POC (δ13Cfossil) carried by rivers, we adapt an end-member mixing model. River suspended sediments and bed sediments indicate that mixing of fossil POC results in a negative trend between N/C and δ13Corg that is distinct from the addition of non-fossil POC, collapsing multiple fossil POC end-members onto a single mixing trend. As an independent test of the model, Fnf reproduces the fraction modern (Fmod) in our samples, determined from 14C measurements, to within 0.09 at the 95% confidence level. Over the sampling period, the mean Fnf of suspended load POC was low (0.29 ± 0.02, n = 459), in agreement with observations from other mountain rivers where physical erosion rates are high and fossil POC enters river channels. The mean δ13Cfossil in suspended POC varied between −25.2±0.5 and −20.2±0.6 from catchment to catchment. This variability is primarily controlled by the distribution of the major geological formations. It also covers entirely the range of δ13Corg found in marine sediments which is commonly thought to derive from mixing between marine and terrigenous POC. If land-sourced POC is preserved in marine sediments, then changes in the bulk δ13Corg observed offshore Taiwan could instead be explained by changes in the onshore provenance of sediment. The range in δ13Corg of fossil organic matter in sedimentary rocks exposed at the surface is large and given the importance of these rocks as a source of clastic sediment to the oceans, care should be taken in accounting for fossil POC in marine deposits supplied by active mountain belts.  相似文献   

9.
Kinetics of microbial sulfate reduction in estuarine sediments   总被引:2,自引:0,他引:2  
Kinetic parameters of microbial sulfate reduction in intertidal sediments from a freshwater, brackish and marine site of the Scheldt estuary (Belgium, the Netherlands) were determined. Sulfate reduction rates (SRR) were measured at 10, 21, and 30 °C, using both flow-through reactors containing intact sediment slices and conventional sediment slurries. At the three sites, and for all depth intervals studied (0-2, 2-4, 4-6 and 6-8 cm), the dependence of potential SRR on the sulfate concentration followed the Michaelis-Menten rate equation. Apparent sulfate half-saturation concentrations, Km, measured in the flow-through reactor experiments were comparable at the freshwater and marine sites (0.1-0.3 mM), but somewhat higher at the brackish site (0.4-0.9 mM). Maximum potential SRR, Rmax, in the 0-4 cm depth interval of the freshwater sediments were similar to those in the 0-6 cm interval of the marine sediments (10-46 nmol cm−3 h−1 at 21 °C), despite much lower in situ sulfate availability and order-of-magnitude lower densities of sulfate-reducing bacteria (SRB), at the freshwater site. Values of Rmax in the brackish sediments were lower (3.7-7.6 nmol cm−3 h−1 at 21 °C), probably due to less labile organic matter, as inferred from higher Corg/N ratios. Inflow solutions supplemented with lactate enhanced potential SRR at all three sites. Slurry incubations systematically yielded higher Rmax values than flow-through reactor experiments for the freshwater and brackish sediments, but similar values for the marine sediments. Transport limitation of potential SRR at the freshwater and brackish sites may be related to the lower sediment porosities and SRB densities compared to the marine site. Multiple rate controls, including sulfate availability, organic matter quality, temperature, and SRB abundance, modulate in situ sulfate-reducing activity along the estuarine salinity gradient.  相似文献   

10.
Located at the interface of terrestrial and marine ecosystems, mangroves are particularly sensitive to environmental change. They provide a sedimentary sink for organic carbon, whereby cores can provide detailed records of mangrove species. We aimed to trace the history of mangrove development over the past 150 years in Yingluo Bay, SW China. Sedimentation rates (avg. 0.32 and 0.37 cm/year) were calculated on the basis of ln(210Pbex) vs. mass depth, and offset the rate of relative sea level rise (0.22–0.24 cm/year), leading to a seaward expansion of new mangrove habitats. Chemical tracers (δ13Corg and C:N) and an isotope mixing model were utilized to trace the contribution of mangrove-derived organic matter (MOM). Changes in the relative abundance of pollen from mangrove plants was used to compensate for diagenetic alteration of the stable isotope values and potential overlaps in isotope values for different sources of organic matter. The result of Pearson correlation analysis showed that the MOM was moderately positive correlated with total mangrove pollen, indicating that stable carbon isotopes and mangrove pollen provide similar information for tracing mangrove ecosystems. Based on results from this study, compositional changes in mangrove communities could be divided into two main stages: a degradation period (1870–1930 AD) and a flourishing period (1930–2011 AD), corresponding to colder temperature and warmer temperature, respectively. Owing to the location being far away from any industrial area and human activity, temperature may be a key factor for mangrove development.  相似文献   

11.
Recent data were summarized on the concentration and mass of inorganic and organic carbon in reservoirs of the Earth’s hydrosphere. We compared carbon masses and accumulation conditions in the surface hydrosphere and waters of the sedimentary shell and proportions between carbonate, dissolved, and suspended particulate organic carbon. It was shown that the total masses of carbon in the surface hydrosphere and in the waters of the sedimentary shell are approximately equal to 80 × 1018 g C at an organic to carbonate carbon ratio of 1 : 36 and 1 : 43, respectively. Three main forms of organic compounds in the ocean (living organisms, suspended particles, and dissolved species) occur in the proportion 1 : 13 : 250 and form the pyramid of masses 4 × 1015 g, 50 × 1015 g, and 1000 × 1015 g Corg. The descending sequence of the organic to carbonate carbon ratio in water, ocean (1 : 36) > glaciers (1 : 8) > lakes (1 : 2) > rivers (1 : 0.6) > wetlands (1 : 0.3), is in general consistent with an increase in the same direction in the mean concentrations of organic matter: 0.77 mg Corg/L in the ocean, 0.7 mg Corg/L in glaciers, 6–30 mg Corg/L in lakes, 15 mg Corg/L in rivers, and 75 mg Corg/L in wetlands. Both the mean concentrations and masses of dissolved organic matter in the pore waters of oceanic sediments and in the waters of the sedimentary shell are similar: 36–37 mg/L and 5 × 1018 and 5.6 × 1018 g, respectively. The mass of carbonate carbon in the pore waters of the ocean, (19–33) × 1018 g, is comparable with its mass in the water column, 38.1 × 1018 g.  相似文献   

12.
With the aim of evaluating temporal changes in sedimentation and organic carbon (Corg) supplied over the last ~100 years, a sediment core was collected at Soledad Lagoon, a costal ecosystem surrounded by mangroves, located in the Cispatá Estuary (Caribbean coast of Colombia). The core sediments were characterized by low concentrations of calcium carbonate (0.2–2.9%), organic matter (3–8%), total nitrogen (0.11–0.38%), and total phosphorus (0.19–0.65 mg g−1). Fe and Al concentrations ranged from 4% to 5%, and Mn from 356 to 1,047 μg g−1. The 210Pb-derived sediment and mass accumulation rates were 1.54 ± 0.18 mm year−1 and 0.08 ± 0.01 g cm−2 year−1, respectively. The sediment core did not provide evidence of human impact, such as enhancement of primary production or nutrient enrichment, which may result from recent land uses changes or climate change. The Corg fluxes estimated for Soledad Lagoon core lay in the higher side of carbon fluxes to coastal ecosystems (314–409 g m−2 year−1) and the relatively high Corg preservation observed (~45%) indicate that these lagoon sediments has been a net and efficient sink of Corg during the last century, which corroborate the importance of mangrove areas as important sites for carbon burial and therefore, long-term sequestration of Corg.  相似文献   

13.
Stable isotopes (H, O, C) were determined for ground and surface waters collected from two relatively undisturbed massive sulfide deposits (Halfmile Lake and Restigouche) in the Bathurst Mining Camp (BMC), New Brunswick, Canada. Additional waters from active and inactive mines in the BMC were also collected. Oxygen and hydrogen isotopes of surface and shallow groundwaters from both the Halfmile Lake and Restigouche deposits are remarkably uniform (− 13 to − 14‰ and − 85 to − 95‰ for δ18OVSMOW and δ2HVSMOW, respectively). These values are lighter than predicted for northern New Brunswick and, combined with elevated deuterium excess values, suggest that recharge waters are dominated by winter precipitation, recharged during spring melting. Deeper groundwaters from the Restigouche deposit, and from active and inactive mines have heavier δ18OVSMOW ratios (up to − 10.8‰) than shallow groundwaters suggesting recharge under warmer climate or mixing with Shield-type brines. Some of the co-variation in Cl concentrations and δ18OVSMOW ratios can be explained by mixing between saline and shallow recharge water end-members. Carbon isotopic compositions of dissolved inorganic carbon (DIC) are variable, ranging from − 15 to − 5‰ δ13CVPDB for most ground and surface waters. Much of the variation in the carbon isotopes is consistent with closed system groundwater evolution involving soil zone CO2 and fracture zone carbonate minerals (calcite, dolomite and siderite; average = − 6.5‰ δ13CVPDB). The DIC of saline Restigouche deposit groundwater is isotopically heavy (∼+ 12‰ δ13CVPDB), indicating carbon isotopic fractionation from methanogenesis via CO2 reduction, consistent with the lack of dissolved sulfate in these waters and the observation of CH4-degassing during sampling.  相似文献   

14.
A 20 kyr long sediment sequence from the Congo deep sea fan (core GeoB 6518-1), one of the world’s largest deep sea river fans, has been analysed for bulk and molecular proxies in order to reconstruct the marine, soil and plant organic carbon (OC) contributions to these sediments since the last glacial maximum. The bulk proxies applied, C/N ratio and δ13Corg, ranged from 10 to 12.5 and from −24.5 to −21‰ VPDB, respectively. As molecular proxies, concentrations of marine derived alkenones and terrestrial derived odd-numbered n-alkanes were used, which varied between 0.2 and 4 μg/g dry weight sediment. In addition, the branched vs. isoprenoid tetraether (BIT) index, a proxy for soil organic matter input, was used, which varied from 0.3 to 0.5 in this core.Application of binary mixing models, based on the different individual proxies, showed estimates for terrestrial OC input varying by up to 50% due to the heterogeneous nature of the OC. Application of a three end-member mixing model using the δ13Corg content, the C/N ratio and the BIT index, enabled the distinction of soil and plant organic matter as separate contributors to the sedimentary OC pool. The results show that marine OC accounts for 20% to 40% of the total OC present in the deep sea fan sediments over the last 20 kyr and that soil OC accounts for about half (∼45% on average) of the OC present. This suggests that soil OC represents the majority of the terrestrial OC delivered to the fan sediments.Accumulation rates of the plant and soil OC fractions over the last 20 kyr varied by a factor of up to 5, and are strongly related to sediment accumulation rates. They showed an increase starting at ca. 17 kyr BP, a decline during the Younger Dryas, peak values during the early Holocene and lower values in the late Holocene. This pattern matches with reconstructions of past central African humidity and Congo River discharge from the same core and revealed that central African precipitation patterns exert a dominant control on terrestrial OC deposition in the Congo deep sea fan. Marine OC accumulation rates are only weakly related to sediment accumulation rates and vary only little over time compared to the terrigenous fractions. These variations are likely a result of enhanced preservation during times of higher sedimentation rates and of relative small fluctuations in primary production due to wind-driven upwelling.  相似文献   

15.
An Early Permian volcanic assemblage is well exposed in the central-western part of the Apuseni Mountains (Romania). The rocks are represented by rhyolites, basalts and subordinate andesites suggesting a bimodal volcanic activity that is intimately associated with a post-orogenic (Variscan) syn-sedimentary intra-basinal continental molasse sequences. The mafic and mafic-intermediate rocks belong to sub-alkaline tholeiitic series were separated in three groups (I–III) showing a high Th and Pb abundances, depletion in Nb, Ta and Sr, and slightly enriched in LREE patterns (LaN/YbN = 1.4–4.4). Isotopically, the rocks of Group I have the initial ratios 87Sr/86Sr(i) = 0.709351–0.707112, 143Nd/144Nd(i) = 0.512490–0.512588 and high positive ?Nd270 values from 3.9 to 5.80; the rocks of Group II present for the initial ratios values 87Sr/86Sr(i) = 0.709434–0.710092, 143Nd/144Nd(i) = 0.512231–0.512210 and for ?Nd270 the negative values from −1.17 to −1.56; the rocks of Group III display for the initial ratios the values 87Sr/86Sr(i) = 0.710751–0.709448, 143Nd/144Nd(i) = 0.512347–0.512411 and for ?Nd270 the positive values from 1.64 to 2.35. The rocks resembling continental tholeiites, suggest a mantle origin and were further affected by fractionation and crustal contamination. In addition, the REE geochemistry (1 > SmN/YbN < 2.5; 0.9 > LaN/SmN < 2.5) suggests that these rocks were generated by high percentage partial melting of a metasomatized mantle in the garnet peridotite facies. The felsic rocks are enriched in Cs, Rb Th and U and depleted in Nb, Ta, Sr, Eu, and Ti. The REE fractionation patterns show a strong negative Eu anomaly (Eu/Eu* = 0.23–0.40). The felsic rocks show the initial ratios the values: 87Sr/86Sr(i) = 0.704096–0.707805, 143Nd/144Nd(i) = 0.512012–0.512021 and for ?Nd270 the negative values from −5.27 to −5.44. They suggest to be generated within the lower crust during the emplacement of mantle-derived magmas that provided necessary heat to crustal partial melting.  相似文献   

16.
The contribution of soil organic matter (SOM) to continental margins is largely ignored in studies on the carbon budget of marine sediments. Detailed geochemical investigations of late Quaternary sediments (245-0 ka) from the Niger and Congo deep-sea fans, however, reveal that Corg/Ntot ratios and isotopic signatures of bulk organic matter (δ13Corg) in both fans are essentially determined by the supply of various types of SOM from the river catchments thus providing a fundamentally different interpretation of established proxies in marine sciences. On the Niger fan, increased Corg/Ntot and δ13Corg (up to −17‰) were driven by generally nitrogen-poor but 13C-enriched terrigenous plant debris and SOM from C4/C3 vegetation/Entisol domains (grass- and tree-savannah on young, sandy soils) supplied during arid climate conditions. Opposite, humid climates supported drainage of C3/C4 vegetation/Alfisol/Ultisol domains (forest and tree-savannah on older/developed, clay-bearing soils) that resulted in lower Corg/Ntot and δ13Corg (< −20‰) in the Niger fan record. Sediments from the Congo fan contain a thermally stable organic fraction that is absent on the Niger fan. This distinct organic fraction relates to strongly degraded SOM of old and highly developed, kaolinite-rich ferallitic soils (Oxisols) that cover large areas of the Congo River basin. Reduced supply of this nitrogen-rich and 12C-depleted SOM during arid climates is compensated by an elevated input of marine OM from the high-productive Congo up-welling area. This climate-driven interplay of marine productivity and fluvial SOM supply explains the significantly smaller variability and generally lower values of Corg/Ntot and δ13Corg for the Congo fan records. This study emphasizes that ignoring the presence of SOM results in a severe underestimation of the terrigenous organic fraction leading to erroneous paleoenvironmental interpretations at least for continental margin records. Furthermore, burial of SOM in marine sediments needs more systematic investigation combining marine and continental sciences to assess its global relevance for long-term sequestration of atmospheric CO2.  相似文献   

17.
18.
Lipids extracted from lacustrine deposits in the paleolake Qarhan of the Qaidam basin in the northeastern Tibetan Plateau were determined by conventional gas chromatography-mass spectrometry. Several series of biomarkers were identified, mainly including n-alkanes, n-alkan-2-ones, n-alkanoic acids, branched alkanes, triterpenoids and steroids, indicative of various biogenic contributions. On the basis of cluster analysis, the n-C15, n-C17, n-C19 alkanes were proposed to be derived from algae and/or photosynthetic bacteria, the n-C21, n-C23, n-C25 homologues from aquatic plants, and the n-C29, n-C31 homologues from vascular plants. In contrast, the n-C27 alkane is not categorized in the n-C29 and n-C31 group of alkanes, probably due to more complex origins including both aquatic and vascular plants, and/or differential biodegradation. Stratigraphically, layers-2, 4 and 5 were found to show a close relationship in n-alkane distribution, associated with a positive shift in carbon isotope composition of bulk organic matter (δ13Corg), inferring a cold/dry period. Layers-1 and 6 were clustered together in association with a negative δ13Corg, excursion, probably indicating a relatively warm/humid climate. The potential coupling between the n-alkane distributions and δ13Corg, suggests a consequence of vegetation change in response to climate change, with the late MIS3 being shown to be unstable, thought to be the climatic optimum in the Tibetan Plateau. Our results suggest that the cluster analysis used in this study probably provides an effective and authentic method to investigate the n-alkane distribution in paleolake sediments.  相似文献   

19.
Cave sediments collected from Reflection Cave on the Vaca Plateau, Belize show variations in the δ13C values of their fulvic acids (FAs), which indicate periods of vegetation change caused by climatic and Maya influences during the late Holocene. The δ13C values range from − 27.11‰ to − 21.52‰, a shift of ∼ 5.59‰, which suggests fluctuating contributions of C3 and C4 plants throughout the last 2.5 ka, with C4 plant input reflecting periods of Maya agriculture. Maya activity in the study area occurred at different intensities from ∼ 2600 cal yr BP until ∼ 1500 cal yr BP, after which agricultural practices waned as the Maya depopulated the area. These changes in plant assemblages were in response to changes in available water resources, with increased aridity leading to the eventual abandonment of agricultural areas. The Ix Chel archaeological site, located in the study area, is a highland site that would have been among the first agricultural settlements to be affected during periods of aridity. During these periods, minimal water resources would have been available in this highly karstified, well-drained area, and supplemental groundwater extraction would have been difficult due to the extreme depth of the water table.  相似文献   

20.
Two sediment cores (BO90/13b and BO90/17b) from Lake Constance were investigated by-spectrometry for210Pb,134Cs,137Cs,241Am,234Th, and other members of the238U decay chain. The sediments were dated using the constant-flux model for210Pb, and accumulation rates were determined. These range from 0.04 to 0.65g/cm 2/yr (BO90/13b) and 0.04 to 0.8g/cm 2/yr (BO90/17b), respectively. The mean accumulation rate amounts to 0.16g/cm 2/yr for both cores. The cores had already been dated by lamination counting and reconstruction of high-water events at the Limnological Institute at Constance, so that a very precise time scale was available. Both ages derived are in agreement within statistical error up to 1900, which means dating with the constant-flux model for210Pb was confirmed up to that age. The position of the maxima of bomb cesium and americium confirm the stratigraphic and210Pb datings. With241Am a further radioactive isotope is available, which can, due to the half-life of241Pu (t 1/2=14.4yr) be detected now by-spectrometry and can serve as an additional time indicator, the maximum being dated at 1963. By applying the various time scales, the depth profiles of stable lead and zinc of core BO90/13b were dated. Both heavy metals show a very significant maximum located beneath the layer of the maxima of bomb cesium and americium, showing that these maxima are older than those of the bomb isotopes. It is remarkable in this context that the maximum of zinc concentration occurs a little later than that of stable lead. Similar concentration profiles are observable in core BO90/17b and other, older sediment cores (CS6-CS10) on a transect across the lake. In contrast to a former assumption, the depth profile of stable lead in Lake Constance sediments does not reflect the anthropogenic gasoline lead emissions into the atmosphere for Germany, their maximum being dated at 1971.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号