首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The problem of self-gravitational instability of an infinite, homogeneous stratified gaseous medium with finite thermal conductivity and infinite electrical conductivity, in the presence of non-uniform rotation and magnetic field in the Chandrasekhar’s frame of reference, is studied. It is found that the magnetic field, whether uniform or non-uniform, has no effect on the Jeans’ criterion for gravitational instability and remains essentially unaffected. However, the thermal conductivity has the usual stabilizing effect on the criterion that the adiabatic sound velocity occurring in the Jeans criterion is replaced by the isothermal sound velocity. Thus, the present analysis extends the results of Chandrasekhar for the case of heat conducting medium and for non-uniform rotation and magnetic field.  相似文献   

2.
The effect of a non-uniform magnetic field on the gravitational instability for a non-uniformly rotating, infinitely extending axisymmetric cylinder in a homogeneous medium has been studied. The Bel and Schatzman criterion of gravitational instability for a non-uniformly rotating medium is modified under the effect of a non-uniform/uniform magnetic field acting along the tangential and axial directions. As a consequence the stabilizing and destabilizing effect of the non-uniform magnetic field is obtained, a new criterion for the magneto-gravitational instability is deduced in terms of Alfven’s wave velocity; and it is also found that the Jeans criterion determines the gravitational instability in the absence of rotation and when the non-uniform/uniform magnetic field acts along the axis of the cylinder.  相似文献   

3.
The gravitational instability of an infinite homogenous rotating plasma through a porous medium in the presence of a uniform magnetic field with finite electrical and thermal conductivities has been studied. With the help of relevant linearized perturbation equations of the problem, a general dispersion relation is obtained, which is further reduced for the special cases of rotation, parallel and perpendicular to the megnetic field acting in the vertical direction. Longitudinal and transverse modes of propagation are discussed separately. It is found that the joint effect of various parameters is simply to modify the Jeans's condition of instability. The effect of finite electrical conductivity is to remove the effect of magnetic field where as the effect of thermal conductivity is to replace the adiabatic velocity of sound by the isothermal one. Rotation has its effect only along the magnetic field in the transverse mode of propagation for an inviscid plasma, thereby stabilizing the system. Porosity reduces the effect of both, the magnetic field and the rotation, in the transverse mode of propagation in both the cases of rotation. The effect of viscosity is to remove the rotational effects parallel to the magnetic field in the transverse mode of propagation.  相似文献   

4.
The gravitational instability of an infinite homogeneous finitely conducting viscid fluid through porous medium is studied in the presence of a uniform vertical magnetic field and finite ion Larmor radius (FLR) effects. The medium is considered uniformly rotating along and perpendicular to the direction of the prevalent magnetic field. A general dispersion relation is obtained from the relevant linearized perturbation equations of the problem. Furthermore, the wave propagation along and perpendicular to the direction of existing magnetic field has been discussed for each direction of the rotation. It is found that the simultaneous presence of viscosity finite conductivity, rotation, medium porosity, and FLR corrections does not essentially change the Jeans's instability condition. The stabilizing influence of FLR in the case of transverse propagation is reasserted for a non-rotating and inviscid porous medium. It is shown that the finite conductivity has destabilizing influence on the transverse wave propagation whereas for longitudinal propagation finite conductivity does not affect the Jean's criterion.  相似文献   

5.
A discussion of gravitational instability of a finitely conducting medium with streams of variable velocity distribution is made in the presence of a uniform magnetic field. It is found that the variable streaming motion shows a destabilizing effect and affects the instability criterion only in the case of general wave propagation. For purely parallel propagation to the direction of the magnetic field and the streaming motion, the criterion is independent of the variation in the streaming motion and further the Jeans's criterion is found to remain unaffected in this case. For purely transverse propagation, the criterion is independent of any streaming motion and the Jeans's criterion remains unaffected. The criterion is further independent of the magnetic field and the finite conductivity except in the case of transverse propagation where the magnetic field exhibits a stabilizing influence in case of an infinitely conducting medium.  相似文献   

6.
Magnetogravitational instability of a thermally-conducting, rotating plasma flowing through a porous medium with finite conductivity and finite Larmor radius in the presence of suspended particles has been investigated. The wave propagation has been considered for both parallel and perpendicular axes of rotation. Magnetic field is being taken in the vertical direction. A general dispersion relation has been derived through relevant linearized perturbation equations. It has been observed that the condition of instability is determined by the Jeans's criterion in its modifed form. Thermal conductivity replaces the adiabatic velocity of sound by the isothermal one. Rotation decreases the Larmor radius. Porosity decreases the Alfvén velocity. In case of a viscous medium the effects of FLR, rotation, and suspended particles are not observed in the Jeans's condition, for transverse propagation for rotational axis parallel to the magnetic field. The effects of rotation and FLR are decreased by the porosity and the suspended particles. Finite conductivity removes the Alfvén velocity from Jeans's condition.  相似文献   

7.
The gravitational instability of an infinite homogeneous self-gravitating and finitely conducting, rotating gas-particle medium, in the presence of a uniform vertical magnetic field, is studied to include finite Larmor radius and suspended particles effects. The particular cases of the effects of rotation, finite conductivity, finite Larmor radius and suspended particles on the waves propagated along and perpendicular to magnetic field have been discussed. Jeans's criterion determines the gravitational instability.  相似文献   

8.
The self-gravitating instability of an infinitely extending axisymmetric cylinder of viscoelastic medium permeated with non uniform magnetic field and rotation is studied for both the strongly coupled plasma (SCP) and weakly coupled plasma (WCP). The non uniform magnetic field and rotation are considered to act along the axial direction of the cylinder. The normal mode method of perturbations is applied to obtain the dispersion relation. The condition for the onset of gravitational instability has been derived from the dispersion relation under both strongly and weakly coupling limits. It is found that the Jeans criterion for gravitational collapse gets modified due to the presence of shear and bulk viscosities for the SCP, however, the magnetic field and rotation whether uniform or non uniform has no effect on the Jeans criterion of an infinitely extending axisymmetric cylinder of a self-gravitating viscoelastic medium.  相似文献   

9.
The gravitational instability of flow through porous medium for some hydrodynamical and hydromagnetical systems of astrophysical interest is investigated. The effects of rotation, magnetic field, viscosity and finite electrical conductivity are studied for the gravitational instability through porous medium. The effect of suspended particles on the instability is also considered. It is found that Jean's criterion remains unchanged in the presence of porosity, viscosity, finite conductivity, rotation, magnetic field and suspended particles in the medium.  相似文献   

10.
The gravitational instability of an infinite homogeneous self-gravitating and finitely conducting, rotating gas-particle medium, in the presence of finite Larmor radius, Hall currents and suspended particles effects is considered. The particular cases of the effects of rotation, finite conductivity, finite Larmor radius, Hall currents, and suspended particles on the waves propagated along and perpendicular to magnetic field have been discussed. It is found that Jeans's criterion remains unchanged in the presence of rotation, finite conductivity, finite Larmor radius, Hall currents, and suspended particles.  相似文献   

11.
The effect of rotation on the self-gravitational instability of an infinite homogeneous magnetised gas-particle medium in the presence of suspended particles is investigated. The conductivity of the medium is assumed to be finite. The equations of the problem are linearized and the general dispersion relation is obtained. The rotation is assumed along two different directions separately and separate dispersion relation for each case is obtained. The dispersion relation for propagation parallel and perpendicular to the uniform magnetic field along with rotation is derived. It is found that in presence of suspended particles, magnetic field, finite conductivity, rotation and viscosity, Jeans's criterion determines the condition of gravitational instability of gas-particle medium.  相似文献   

12.
The effects of arbitrary radiative heat-loss functions and Hall current on the self-gravitational instability of a homogeneous, viscous, rotating plasma has been investigated incorporating the effects of finite electrical resistivity, finite electron inertia and thermal conductivity. A general dispersion relation is obtained using the normal mode analysis with the help of relevant linearized perturbation equations of the problem, and a modified Jeans criterion of instability is obtained. The conditions of modified Jeans instabilities and stabilities are discussed in the different cases of our interest. We find that the presence of arbitrary radiative heat-loss functions and thermal conductivity modifies the fundamental Jeans criterion of gravitational instability into a radiative instability criterion. The Hall parameter affects only the longitudinal mode of propagation and it has no effect on the transverse mode of propagation. For longitudinal propagation, it is found that the condition of radiative instability is independent of the magnetic field, Hall parameter, finite electron inertia, finite electrical resistivity, viscosity and rotation; but for the transverse mode of propagation it depends on the finite electrical resistivity, the strength of the magnetic field, and it is independent of rotation, electron inertia and viscosity. From the curves we find that the presence of thermal conductivity, finite electrical resistivity and density-dependent heat-loss function has a destabilizing influence, while viscosity and magnetic field have a stabilizing effect on the growth rate of an instability. The effect of arbitrary heat-loss functions is also studied on the growth rate of a radiative instability.  相似文献   

13.
The problem of incipient fragmentation of interstellar matter to form condensation is investigated taking into account the porosity, viscosity, thermal conductivity, and effect of finite ion-Larmor radius (FLR) on the self-gravitating plasma having a uniform magnetic field acting in vertical direction. Relevant linearized equations are stated and dispersion relation is obtained. Wave propagation in longitudinal and transverse direction to the magnetic field is considered. Stability and instability of the medium is discussed. It is found that if the Jeans's instability condition is not fulfilled the medium must remain stable. Magnetic field, FLR and porosity do not affect the Jeans's criterion of instability in longitudinal direction but in transverse direction, the magnetic field and FLR have stabilizing effect which is reduced due to porosity of the medium. Thermal conductivity destabilizes the medium in both the directions. In transverse direction contribution of FLR on the Jeans's expression for instability is not observed in thermally conducting medium.  相似文献   

14.
The instability of a supercritical Taylor‐Couette flow of a conducting fluid with resting outer cylinder under the influence of a uniform axial electric current is investigated for magnetic Prandtl number Pm = 1. In the linear theory the critical Reynolds number for axisymmetric perturbations is not influenced by the current‐induced axisymmetric magnetic field but all axisymmetric magnetic perturbations decay. The nonaxisymmetric perturbations with m = 1 are excited even without rotation for large enough Hartmann numbers (“Tayler instability”). For slow rotation their growth rates scale with the Alfvén frequency of the magnetic field but for fast rotation they scale with the rotation rate of the inner cylinder. In the nonlinear regime the ratio of the energy of the magnetic m = 1 modes and the toroidal background field is very low for the non‐rotating Tayler instability but it strongly grows if differential rotation is present. For super‐Alfv´enic rotation the energies in the m = 1 modes of flow and field do not depend on the molecular viscosity, they are almost in equipartition and contain only 1.5 % of the centrifugal energy of the inner cylinder. The geometry of the excited magnetic field pattern is strictly nonaxisymmetric for slow rotation but it is of the mixed‐mode type for fast rotation – contrary to the situation which has been observed at the surface of Ap stars. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The self-gravitational instability of an ionized, thermally-conducting, magnetized, rotating plasma flow through a porous medium has been studied in the presence of suspended particles. The ionized gas-particle medium has been considered rotating along and perpendicular to the vertical magnetic field. Propagation of the plasma waves has been studied for the longitudinal and the transverse modes for both the cases of rotation. A general dispersion relation has been derived with the help of relevant perturbation equations, using the method of normal mode analysis. The Jeans criterion determines the condition of gravitational instability in all the cases with some modifications introduced by the various parameters considered. Thermal conductivity replaces the adiabatic sonic speed by the isothermal one. Considering the longitudinal mode of propagation with perpendicular rotational axis, for an inviscid plasma with adiabatic behaviour the effect of both, the rotation and the suspended particles has been removed by the magnetic field. For the transverse mode of propagation with the axis of rotation parallel to the magnetic field, the viscosity removes the effect of both, the rotation and the suspended particles. Porosity reduces the effect of both, the rotation and the magnetic field, whereas the concentration of the suspended particles reduces the rotational effect.  相似文献   

16.
The effect of suspended particles in a finitely conducting gas on the thermal convection instability is studied. The critical Rayleigh number at which instability sets in is reduced by the presence of suspended particles. The effect of vertical magnetic field is stabilizing. We also study the effect of conducting particles suspended in a non-conducting gas. It is found that the stabilizing effect of the magnetic field is reduced by the electrically conducting suspended particles.  相似文献   

17.
The gravitational instability of an infinite homogeneous and infinitely conducting self-gravitating gas-particle medium in the presence of a vertical magnetic field and suspended particles is considered. It is found that in the presence of suspended particles and magnetic field, Jeans' criterion determines the gravitational instability.  相似文献   

18.
Self-similar motion of a perfect gas behind a cylindrical shock wave with radiation heat flux in the presence of an azimuthal magnetic field have been discussed. The shock is assumed to be propagating in a medium at rest with non-uniform density. The conductivity of the gas is infinite and magnetic permeability is one everywhere. Also, the shock is assumed to be transparent and isothermal.  相似文献   

19.
The nonaxisymmetric Tayler instability of toroidal magnetic fields due to axial electric currents is studied for conducting incompressible fluids between two coaxial cylinders without endplates. The inner cylinder is considered as so thin that the limit of Rin → 0 can be computed. The magnetic Prandtl number is varied over many orders of magnitudes but the azimuthal mode number of the perturbations is fixed to m = 1. In the linear approximation the critical magnetic field amplitudes and the growth rates of the instability are determined for both resting and rotating cylinders. Without rotation the critical Hartmann numbers do not depend on the magnetic Prandtl number but this is not true for the corresponding growth rates. For given product of viscosity and magnetic diffusivity the growth rates for small and large magnetic Prandtl number are much smaller than those for Pm = 1. For gallium under the influence of a magnetic field at the outer cylinder of 1 kG the resulting growth time is 5 s. The minimum electric current through a container of 10 cm diameter to excite the instability is 3.20 kA. For a rotating container both the critical magnetic field and the related growth times are larger than for the resting column (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The flow of an infinitely extending homogenous thermally conducting plasma permeated by a variable magnetic field is considered. The combined effect of several physical parameters, namely Hall currents, finite conductivity, ion viscosity and thermal conductivity on plasma instability is studied in the framework of Tsallis statistics. A new Jeans Criterion is derived, which depends explicitly on the nonextensive parameter q. The standard values are obtained in the limiting case q=1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号