首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hypothesis is being put forward that the formation of jets in the nuclei of radio galaxies is due to a high-speed energy excretion (explosion) in the accretion disk around a massive black hole. The explosion can be induced, for example, by a fall of the star into the black hole. For the accretion disk featuring an exponential high-density distribution, an asymmetrical explosion can be obtained: the shock front moves in the direction of decreasing the density accelerately and achieves the relativistic velocity swiftly, carrying away the most fraction of the explosion energy. Radio emission of the jet involves synchrotron radiation of relativistic electrons which are accelerated by such shock wave in the magnetic field driven up by the shock front.  相似文献   

2.
In this paper, we use a Langevin type equation with a damping term and stochastic force to describe the stochastic oscillations on the vertical direction of the accretion disk around a black hole, and calculate the luminosity and power spectral density (PSD) for an oscillating disk. Then we discuss the stochastic resonance (SR) phenomenon in PSD curves for different parameter values of viscosity coefficient, accretion rate, mass of black hole and outer radius of the disk. The results show that our simulated PSD curves of luminosity for disk oscillation have the same profile as the observed PSD of black hole X-ray binaries (BHXBs) in the lowhard state, and the SR of accretion disk oscillation may be an alternative interpretation of the persistent low-frequency quasi-periodic oscillations (LFQPOs).  相似文献   

3.
4.
5.
This is the second of a series of papers aimed to look for an explanation on the generation of high frequency quasi-periodic oscillations (QPOs) in accretion disks around neutron star, black hole, and white dwarf binaries. The model is inspired by the general idea of a resonance mechanism in the accretion disk oscillations as was already pointed out by Abramowicz and Klu’zniak (2001). In a first paper (P'etri, 2005a, paper I), we showed that a rotating misaligned magnetic field of a neutron star gives rise to some resonances close to the inner edge of the accretion disk. In this second paper, we suggest that this process does also exist for an asymmetry in the gravitational potential of the compact object. We prove that the same physics applies, at least in the linear stage of the response to the disturbance in the system. This kind of asymmetry is well suited for neutron stars or white dwarfs possessing an inhomogeneous interior allowing for a deviation from a perfectly spherically symmetric gravitational field. After a discussion on the magnitude of this deformation applied to neutron stars, we show by a linear analysis that the disk initially in a cylindrically symmetric stationary state is subject to {three kinds of resonances: a corotation resonance, a Lindblad resonance due to a driven force and a parametric resonance}. In a second part, we focus on the linear response of a thin accretion disk in the 2D limit. {Waves are launched at the aforementioned resonance positions and propagate in some permitted regions inside the disk, according to the dispersion relation obtained by a WKB analysis}. In a last part, these results are confirmed and extended via non linear hydrodynamical numerical simulations performed with a pseudo-spectral code solving Euler's equations in a 2D cylindrical coordinate frame. {We found that for a weak potential perturbation, the Lindblad resonance is the only effective mechanism producing a significant density fluctuation}. In a last step, we replaced the Newtonian potential by the so called logarithmically modified pseudo-Newtonian potential in order to take into account some general-relativistic effects like the innermost stable circular orbit (ISCO). The latter potential is better suited to describe the close vicinity of a neutron star or a black hole. However, from a qualitative point of view, the resonance conditions remain the same. The highest kHz QPOs are then interpreted as the orbital frequency of the disk at locations where the response to the resonances are maximal. It is also found that strong gravity is not required to excite the resonances.  相似文献   

6.
We examine the behaviour of accretion flow around a rotating black hole in presence of cooling. We obtain global flow solutions for various accretion parameters that govern the accreting flow. We show that standing isothermal shock wave may develop in such an advective accretion flow in presence of cooling. This shocked solution has observational consequences as it successfully provides the possible explanations of energy spectra as well as generation of outflows/jets of various galactic and extra-galactic black hole candidates. We study the properties of isothermal shock wave and find that it strongly depends on the cooling efficiency. We identify the region in the parameter space spanned by the specific energy and specific angular momentum of the flow for standing isothermal shock as a function of cooling efficiencies and find that parameter space gradually shrinks with the increase of cooling rates. Our results imply that accretion flow ceases to contain isothermal shocks when cooling is beyond its critical value.  相似文献   

7.
We present a case study of the relevance of the radially pulsational instability of a two-temperature accretion disk around a neutron star to anomalous X-ray pulsars (AXPs). Our estimates are based on the approximation that such a neutron star disk with mass in the range of 10^-6-10^-5M⊙ is formed by supernova fallback. We derive several peculiar properties of the accretion disk instability: a narrow interval of X-ray pulse periods; lower X-ray luminosities; a period derivative and an evolution time scale. All these results are in good agreement with the observations of the AXPs.  相似文献   

8.
We consider a passage of the stars through the accretion disk near the supermassive black hole in the nuclei of active galaxies and quasars. When a star penetrates the disk, a hydrodynamical track is formed behind it. The boundary of the track is a cylindric shock-wave. The region of the track is optically thick with respect to the true absorption. The transfer of the energy dissipated by the passage of the star with a radius ≈1012 cm (the typical dimensions of a star in a galactic nucleus) across the disk provided by the radiative heat conduction. Each star passage through the intermediate region of the disk results in the appearance of a bright spot on its surface. The energy emitted by the spots lies inside the frequency range from visible to UV, exceeding the disk luminosity due to accretion in the range considered.  相似文献   

9.
具有不同质量的恒星在耗尽其热核能源后,最终可能会坍缩成为性质完全不同的致密天体,如白矮星、中子星或者黑洞。从20世纪30年代起,黑洞的观测及其证认一直是天体物理学的研究热点之一。首先简要地回顾了恒星级黑洞的形成及其候选天体的研究历史;然后介绍了如何从观测上证认恒星级黑洞:接着详细讨论了恒星级黑洞的质量和自转参数的测量方法;最后介绍恒星级黑洞观测及其证认的最新研究进展,并做出结论:目前已经有充分的证据宣告在部分吸积X射线双星中存在恒星级黑洞。  相似文献   

10.
The growth of supermassive black holes by merging and accretion in hierarchical models of galaxy formation is studied by means of Monte Carlo simulations. A tight linear relation between masses of black holes and masses of bulges arises if the mass accreted by supermassive black holes scales linearly with the mass-forming stars and if the redshift evolution of mass accretion tracks closely that of star formation. Differences in redshift evolution between black hole accretion and star formation introduce a considerable scatter in this relation. A non-linear relation between black hole accretion and star formation results in a non-linear relation between masses of remnant black holes and masses of bulges. The relation of black hole mass to bulge luminosity observed in nearby galaxies and its scatter are reproduced reasonably well by models in which black hole accretion and star formation are linearly related but do not track each other in redshift. This suggests that a common mechanism determines the efficiency for black hole accretion and the efficiency for star formation, especially for bright bulges.  相似文献   

11.
Results of simultaneous spectral and photometric monitoring of the Ae Herbig star WW Vul in the neighborhoods of the Ha line and the sodium NaI D resonance doublet are reported. It is shown that the spectral variability of the star is caused mainly by the anisotropic disk wind, whose high velocity component forms in the inner region of the accretion disk. The circumstellar gas in footpoint of the wind shows the variability of the density and velocity, that is in good agreement with the results of modeling of an accretion and outflows around young stars controlled by the stellar and/or disk magnetic field. An analysis of the variability of the parameters of the Ha emission line also showed that the density of the gas in the inner region of the accretion disk varies over a time scale exceeding 10 years. __________ Translated from Astrofizika, Vol. 49, No. 2, pp. 171–185 (May 2006).  相似文献   

12.
Viscous Keplerian discs become sub-Keplerian close to a black hole since they pass through sonic points before entering into it. We study the time evolution of polytropic viscous accretion discs (both in one- and two-dimensional flows) using smoothed particle hydrodynamics. We discover that for a large region of the parameter space spanned by energy, angular momentum and polytropic index, when the flow viscosity parameter is less than a critical value, standing shock waves are formed. If the viscosity is very high then the shock wave disappears. In the intermediate viscosity, the disc oscillates very significantly in the viscous time-scale. Our simulations indicate that these centrifugally supported high density regions close to a black hole play an active role in the flow dynamics, and consequently, the radiation dynamics.  相似文献   

13.
We study the dynamical structure of a cooling dominated rotating accretion flow around a spinning black hole. We show that non-linear phenomena such as shock waves can be studied in terms of only three flow parameters, namely the specific energy     , the specific angular momentum (λ) and the accretion rate     of the flow. We present all possible accretion solutions. We find that a significant region of the parameter space in the     plane allows global accretion shock solutions. The effective area of the parameter space for which the Rankine–Hugoniot shocks are possible is maximum when the flow is dissipation-free. It decreases with the increase of cooling effects and finally disappears when the cooling is high enough. We show that shock forms further away when the black hole is rotating compared to the solution around a Schwarzschild black hole with identical flow parameters at a large distance. However, in a normalized sense, the flow parameters for which the shocks form around the rotating black holes are produced shocks closer to the black hole. The location of the shock is also dictated by the cooling efficiency in that higher the accretion rate     , the closer is the shock location. We believe that some of the high-frequency quasi-periodic oscillations may be due to the flows with higher accretion rate around the rotating black holes.  相似文献   

14.
通过几十年的观测研究, 黑洞X射线双星(X-Ray Binary, XRB)部分特征被揭示. 然而, 吸积盘结构尚不确定. 黑洞XRB功率密度谱的截断频率与准周期振荡(Quasi Periodic Oscillation, QPO)的相关性质(W-K关系)可以限制吸积盘结构. 利用慧眼-HXMT (Hard X-ray Modulation Telescope)观测到的5个黑洞XRB的数据, 对黑洞XRB的W-K关系进行了研究, 结果表明在慧眼-HXMT观测的3个探测器能段中W-K关系成立. 此外在MAXI J1535-571之中存在截断频率和吸积盘内半径的相关关系, 这和截断的吸积盘结构一致. 如果观测到的功率密度谱来自质量吸积率的扰动传播, 可以推测吸积盘内半径接近最内圆形稳定轨道, 此黑洞可能是高自旋系统.  相似文献   

15.
History of Star Formation and Chemical Enrichment in the Milky Way Disk   总被引:2,自引:0,他引:2  
Based on a physical treatment of the star formation law similar to that given by Efstathiou, we have improved our two-component chemical evolution model for the Milky Way disk. Two gas infall rates are compared, one exponential, one Gaussian. It is shown that the star formation law adopted in this paper depends more strongly on the gas surface density than that in Chang et al. It has large effects on the history of star formation and gas evolution of the whole disk. In the solar neighborhood, the history of chemical evolution and star formation is not sensitive to whether the infall rate is Gaussian or exponential. For the same infall time scale, both forms predict the same behavior for the current properties of the Galactic disk. The model predictions do depend on whether or not the infall time scale varies with the radius, but current available observations cannot decide which case is the more realistic. Our results also show that it would be inadequate to describe the gradient evolution along the Gala  相似文献   

16.
We report preliminary results of hydrodynamical modeling of gas flow in a galaxy potential towards a central massive black hole. We use a bar-like perturbation on the large scale in order to cause the initial inflow, and we concentrate our attention on the inner parts of the galaxy, where the potential becomes axisymmetric, or where it is dominated by an inner, secondary bar. Our high-resolution grid-based algorithm allows us to get a detailed picture of gas dynamics down to about 10 pc from the galaxy center, where the black hole becomes dominant. We find that inner bars may not increase the gas inflow, but for certain potential and gas parameters, gas flows to the center in a spiral shock. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

17.
18.
Using mathematical formalism borrowed from dynamical systems theory, a complete analytical investigation of the critical behaviour of stationary flows in low angular momentum axisymmetric black hole accretion, provides significant insight about the nature of the phase trajectories corresponding to transonic accretion in the steady state, without taking recourse to any explicit numerical method commonly reported in the literature on multi-transonic black hole accretion discs and related astrophysical phenomena. Investigation of an accretion process around a non-rotating black hole, forming different geometrical configurations of the flow structure under the influence of various pseudo-Schwarzschild potentials, reveals that the general profile of the parameter space divisions describing multi-critical accretion, is roughly equivalent for various flow geometries. However, a mere variation of the polytropic index of the flow cannot map a critical solution from one flow geometry to another, since the numerical domain of the parameter space responsible for producing multi-critical accretion does not undergo a continuous transformation in multi-dimensional parameter space. The stationary configuration used to demonstrate the aforementioned findings is shown to be stable under time-dependent linearised perturbations for all kinds of flow geometries, driven by any pseudo-Schwarzschild potential, and using a standard equation of state. Finally, the structure of the acoustic metric corresponding to the propagation of the linear perturbation is discussed for various flow geometries used.  相似文献   

19.
We investigate the behaviour of dissipative accreting matter close to a black hole, as this provides important observational features of galactic and extragalactic black hole candidates. We find a complete set of global solutions in the presence of viscosity and synchrotron cooling. We show that advective accretion flow can have a standing shock wave and the dynamics of the shock is controlled by the dissipation parameters (both viscosity and cooling). We study the effective region of the parameter space for standing as well as oscillating shock. We find that the shock front always moves towards the black hole as the dissipation parameters are increased. However, viscosity and cooling have opposite effects in deciding the solution topologies. We obtain two critical cooling parameters that separate the nature of the accretion solution.  相似文献   

20.
本文用广义相对论讨论了黑洞吸积盘内边缘半径r(ms)的演化规律。结果表明,吸积盘的中心黑洞在由Schwarzschild型向极端Kerr型演化的过程中,黑洞的角动量变化对r(ms)的影响始终比黑洞的质量变化对r(ms)的影响大。在此过程中r(ms)始终是连续、单调减小的。本文得出r(ms)对时间变化率的取值范围,并对其物理意义作了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号