首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Natural barbosalite Fe2+Fe3+ 2 (PO4)2(OH)2 from Bull Moose Mine, South Dakota, U.S.A., having ideal composition, was investigated with single crystal X-ray diffraction techniques, Mössbauer spectroscopy and SQUID magnetometry to redetermine crystal structure, valence state of iron and evolution of 57Fe Mössbauer parameter and to propose the magnetic structure at low temperatures. At 298?K the title compound is monoclinic, space group P21/n, a o ?= 7.3294(16)?Å, b o ?=?7.4921(17)?Å, c o ?=?7.4148 (18)?Å, β?=?118.43(3)°, Z?=?2. No crystallographic phase transition was observed between 298?K and 110?K. Slight discontinuities in the temperature dependence of lattice parameters and bond angles in the range between 150?K and 180?K are ascribed to the magnetic phase transition of the title compound. At 298?K the Mössbauer spectrum of the barbosalite shows two paramagnetic components, typical for Fe2+ and Fe3+ in octahedral coordination; the area ratio Fe3+/Fe2+ is exactly two, corresponding to the ideal value. Both the Fe2+ and the Fe3+ sublattice order magnetically below 173?K and exhibit a fully developed magnetic pattern at 160?K. The electric field gradient at the Fe2+ site is distorted from axial symmetry with the direction of the magnetic field nearly perpendicular to Vzz, the main component of the electric field gradient. The temperature dependent magnetic susceptibility exhibits strong antiferromagnetic ordering within the corner-sharing Fe3+-chains parallel to [101], whereas ferromagnetic coupling is assumed within the face-sharing [1?1?0] and [?1?1?0] Fe3+-Fe2+-Fe3+ trimer, connecting the Fe3+-chains to each other.  相似文献   

2.
The Mössbauer spectra of one chromite at 298 K and one chromite at 298, 200, 170, 140 and 90 K have been analyzed in this study. A Voigt-based quadrupole splitting distribution (QSD) method was used to analyze the spectra. The tetrahedral site Fe2+ and the octahedral site Fe3+ quadrupole splitting distributions (QSDs) were obtained from the Mössbauer spectra of chromites, and the multiple tetrahedral site Fe2+ Gaussian QSD components and the large widths σ Δ of the Gaussian QSD components of the tetrahedral site Fe2+ QSDs for chromites were attributed to next-nearest neighbor effects. In addition, temperature dependences of the isomer shift and the quadrupole splitting were presented and discussed. Comparisons between the Mössbauer parameters for thickness-corrected folded spectra and raw-folded spectra of chromites were made, and the results show that the two sets of the Mössbauer parameters and ratios of ferric to total iron as well as χ2 are very close to each other. This is because of the small absorber thickness of chromites in this study. Comparisons between the Mössbauer parameters of chromites obtained using the Voigt-based QSD method and a Lorentzian doublet method were also made. The results show that there are some differences between the two sets of the Mössbauer parameters and ratios of ferric to total iron, but not significant. However, much larger χ2 were obtained when the Lorentzian doublet method was used to fit the spectra of chromites. This indicates that the Voigt-based QSD method is more adequate to analyze the Mössbauer spectra of chromites from the point of view of statistics.  相似文献   

3.
Electrical resistivity and 57Fe Mössbauer spectra are reported for three calcic amphiboles with different Fe concentrations. AC measurements (20?Hz–1?MHz) were performed, applying impedance spectroscopy between 100 and 785?°C in an N2 gas atmosphere. It was found that up to three semiconducting charge transport processes can be distinguished, which in part changed slightly when several runs were carried out to higher temperatures. The extrapolated DC resistivity is much smaller for an amphibole with high Fe content than for the two with lower Fe concentrations. The derived activation energies are between ~0.48 and ~1.06?eV. For temperatures ≤600?°C the results are compatible with a charge transport mechanism due to electron hopping between Fe2+ and Fe3+. Above 600?°C, dehydrogenation and/or beginning amphibole decomposition obviously alter the conduction mechanism. From Mössbauer spectra it was established that in all amphibole samples Fe2+ and Fe3+ are simultaneously present. Mössbauer parameters were derived by fitting the observed spectra to models taking the occupation of various M sites into account.  相似文献   

4.
The electrical charge transport was examined in an Fe-rich amphibole, arfvedsonite, using frequency dependent AC resistivity (impedance spectroscopy) and thermopower Θ measurements in the temperature range 30–800°C. Two different semiconducting charge transfer mechanisms were observed which are due to volume conduction for measurements parallel and perpendicular to the [001] direction; they arise probably from a conduction mechanism related to lattice defects, both with activation energies EA ≈ 0.4 eV. The extrapolated DC conductivity, for a fixed temperature, along [001] is about 5–6 times higher than that perpendicular to [001]. From the temperature independent positive Θ values it follows that hole conduction occurs, and a hopping-type charge transport is acting, probably effected by electron hopping Fe2+ → Fe3+. Possible charge transfer paths are discussed. 57Fe Mössbauer spectra enabled to determine the relative concentrations of Fe2+ and Fe3+. From a comparison of these data and from Θ results it is concluded that the main fraction of Fe2+ and Fe3+ take part in long range charge transport.  相似文献   

5.
The mixed valence iron silicate ilvaite, CaFe 2 2+ Fe3+Si2O8(OH), displays electron delocalization associated with Fe2+→Fe3+ charge transfer as observed by Mössbauer spectroscopy. Previous studies report the observation of an ‘electron hopping phenomenon’ with resolution of discrete valence states below 320 K. Mössbauer spectra of a suite of naturally occurring ilvaites were recorded over a temperature range, 80 K to 575 K. Five quadrupole doublets were resolved by computer fitting and assigned to Fe2+(A), Fe2+(B), Fe3+(A), and Fe2+(A)→Fe3+(A)‖c and ⊥c. Contrary to prior work, doublets associated with electron delocalization are resolved at 80 K and preclude the use of a Verwey-type order-disorder model. We propose a thermal activation model and discuss its criteria from molecular orbital and mineralogical viewpoints.  相似文献   

6.
A refined set of Mössbauer parameters (isomer shifts, quadrupole splittings, Fe2+/Fe3+ ratios) and lattice parameters were obtained from annites synthesized hydrothermally at pressures between 3 and 5 kbars, temperatures ranging from 250 to 780° C and oxygen fugacities controlled by solid state buffers (NNO, QMF, IM, IQF). Mössbauer spectra showed Fe2+ and Fe3+ on both the M1 and the M2 site. A linear relationship between Fe3+ content and oxygen fugacity was observed. Towards low Fe3+ values this linear relationship ends at ≈10% of total iron showing that the Fe3+ content cannot be reduced further even if more reducing conditions are used. This indicates that in annite at least 10% Fe2+ are substituted by Fe3+ in order to match the larger octahedral layer to the smaller tetrahedral layer. IR spectra indicate that formation of octahedral vacancies plays an important role for charge balance through the substitution 3 Fe2+ → 2 Fe3+ + ?(oct).  相似文献   

7.
Mössbauer spectra of 57Fe in 2 schorlomite garnets reveal 5 distinct quadrupole-split doublets: dodecahedral Fe2+, octahedral Fe2+ and Fe3+, and tetrahedral Fe2+ and Fe3+. The isomer shifts and nuclear quadrupole splittings of the 5 doublets were studied between 15 and 500 K. The site occupancies for iron were determined. Reference of the chemical analyses to a basis of 12 oxygens and the Mössbauer data show that in the 2 schorlomites titanium is exclusively quadruvalent within the experimental error. The isomer shift of tetrahedral Fe2+ between 15 and 295 K seems to be rather small. The shift is interpreted in terms of localized chemical bonding. Above 295 K the shift cannot be evaluated because of overlapping peaks. If electronic transfer processes (e.g. “electron hopping”) between cations are present their relaxation times must be longer than ~10?7 s.  相似文献   

8.
The Mössbauer spectra of several blue beryls have been obtained in the temperature range of 4.2–500 K. A common feature observed in all room-temperature spectra is the presence of an asymmetric Fe2+ doublet (ΔE Q ?~?2.7?mm?s?1, δ?~?1.1?mm?s?1), with a very broad low-velocity peak. This asymmetry seems to be related to a relaxation process involving ferrous ions and water molecules in the structural channels, as suggested by Price et?al. (1976). Surprisingly, the spectrum at 500?K also shows a broad, but symmetrical, doublet, with a clear splitting of the lines indicating the presence of at least two Fe2+ components. The room-temperature spectrum obtained after the 500?K run shows the same features as prior to the heating. At 4.2?K the spectrum of a deep blue beryl was well fitted with four symmetrical doublets, one of which could be related to Fe2+ in the structural channels. Ferrous ion was also found to occupy the octahedral and tetrahedral sites, whereas ferric ion is most probably located in the octahedral site. A meaningful fit of the room-temperature spectrum, as well as an explanation for the temperature dependence of the Mössbauer spectra, are discussed. Finally, it is believed that the color in beryl will be dictated by the relative proportions of Fe3+ in the octahedral sites and of Fe2+ in the channels.  相似文献   

9.
We investigated the valence state and spin state of iron in an Al-bearing ferromagnesian silicate perovskite sample with the composition (Mg0.88Fe0.09)(Si0.94Al0.10)O3 between 1 bar and 100 GPa and at 300 K, using diamond cells and synchrotron Mössbauer spectroscopy techniques. At pressures below 12 GPa, our Mössbauer spectra can be sufficiently fitted by a “two-doublet” model, which assumes one ferrous Fe2+-like site and one ferric Fe3+-like site with distinct hyperfine parameters. The simplest interpretation that is consistent with both the Mössbauer data and previous X-ray emission data on the same sample is that the Fe2+-like site is high-spin Fe2+, and the Fe3+-like site is high-spin Fe3+. At 12 GPa and higher pressures, a “three-doublet” model is necessary and sufficient to fit the Mössbauer spectra. This model assumes two Fe2+-like sites and one Fe3+-like site distinguished by their hyperfine parameters. Between 12 and 20 GPa, the fraction of the Fe3+-like site, Fe3+/∑Fe, changes abruptly from about 50 to 70%, possibly due to a spin crossover in six-coordinate Fe2+. At pressures above 20 GPa, the fractions of all three sites remain unchanged to the highest pressure, indicating a fixed valence state of iron within this pressure range. From 20 to 100 GPa, the isomer shift between the Fe3+-like and Fe2+-like sites increases slightly, while the values and widths of the quadruple splitting of all three sites remain essentially constant. In conjunction with the previous X-ray emission data, the Mössbauer data suggest that Fe2+ alone, or concurrently with Fe3+, undergoes pressure-induced spin crossover between 20 and 100 GPa.  相似文献   

10.
The Mössbauer spectra of five samples of Fe x O with compositions in the range 1.00>x>0.95 have been recorded at 298 K and 4.2 K. The spectrum of Fe x O at 298 K consists of an asymmetric doublet which was fitted to one Fe2+ singlet, two Fe2+ doublets and 1 Fe3+ singlet. The Mössbauer parameters vary consistently with the increasing density of defects as x decreases. The Mössbauer spectrum of Fe x O at 4.2 K consists of a large number of unresolved lines. The data were fitted to a series of singlets to enable the rough calculation of quantities relating to the mean Fe2+ and Fe3+ environments. The results of the fits to the 298 K spectra are briefly discussed in terms of a physical model for the defect structure of Fe x O.  相似文献   

11.
Mössbauer spectra were recorded at multiple temperatures between 80 and 293 K to study the nature of Fe3+ in Fe0.05Mg0.95SiO3 perovskite that had been synthesised in a multianvil press at 1650 °C and 25 GPa at its mimimum stability limit. The Mössbauer data were fitted to a model with quadrupole splitting distributions (Fe2+) and Lorentzian lineshapes (Fe3+ and Fen+). The centre shift data were fitted to a Debye model with the following results: ΘM (Fe2+)=365±52 K and ΘM (Fe3+)=476±96 K. Hyperfine parameter data for Fe3+ suggest occupation of the octahedral site only. The average valence seen by the Mössbauer effect in rapid electron exchange that occurs between Fe2+ and Fe3+ is calculated from the hyperfine parameters to be 2.50±0.07. Correction of area fractions for site-dependent recoil-free fractions gives a value for Fe3+/∑Fe of 9.4±1.4%, which is independent of temperature. A perovskite phase of similar composition synthesised in the multianvil press at higher oxygen fugacity gives a value for Fe3+/∑Fe of 16±3%, where Fe3+ appears to occupy both sites in the perovskite structure.  相似文献   

12.
Ilvaite samples from six different localities in Japan are found to be members of a solid-solution series varying from Ca(Fe2+,Fe3+)2Fe2+(OH)O Si2O7 to approaximately Ca(Fe2+,Fe3+)2Fe 0.5 2+ Mn 0.5 2+ (OH)O Si2O7, and have been studied by Mössbauer spectrometry and magnetic measurements. The variation in intensity of Mössbauer doublets confirms that Mn substitutes for Fe2+ in the M(B) cation site. An temperatures decreasing from 300 K to 4K, an abrupt change in the reciprocal mass magnetic susceptibility, 1/x g, occurs about 120 K; 1/x g depends linearly upon temperature above 120 K. This change, which is characterized by an unusual mode of decrease in 1/x g, has been interpreted based on Mössbauer spectra at 80 K: the spectra of Fe2+ and Fe3+ in the M(A) site show Zeeman splitting, whereas those of Fe2+ in the M(B) site do not show the effect. This Mössbauer evidence suggests that magnetic spins of Fe in M(A) are in an ordered state, very likely of antiparallel coupling, whereas those of Fe in M(B) are randomly oriented, showing that below 120 K ilvaite has two different magnetic states for Fe ions. As there is a line of evidence that the spins of Fe in M(B) would take an ordered state at extremely low temperatures, ilvaite magnetism may be regarded as basically antiferromagnetic. The magnetic spins of Fe in M(A) and M(B) undergo magnetic transitions at different specific temperatures, thus giving as a whole unusual features of magnetism.  相似文献   

13.
The Mössbauer spectra of 119Sn and 57Fe in three natural and a synthetic garnet were studied between 20 and 300 K. These spectra reveal the presence of octahedral Sn4+ as well as octahedral Fe3+ and Fe2+. Sn2+ could not be detected. On the basis of these results the following cation substitution can be derived for the tin-bearing Silicate garnets of this study: Sn4+ (oct)+Fe2+ (oct) ? 2 Fe3+ (oct).  相似文献   

14.
We report Mössbauer milliprobe measurements on small single-crystals of a magnesium-rich hedenbergite, approximate composition CaFe0.54Mg0.46 (SiO3)2, in which each of the electric-field gradient and mean-squared displacement tensors for Fe2+ in the M1 site of the crystal are precisely determined. Each tensor has in common, as required of crystal symmetry, the twofold axis of the monoclinic unit cell, but the principal directions of the two tensors in the perpendicular plane are non-coincident. The mean-squared displacements determined in the Mössbauer experiment exceed those determined from the X-ray vibration ellipsoids for Fe2+/M1 by a factor of 1.6; the anisotropy in the mean-squared displacement tensor from the Mössbauer measurements exceeds that from X-ray by a factor of around 5. The ramifications of these differences are discussed.  相似文献   

15.
(Mg,Fe)(Si,Al)O3 perovskite samples with varying Fe and Al concentration were synthesised at high pressure and temperature at varying conditions of oxygen fugacity using a multianvil press, and were characterised using ex?situ X-ray diffraction, electron microprobe, Mössbauer spectroscopy and analytical transmission electron microscopy. The Fe3+/ΣFe ratio was determined from Mössbauer spectra recorded at 293 and 80?K, and shows a nearly linear dependence of Fe3+/ΣFe with Al composition of (Mg,Fe)(Si,Al)O3 perovskite. The Fe3+/ΣFe values were obtained for selected samples of (Mg,Fe)(Si,Al)O3 perovskite using electron energy-loss near-edge structure (ELNES) spectroscopy, and are in excellent agreement with Mössbauer data, demonstrating that Fe3+/ΣFe can be determined with a spatial resolution on the order of nm. Oxygen concentrations were determined by combining bulk chemical data with Fe3+/ΣFe data determined by Mössbauer spectroscopy, and show a significant concentration of oxygen vacancies in (Mg,Fe)(Si,Al)O3 perovskite.  相似文献   

16.
Ilvaite, Ca(Fe2+, Fe3+)Fe2+Si2O8(OH), a black mixed valence iron silicate shows considerable Fe2+?Fe3+ electron delocalization above 400 K, reminiscent of magnetite. A crystallographic phase transition from orthorhombic (Pnam) to monoclinic (P2 1/a) symmetry takes place on cooling at 343 K induced by electron ordering. In both phases, Fe2+ and Fe3+ occur in double octahedral chains parallel to the c axis. The thermal characteristics of the magnetic susceptibilities and their anisotropies in different crystallographic planes have been measured in the temperature range 400?21 K. Below 343±1K, a continuous rotation of the molar susceptibility K in the ab plane down to 90±2 K is observed, where the symmetry of the magnetic ellipsoid remains unchanged. X a, X b and X c increase abruptly below 123±0.5 K, although antiferromagnetic ordering of Fe2+ and Fe3+ spins on A sites was suggested in previous Mössbauer and neutron powder diffraction studies. In addition, 1/X a shows an antiferromagnetic maximum at 50±3 K, whereas 1/X b and 1/X c at first increase sharply below 123 K, followed by antiferromagnetic curvatures in the lowest temperature region. This behavior is consistent with the antiferromagnetic ordering of Fe2+ spins in the B sites. The observed magnetic phenomena suggest charge delocatization effects between adjacent Fe2+(A)-Fe3+(A) pairs not only along c, but also along a and b directions. The negative sign of the molar anisotropy (K -K) suggests a singlet ground State 5A1 for the Fe2+ ions, in agreement with previous Mössbauer studies.  相似文献   

17.
Structural and compositional data as well as 57Fe Mössbauer parameters were determined on a natural Mn-rich monoclinic ilvaite crystal (ideal composition CaFe 2 2+ Fe3+Si2O8(OH)) which was used for electrical conductivity and thermopower measurements (part 2 of this paper). A zonar structure was found by electron microprobe analysis with a strong decrease in Mn concentration from the rim to the centre of the crystal in a plane perpendicular to the [001] direction. X-ray powder diffraction analysis of the most Mn-rich composition was performed. Mn2+ cations populate preferentially M2 sites of the ilvaite unit cell (space group P21/a), to a lower extent they reside on M1 and a reduced part is on Ca sites. The monoclinic angle was determined to β=90.178(4)°. The structural results are compared to literature data for other natural Mn-rich as well as low-impurity ilvaites; this concerns in particular the lattice b parameter and the undecided issue of the varying β angle. In the literature, the order parameter σ, which describes the varying degree of ordering of Fe2+–Fe3+ pairs on M11 and M12 sites in chains running parallel to the [001] direction, and structural defects are thought to be related to β. The interrelationship between β and σ with respect to a possible twin domain structure is discussed. Various 57Fe Mössbauer spectra were recorded between 151 K and 327 K. Mössbauer parameters and Fe2+/Fe3+ concentration ratios were determined from the fits to the spectra. Fitting of subspectra was accomplished with the idea to find assignments of Fe2+ and Fe3+ doublets in agreement with X-ray results. The fraction of Mn2+ substituting Fe2+ on M1 sites could be estimated.  相似文献   

18.
Three natural lawsonites from Syke Rock, Mendocino Co., Reed Ranch, Marin Co., and Blake Gardens, Sonoma Co., all from the Coast Range Region in California, were studied by 57Fe Mössbauer spectroscopy, electron microprobe analysis, and X-ray powder diffraction. The samples contain about 0.6, 1.0, and 1.4 wt% of total iron oxide, respectively. 57Fe Mössbauer spectra are consistent with the assumption that high-spin Fe3+ substitutes for Al in the octahedrally coordinated site. The Mössbauer spectrum of lawsonite from Syke Rock exhibits a second doublet with 57Fe hyperfine parameters typical for octahedrally coordinated high-spin Fe2+. Electronic structure calculations in the local spin density approximation yield quadrupole splittings for Fe3+ in quantitative agreement with experiment indicating, however, that substitution of Al by Fe3+ must be accompanied by local distortion around the octahedral site. Model calculations also reproduce the room temperature hyperfine parameters of ferrous high-spin iron assuming the substitution of Ca by Fe2+. However, it cannot be excluded that Fe2+ may occupy a more asymmetric site within the microstructural cavity occupied by Ca and a H2O molecule.  相似文献   

19.
Fifteen samples of (Mg,Fe)SiO3 majorite with varying Fe/Mg composition and one sample of (Mg,Fe)(Si,Al)O3 majorite were synthesized at high pressure and temperature under different conditions of oxygen fugacity using a multianvil press, and examined ex situ using X-ray diffraction and Mössbauer and optical absorption spectroscopy. The relative concentration of Fe3+ increases both with total iron content and increasing oxygen fugacity, but not with Al concentration. Optical absorption spectra indicate the presence of Fe2+–Fe3+ charge transfer, where band intensity increases with increasing Fe3+ concentration. Mössbauer data were used in conjunction with electron microprobe analyses to determine the site distribution of all cations. Both Al and Fe3+ substitute on the octahedral site, and charge balance occurs through the removal of Si. The degree of Mg/Si ordering on the octahedral sites in (Mg,Fe)SiO3 majorite, which affects both the c/a ratio and the unit cell volume, is influenced by the thermal history of the sample. The Fe3+ concentration of (Mg,Fe)(Si,Al)O3 majorite in the mantle will reflect prevailing redox conditions, which are believed to be relatively reducing in the transition zone. Exchange of material across the transition boundary to (Mg,Fe) (Si,Al)O3 perovskite would then require a mechanism to oxidize sufficient iron to satisfy crystal-chemical requirements of the lower-mantle perovskite phase.  相似文献   

20.
Clay minerals from different Cretaceous stratigraphic successions of Egypt were investigated using XRD,DTA,dissolution analysis(DCB),IR,Moessbauer and X-band Electron Spin Resonance(ESR) spectroscopies.The purity of the samples and the degree of structural order were determined by XRD.The location of Fe in the octahedral sheet is characterized by absorption bands at-875cm^-1 assigned as Al-OH-Fe which is present after chemical dissolution of free iron.The Moessbauer spectra of these clays sow two doublets with isomer shift and quadrupole splitting typical of octahedral coordinated Fe^3 ,in addition to third doubler with hyperfine parameter typical of Fe^2 in the spectra of Abu-Had kaolinite (H)sample.6-lines magnetic hyperfine components which are consistent with those of hematite are confirmed in the spectra of both Isel and Rish kaolinite samples.Goethite was confirmed by both IR and DTA.Multiple nature of ESR of these clays suggested structural Fe in distorted octaedral symmetry and as non-structural Fe.Little dispersion and low swelling indices as well as incomplete activaiton of investigated montmorillonite samples by NaCO3 appear to be due to incomplete disaggregation of montmorillonite particles.This can be explained by the ability of Fe-gel to aggregate the montmorillonite into pseudo-particles and retard the rigid-gel structure.However,extraction of this ferric amorphous compound by dithonite treatment recovers the surface properties of the montmorillonite samples.On the other hand,amounts and site occupation of Fe associated with kaolinite samples show a negative correlation with the parameters used to describe the degree of crystalline perfection,color,brightness and vitrification range of these kaolinite samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号