首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wave-Mean Flow Interaction: the Role of Continuous-Spectrum Disturbances   总被引:2,自引:0,他引:2  
Traditionally, “eddy feeds zonal flow” in the atmosphere is considered as a result of decaying unstable waves. We show that disturbances made of non-modal solutions-the continuous-spectrum disturbances-can also effectively transport zonal angular momentum and interact with the zonal basic flow. These disturbances, though stable, eventually decay, losing their energy to strengthen the westerly jets in the atmosphere.Calculations with observational data illustrate that the atmospheric zonal flow is maintained primarily by continuous-spectrum disturbances rather than by unstable waves. Angular momentum transport by continuous-spectrum disturbances is one order of magnitude larger than that by all kinds of normal modes (referred as discrete-spectrum disturbances) including unstable waves.  相似文献   

2.
不稳定边界层下地形重力内波   总被引:3,自引:0,他引:3  
水槽实验及线性理论研究表明,当低层大气处于近中性或不稳定时,如果地形引起的动力扰动足够强,地形扰动可在上部稳定层结中激发出重力内波,波动反过来影响低层流场,引起动量输送。低层大气处于近中性或不稳定时,地形波同样对大气运动可产生波阻,这应引起模式工作者的重视。最后讨论了大气粘性对中性或不稳定层结下地形波的影响。  相似文献   

3.
Often, a combination of waves and turbulence is present in the stably stratified atmospheric boundary layer. The presence of waves manifest itself in the vertical profiles of variances of fluctuations and in low-frequency contributions to the power spectra. In this paper we study internal waves by means of a linear stability analysis of the mean profiles in a stably stratified boundary layer and compare the results with observed vertical variance profiles of fluctuating wind and temperature along a 200 m mast. The linear stability analysis shows that the observed mean flow is unstable for disturbances in a certain frequency and wavenumber domain. These disturbances are expected to the detectable in the measurements. It is shown that indeed the calculated unstable frequencies are present in the observed spectra. Furthermore, the shape of the measured vertical variance profiles, which increase with height, is explained well by the calculated vertical structure of the amplitude of unstable Kelvin-Helmholtz waves, confirming the contribution of waves to the variances. Because turbulence and waves have quite distinct transport properties, estimates of diffusion from measurements of variances would strongly overestimate this diffusion. Therefore it is important to distinguish between them.  相似文献   

4.
    
Traditionally, “ eddy feeds zonal flow” in the atmosphere is considered as a result of decaying unstable waves. We show that disturbances made of non-modal solutions -the continuous-spec-trum disturbances-can also effectively transport zonal angular momentum and interact with the zonal basic flow. These disturbances, though stable, eventually decay, losing their energy to strengthen the westerly jets in the atmosphere. Calculations with observational data illustrate that the atmospheric zonal flow is maintained primarily by continuous-spectrum disturbances rather than by unstable waves. Angular momen-tum transport by continuous-spectrum disturbances is one order of magnitude larger than that by all kinds of normal modes (referred as discrete-spectrum disturbances) including unstable waves. This research was partly supported by the Chinese Program on Basic Research and by the Institute of Atmospheric Physics, Chinese Academy of Sciences. It was also supported by NASA Grant NAGW 3517, and DOE Grant DEFG0285-ER60314 to the State University of New York at Stony Brook.  相似文献   

5.
In this paper, the dynamic disturbances to various basic zonal currents caused by the Tibetan Plateau are simulated by means of a three-level primitive equation model, in which σ is used as the vertical coor-dinate. Four types of currents have been used, i. e. the barotropic homogeneous current, barotropic jet stream, baroclinic current and the zonal mean current in summer. The results are helpful to understand the dynamic effects of the Tibetan Plateau on the general circulation over East Asia.  相似文献   

6.
The boundary currents over the Western Australian continental shelf and slope consist of the poleward flowing Leeuwin Current (LC) and the equatorward flowing Leeuwin Undercurrent (LUC). Key properties of the LC are its poleward strengthening, deepening to the south, and shelfbreak intensification. The alongshore flow reverses direction below about 300 m, forming the LUC at greater depths. To investigate the processes that cause these features, we obtain solutions to an idealized, regional ocean model of the South Indian Ocean. Solutions are forced by relaxing surface density to a prescribed, meridionally varying density profile ρ*(y) with a timescale of δt. In addition, vertical diffusion is intensified near the ocean surface. This diffusion establishes the minimum thickness over which density is well-mixed. We define this thickness as the “upper layer”. Solutions are obtained with and without a continental shelf and slope off Western Australia and for a range of values of δt and mixing parameters. Within this upper layer, there is a meridional density gradient that balances a near-surface, eastward geostrophic flow. The eastward current downwells near the eastern boundary, leading to westward flow at depth. The upper layer's meridional structure and zonal currents crucially depend on coastal processes, including the presence of topography near the eastern boundary. Kelvin waves inhibit the upper layer from deepening at the coast. Rossby waves propagate the coastal density structure offshore, hence modifying the interior currents. A comparison of the solutions with or without a continental shelf and slope demonstrate that topographic trapping of Rossby waves is a necessary process for maintaining realistic eastern boundary current speeds. Significant poleward speeds occur only onshore of where the upper layer intersects the slope, that is, at a grounding line. Its poleward transport increases when surface-enhanced vertical mixing is applied over a greater depth. When the timescale δt is sufficiently short, the poleward current is nearly barotropic. The current's spatial structure over the shelf is controlled by horizontal mixing, having the structure of a Munk layer. Increasing vertical diffusion deepens the upper layer thickness and strengthens the alongshore current speed. Bottom drag leads to an offshore flow along the bottom, reducing the net onshore transport and weakening the current's poleward acceleration. When δt is long, poleward advection of buoyancy forms a density front near the shelf break, intensifying poleward speeds near the surface. With bottom drag, a bottom Ekman flow advects density offshore, shifting the jet core offshore of the shelf break. The resulting cross-shelf density gradient reverses the meridional current's direction at depth, leading to an equatorward undercurrent.  相似文献   

7.
The mechanisms of the maintenance and oscillation of 1982 summer tropical 200-hPa mean easterly flow and extra-long waves are investigated in terms of the energy equations in wavenumber-frequency space. Calculation results show that the difference in heating between land and sea and the boundary effect serve as the main source of energy; frictional dissipation as the sink; the conversion of available potential energy into kinetic takes place dominantly in the waves of number 1–2 such transformation is accomplished in just a small amount in zonal mean flow and therefore can be ignored because of the value. In the interaction between wave and zonal mean flow, the latter loses its available potential and gains kinetic energy. The tropical easterly belt over 20°N-5°S is found barotropically stable and that over 10°-5°S, unstable. The waves of number 2 and 1 manifest themselves a primary source and sink of kinetic energy, respectively, in the interplay between waves and between zonal mean flow and wave. It is found that zonal mean flow and the waves of number 1-2 have a roughly 40-and 20-day oscillational period of kinetic energy, respectively, whose primary mechanism is the transfer of barotropic energy, the conversion of baroclinic energy, and the boundary effect.  相似文献   

8.
The mechanisms of the maintenance and oscillation of 1982 summer tropical 200-hPa mean easterly flow and extra-long waves are investigated in terms of the energy equations in wavenumber-frequency space. Calculation results show that the difference in heating between land and sea and the boundary effect serve as the main source of energy; frictional dissipation as the sink; the conversion of available potential energy into kinetic takes place dominantly in the waves of number 1-2; such transformation is accomplished in just a small amount in zonal mean flow and therefore can be ignored because of the value.In the interaction between wave and zonal mean flow, the latter loses its available potential and gains kinetic energy. The tropical easterly belt over 20oN-5oS is found barotropically stable and that over 10oN-5oS, unstable. The waves of number 2 and 1 manifest themselves a primary source and sink of kinetic energy, respectively, in the interplay between waves and between zonal mean flow and wave.It is found that zonal mean flow and the waves of number 1-2 have a roughly 40-and 20-day oscillational period of kinetic energy, respectively, whose primary mechanism is the transfer of barotropic energy, the conversion of baroclinic energy, and the boundary effect.  相似文献   

9.
Laboratory experiments were carried out to investigate the interaction between turbulent line buoyant plumes and sharp density interfaces, with the aim of using the results to interpret oceanic observations pertinent to crack openings in the polar ice-cap (leads). These openings take the form of long narrow channels, and are often modeled as line bouyant plumes. The plumes descend as in a homogenoous fluid, impinge on the density interface, and then spread horizontally as gravity currents. Depending on the Richardson number , where Δb is the buoyancy jump across the interface, lD is the half-width of the plume before the impingement and q0is the buoyancy flux per unit length of the source, different flow patterns were identified. When Ri < 0.5, the plumes penetrate deep into the bottom layer, deflect horizontally and then spread while showing little vertical rise. When 0.6 < Ri < 5, the penetration is significant, but the fluid bounces back after entraining heavy fluid from the lower layer and then spreads horizontally above the interface as a gravity current. Appreciable mixing between this current and the lower layer was detected when Ri <1. When Ri > 10, the penetration was small and a sharp-nosed gravity current emerged some time after the impact. Measurements were made on the penetration depth, the velocities of the gravity current and the subsurface flow towards the plume, the entrainment rate and other wave parameters. Possible implications of the results for oceanic cases are also discussed.  相似文献   

10.
 Zonal advection by long equatorial waves has been shown to be an important process in the evolution of sea surface temperature in the central Pacific on ENSO time scales. The present study aims at investigating how well an oceanic model whose dynamics are based on long equatorial waves can simulate the large-scale surface zonal current variability. Thus an ocean linear model which can be run with two or three layers is validated against several sets of observations in the Pacific ocean (TOPEX/POSEIDON sea level, TAO zonal currents, surface current climatology). The surface layer (mixed-layer) has a constant depth. Therefore the layer model is equivalent to considering a shear layer solution and either one or two baroclinic modes. It allows evaluation of the impact of adding a second baroclinic mode on the simulation of surface currents. This evaluation is done for different friction parametrizations: a weak linear Rayleigh friction (24 months−1), a strong linear Rayleigh friction (6 months−1), and a new parametrization using quadratic friction in the momentum equation only. It is shown in all simulations using various Rayleigh friction parametrizations that the addition of a second baroclinic mode always improves the simulation of both the sea level and the surface currents, especially in the central western Pacific. In that region, there is a reduction of the propagating long Rossby waves whose amplitude is much too large when only one baroclinic mode is used. Despite this reduction, the use of a weak friction (24 months−1) always yields results which compare only poorly to observations confirming results from previous studies. The use of strong friction (6 months−1) improves the model simulation, but surface current variability still remains too large. Finally, the use of quadratic friction as proposed in the present study considerably improves the simulation of zonal currents and its comparison to all data sets. This result gives more confidence in the choice of such a simple model to further explore the role of zonal advection by long equatorial waves on ENSO time scales. Received: 28 May 1999 / Accepted: 18 May 2000  相似文献   

11.
Temporally-growing frontal meandering and occasional eddy-shedding is observed in the Brazil Current (BC) as it flows adjacent to the Brazilian Coast. No study of the dynamics of this phenomenon has been conducted to date in the region between 22° S and 25°S. Within this latitude range, the flow over the intermediate continental slope is marked by a current inversion at a depth that is associated with the Intermediate Western Boundary Current (IWBC). A time series analysis of 10-current-meter mooring data was used to describe a mean vertical profile for the BC-IWBC jet and a typical meander vertical structure. The latter was obtained by an empirical orthogonal function (EOF) analysis that showed a single mode explaining 82% of the total variance. This mode structure decayed sharply with depth, revealing that the meandering is much more vigorous within the BC domain than it is in the IWBC region. As the spectral analysis of the mode amplitude time series revealed no significant periods, we searched for dominant wavelengths. This search was done via a spatial EOF analysis on 51 thermal front patterns derived from digitized AVHRR images. Four modes were statistically significant at the 95% confidence level. Modes 3 and 4, which together explained 18% of the total variance, are associated with 266 and 338-km vorticity waves, respectively. With this new information derived from the data, the [Johns, W.E., 1988. One-dimensional baroclinically unstable waves on the Gulf Stream potential vorticity gradient near Cape Hatteras. Dyn. Atmos. Oceans 11, 323–350] one-dimensional quasi-geostrophic model was applied to the interpolated mean BC-IWBC jet. The results indicated that the BC system is indeed baroclinically unstable and that the wavelengths depicted in the thermal front analysis are associated with the most unstable waves produced by the model. Growth rates were about 0.06 (0.05) days−1for the 266-km (338-km) wave. Moreover, phase speeds for these waves were low compared to the surface BC velocity and may account for remarks in the literature about growing standing or stationary meanders off southeast Brazil. The theoretical vertical structure modes associated with these waves resembled very closely to the one obtained for the current-meter mooring EOF analysis. We interpret this agreement as a confirmation that baroclinic instability is an important mechanism in meander growth in the BC system.  相似文献   

12.
1. IntroductionMany studies using a variety of coupled models have reproduced ENSO like features(e.g., Hirst, 1986, 1988; Zebiak and Cane, 1987; Battisti and Hirst, 1989; Jin and Neelin, 1993;Jin, 1997; Kirtman, 1997; Kang and An, 1998; Wakata and Sarachik, 1991). But, a variety ofsolutions have been reported depending on different parameterizations of atmospheric processes, particularly the relationship between wind stress and SST anomaly, indicating that therelationship has a large i…  相似文献   

13.
An eigen analysis of the equatorial air-sea coupled model is carried out to understand the mechanism of the slowly varying mode for various zonal phase differences between SST and wind stress. The frequency and growth rate of the slow mode highly depend on the zonal phase difference between SST and wind stress anomalies and the wave scale. For ultra-long waves longer than 20,000 km, the system propagates westward regardless of the position of wind stress. However, for the long waves observed in the Pacific, the slow mode tends to propagate eastward when the SST and wind stress anomalies are close to each other (within a quadrature phase relationship). On the other hand, when the wind stress is located far away from SST, the slow mode tends to propagate westward. The coupled system produces the unstable modes when the westerly (easterly) wind stress is located in the west of warm (cold) SST. It is noted that for the Pacific basin scale,the eastward propagating unstable waves can be produced when the wind stress is located to the west of SST with a few thousand kilometer distance. Also examined in the present study is the relative role of the thermocline displacement and zonal advection effects in determining the propagation and instability of the coupled system.  相似文献   

14.
长江中下游地区春季连阴雨-连晴天气过程的中期振荡   总被引:3,自引:0,他引:3  
钟元  吴钟浚 《气象学报》1992,50(2):199-209
本文对长江中下游地区1980年春季连阴雨-连晴天气过程及西风带、低纬赤道带和南半球天气系统的10个参数进行功率谱分析表明,它们都有准两周振荡的主要周期。交叉谱分析给出了连阴雨-连晴天气与10个参数在准两周振荡上的关联和相对振荡顺序。对连阴雨-连晴天气的时空背景纬圈及经圈环流的时空谱分析表明,纬向及经向环流振荡的两组传播波在准两周振荡上有较高的相干,经向传播超前于纬向传播。  相似文献   

15.
Abstract

As part of an extensive survey of the temperature and currents of Lake Erie, a vertical automatic profiling system (EVAPS) was deployed for three days in August 1980. This system consisted of acoustic current meters, temperature sensors and a pressure gauge. The buoyant sensor package was winched from the bottom up and down through the water column. The system collected essentially continuous vertical temperature and velocity profiles. From these profiles, the barotropic component of the flow was extracted; it shows the presence of longitudinal seiche and lunar tidal motions and demonstrates favourable agreement with a numerical model. An experimental momentum balance allows the identification of the important terms (Coriolis force, pressure gradient and local acceleration) and the crude estimation of the numerical value of the wind drag coefficient. The baroclinic part of the flow was decomposed into the three lowest order empirically‐computed internal wave modes. The first and second modes could account for most of the variation of the profiles. The temporal variation of the second mode was characteristic of pure inertial waves while that of the first mode was characteristic of inertial‐gravitational waves.  相似文献   

16.
The Oregon State University coupled upper ocean-atmosphere GCM is evaluated in terms of the simulated winds, ocean currents and thermocline depth variations. Although the zonal wind velocities in the model are underestimated by a factor of about three and the zonal current velocities are underestimated by a factor of about five, the model is seen to qualitatively simulate the major features of the gyral scale currents, and the phases of the seasonal variation of the principal equatorial currents are in reasonable agreement with observations. The simulated tropical currents are dominated by Ekman transport and the eastern boundary currents do not penetrate far enough equatorward, while the western boundary currents do not penetrate far enough poleward. The subtropical trade wind belt and the mid-latitude westerlies are displaced equatorward of observations; hence, the mid-latitude eastward currents, principally the Kuroshio-North Pacific Drift and the Gulf Stream-North Atlantic Current are displaced equatorward. In spite of these shortcomings the surface current simulation of this two-layer upper ocean model is comparable with that of other ocean GCMs of coarse resolution. The coupled model successfully simulates the deepening of the thermocline westward across Pacific as a consequence of the prevailing Walker circulation. The region of most intense simulated surface forcing is located in the western Pacific due to a southwestward displacement of the northeast trade winds relative to observations; hence the equatorial Pacific is dominated by eastward propagation of thermocline depth variations. The excessively strong Ekman divergence and upwelling in the western Pacific cools the local warm pool, while incorrectly simulated westerlies in the eastern Pacific suppress upwelling and inhibit cooling from below. These features reduce the simulated trans-Pacific sea-surface temperature gradient, weakening the Walker circulation and the anomalies associated with the simulated Southern Oscillation. Offprint requests to: KR Sperber  相似文献   

17.
Tidal processes are examined that control the water exchange between two basins of the Trondheimsfjord through a narrow channel with sills. For this purpose, a non-hydrostatic numerical model based on the laterally averaged Reynolds equations in the Boussinesq approximation was developed. The model takes into account the real vertical fluid stratification, variable bottom topography and variable cross-section of the fjord. Numerical experiments were performed to investigate tidally generated internal waves and their influence on the water exchange.The model produces both baroclinic tides and tidally generated lee waves. It was found that, for the Skarnsund strait which connects the Middle Fjord and the Beitstadfjord, the internal tides generated over the Skarnsund sills are very weak. Their amplitudes do not exceed 1 m.The intense short internal waves, which are identified as unsteady lee waves, comprise the basic input of the total internal wave field. These waves are generated by tidal currents at sill breaks, are trapped by topography in the generation area and grow by continuing feedback into large-amplitude waves. As the tidal flow slackens, they move upstream as freely propagating waves.As essentially nonlinear responses, the lee waves cause a nonlinear water transport. The detailed analysis of the residual currents produced by unsteady lee waves (which are propagating in both directions from the Scarnsund sills) has shown, in particular, that the residual currents can reach values as high as 0.27 m s−1.It was also found that such currents exert a considerable effect on the water exchange through the Skarnsund strait between the adjacent basins. This mechanism can play an important role in water renewal and formation of the Beitasdfjord waters.  相似文献   

18.
陈隆勳 《气象学报》1959,30(1):85-91
这篇文章同时考虑了基本气流的垂直分布和水平分布来讨论大尺度扰动的不稳定度。讨论了不稳定扰动发生的必要规准,并进一步讨论了扰动的发展或阻尼对大气环流的作用。  相似文献   

19.
A model is presented for determining the location and magnitude of the maximum ground-level concentration arising from an elevated buoyant source in a very stable atmospheric boundary layer. The development combines the turbulent structure of such a boundary layer, Lagrangian similarity of the diffusion process, and similarity solutions of the conservation equations of the buoyant plume with mass conservation to produce a simple, experimentally verifiable formulation. Functional analogy with previous results for the constant flux layer and a deep convectively unstable layer suggest a heuristic model by which to visualize the process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号