首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A total of over 32,000 demersal fish and epibenthic crustaceans belonging to 62 species were caught in 42 biweekly trawls from 10 stations in Yaquina Bay, Oregon, during 1967 and 1968. English sole,Parophrys vetulus, was the most abundant species. Seventeen species (13 fishes and 4 crustaceans) constituted 95% of the catch. Total numerical abundances of both individuals (mainly juvenile fishes) and species were greatest in the lower 12 km of the estuary during summer and early fall, a period of water mass stability and increased water temperature and salinity. This section of the estuary is used by many immature fishes and crustaceans as a “nursery area”. These fishes generally emigrate from the estuary as subadults in the fall around the onset of the rainy season. The fewest species were taken in January 1968 from the central, upper-estuarine, and riverine areas of the bay, this being a time when high rainfall and river discharge result in low salinity and temperature. Crustaceans (shrimp and subadult crabs) were generally most abundant in late winter and early spring throughout the estuary. Changes in diversity indices reflected variations in community structure, the influence of migratory species and juvenile fishes, and seasonal changes in dominance. Year-to-year fluctuations in abundance may be due, in part, to local hydrographic and meteorological conditions along the central Oregon coast.  相似文献   

2.
Spatial and temporal patterns of distribution and abundance were examined for postsettlement sciaenids collected from seagrass meadows in the Aransas Estuary, Texas. Overall, 5443 sciaenid larvae and early juveniles were identified from biweekly epibenthic sled collections taken from August 1994 to August 1995. Eight species were present in seagrass meadows, with five accounting for over 99.9% of sciaenids collected: silver perch (Bairdiella chrysoura), spotted seatrout (Cynoscion nebulosus), spot (Leiostomus xanthurus), Atlantic croaker (Micropogonias undulatus), and red drum (Sciaenops ocellatus). Settlement to seagrass meadows was partitioned temporally with little overlap among the five species. Postsettlers from inshore spawners (B. chrysoura, C. nebulosus, S. ocellatus) inhabited seagrass meadows during the spring and summer, while individuals from offshore spawners (L. xanthurus, M. undulatus) were present in the late fall and winter. Densities ofB. chrysoura, C. nebulosus, S. ocellatus were highest for small individuals (4–8 mm SL) and these taxa remained in seagrass sites through the early juvenile stage. Conversely,L. xanthurus andM. undulatus maintained longer pelagic periods and generally entered seagrass meadows at larger sizes (10–14 mm SL). Moreover, these taxa were only temporary residents of selected seagrass meadows, apparently migrating to alternative habitats shortly after arrival. During peak settlement, mean and maximum densities among species ranged from 0.1 m?2 to 0.8 m?2 and 0.7 m?2 to 23.8 m?2, respectively. Density and mean size of possettlement sciaenids differed significantly between seagrass species (Halodule wrightii, Thalassia testudinum) and among sites within the estuary.  相似文献   

3.
Six species of marine fishes, the Atlantic cutlassfish Trichiurus lepturus; planehead filefish, Monacanthus hispidus; guaguanche, Sphyraena guachancho; pigfish, Orthopristic chrysoptera; freckled blenny, Hypsoblenius ionthas; and short bigeye, Pristigenys alta, were observed for the first time in the Hudson River estuary in 1985. Their occurrence was associated with low freshwater runoff and the resulting upstream penetration of the salt front to historic levels. These conditions may have facilitated the dispersal of marine fishes from coastal areas into the lower Hudson River estuary.  相似文献   

4.
Seasonal and interannual patterns in the spatial distribution of bluefish (Pomatomus saltatrix) within a Middle Atlantic Bight estuary were examined using multipanel gillnets fished biweekly at 14 fixeds stations in the Sandy Hook Bay-N avesink River estuary during May–November of 1998 and 1999. To characterize habitats along the estuarine gradient, we measured several abiotic and biotic variables concurrently with gillnet sampling. Juvenile (age-0 and age-1+) bluefish were captured regularly during both years along with large numbers of Atlantic menhaden (Brevoortia tyrannus), which were confirmed by diet analyses to be bluefish’s primary forage species. The date of initial appearance of age-0 bluefish and menhaden in the estuary varied between years and may have been related to interannual differences in seawater temperatures on the continental shelf during spring. Delayed estuarine arrival of prey fishes may have contributed to variability in bluefish diets between years. Within the estuary, bluefish spatial distribution were consistent across seasons and years: bluefish were most common in areas associated with high concentrations of suspended materials and the presence of menhaden. Community analyses also indicated habitat overlap between bluefish and menhaden. Spatial distribution patterns revealed the consistent occurrence of piscivorous bluefish in shallow estuarine habitats that retained suspended materials and aggregated prey fishes. Foraging success of bluefish and other estuarine piscivores may be closely linked with the availability of these productive habitat, highlighting the need for future study of biological interactions and the governing physical processes.  相似文献   

5.
The seasonal occurrence and relative abundance of larval and juvenile fishes, particularly members of the family Sciaenidae, from a Virginia Atlantic coast estuary were determined from ichthyoplankton and otter trawl collections made from March 1979 to March 1980. The larvae of 19 species in 14 families were identified in the ichthyoplankton. Larvae of the engraulid, Anchoa mitchilli (bay anchovy), and the atherinid, Menidia menidia (Atlantic silverside), dominated the samples and made up 13 and 22%, respectively, of the 9,440 larvae collected. Peak occurrence of all larvae was from May to August. The juveniles of 28 species in 19 families were identified from otter trawl collections. Juvenile sciaenids numerically dominated the trawl collecions and made up 68% of the trawl catch. Juvenile density peaked during September through December.  相似文献   

6.
Subtidal accumulations of oyster shell have been largely overlooked as essential habitat for estuarine nekton. In southeastern U.S. estuaries, where oyster reef development is mostly confined to the intertidal zone, eastern oyster (Crassostrea virginica) shell covered bottoms are often the only significant source of hard subtidal structure. We characterized and quantified nekton use of submerged shell rubble bottoms, and compared it to use of intertidal reefs and other subtidal bottoms in the North Inlet estuary, South Carolina. Replicate trays (0.8 m2) filled with shell rubble were deployed in shallow salt marsh creeks, and were retrieved after soak times of 1 to 25 days from May 1998 to March 2000. Thirty six species of fishes, representing 21 families, were identified from the 455 tray collections. Water temperature, salinity, soak time and the presence of a shell substrate all affected the catch of fishes in the trays. Catches during the warmer months were two to five times greater than those during the winter. Fishes were present in 98% of the trays with an overall average of 5.7 fish m?2. The assemblage was numerically dominated by small resident species including naked goby (Gobiosoma bose), oyster toadfish (Opsanus tau), and crested blenny (Hypleurochilus geminatus). Transient species accounted for 23% of all individuals and 62% of the total biomass due to the presence of relatively large sheepshead (Archosargus probatocephalus) and black sea bass (Centropristis striata). Both the transient and resident species displayed distinct periods of recruitment and rapid growth from April to October. Lower abundances of juvenile gobies and blennies during 1998 were attributed to long periods of depressed salinity caused by high rainfall associated with El Niño conditions in spring. Crabs and shrimps, which were often more abundant than the fishes, accounted for comparable biomass in the tray collections. In comparisons of subtidal tray and trawl catches, trays yielded 10 to 1,000 fold higher densities of some demersal fish groups. Comparisons of intertidal and subtidal gear catches indicated that many species remain in the subtidal shell bottom at all stages of the tide. This study suggests that subtidal shell bottom may be essential fish habitat for juvenile seabass, groupers, and snappers and that it may be the primary habitat for a diverse assemblage of ecologically important resident fishes and crustaceans. Given the high levels of nekton use and the areal extent of oyster shell bottoms in eastern U.S. and Gulf estuaries, increased attention to protection and restoration of these areas appears justified.  相似文献   

7.
Seasonal succession of three species of Acartia in a Maine estuary was examined. The well-defined successional pattern, in which A. tonsa is replaced, by A. clausi in winter and early spring, is well-documented in the middle Atlantic estuaries, but was not observed in this northern New England estuary. Instead, both species increased in their abundance at the same time on most occasions. In general, A. clausi was present throughout the year and produced three generations from March to November. A. longiremis had two or three generations between May and November, and disappeared during late summer. A. tonsa was present from May through December and was most abundant in early fall. A. clausi and A. tonsa were generally most numerous upstream, and A. longiremis downstream. Adult and copepodite V sex ratios varied among species, stations, and seasons. Seasonal patterns of Acartia populations in estuaries of the north Atlantic coast and their possible relationships to environmental factors were also compared and discussed.  相似文献   

8.
Interactions between pairs of numerically dominant species collected at inlet and creek shorezone and channel habitats within a high salinity estuary in northeastern South Carolina were examined using two-way contingency tables and binomial tests. Of the significant species interactions, over 71% were positive and these primarily occurred within shorezone habitats. The strongest positive interactions were between young-of-the-year spot (Leiostomus xanthurus) and blue crab (Callinectes sapidus) juveniles in both shorezone habitats, and between striped killifish (Fundulus majalis), white mullet (Mugil curema), and striped anchovies (Anchoa hepsetus) in the inlet shorezone habitat. One of the most positive species associations in channel habitats was between the bay anchovy (Anchoa mitchilli) and the Atlantic brief squid (Lolliguncula brevis). These positive relationships between species may be explained by one species enhancing the habitat for another, both species responding to similar environmental conditions, cooperative social interactions such as mixed schooling, or the attraction of predators to prey. Negative interactions were found between schools of Atlantic silversides (Menidia menidia) and striped killifish in the inlet shorezone and between schools of Atlantic silversides and bay anchovies in the creek shorezone. Schools of Atlantic silversides may either displace or compete with other common shorezone species. Positive and negative interactions suggest that relationships between some species pairs did not occur randomly within certain habitats and may have contributed to the organization of the estuarine nekton community. Differences in the strengths and direction of interactions of certain species pairs among habitats and seasons were probably related to the differences in the physical characteristics of those habitats and/or changes in the relative abundance of dominant species and life stages over time.  相似文献   

9.
Fishes and invertebrate macrofauna (nekton) were sampled biweekly (July through October 1985) from the surface of tidal freshwater marshes. Samples were collected with flume nets at three different stream orders (orders 2, 3 and 4+) along a marsh stream order gradient. Twenty-five species of fishes (5,610 individuals, 17.072 kg preserved wet weight) representing 13 families, and three species of invertebrates (19,570 individuals, 13.026 kg preserved wet weight) were collected. The most abundant species were grass shrimp (Palaemonetes pugio), mummichogs (Fundulus heteroclitus), banded killifish (F. diaphanus), inland silversides (Menidia beryllina), and blue crabs (Callinectes sapidus). Invertebrate catches (mostly grass shrimp and blue crabs) were not significantly different among stations. Total numbers of fishes were significantly greater at both headwater (order 2) and main creek (order 3) stations than river (order 4+) stations, but catches of headwater and main creek stations were not significantly different. The relationship between marsh stream order and fish abundance may partly be related to the distribution of submerged aquatic vegetation (SAV) within marsh tidal creeks. Submerged aquatic vegetation decreases in abundance with increasing stream order. Some species may use SAV as a refuge from predators or as a foraging area during low tide when the marsh surface is inaccessible. The presence of SAV in tidal creeks may enhance the habitat value of adjacent marshes.  相似文献   

10.
Fish communities found in the marine, brackish, and freshwater shallows of the Clarence River (New South Wales, Australia) were sampled over a 12-mo period to compare communities inhabiting bare and vegetated substrata. A total of 26,107 fish representing 57 species and 36 families was collected biomonthly suing a 6-mm mesh siene. Permanent residents (i.e., species found throughout the year) were primarily gobies (Gobiidae) and gudgeons (Eleotridae). Juveniles of many species found as adults in other parts of the river were seasonally abundant in the shallows. Most numerous was a small ambassid, the glassy perchlet (Ambassis jacksoniensis), the majority of which was collected from marine and brackish regions of the river. Firetail gudgeons (Hypseleotris compressus) were caught in highest numbers at the freshwater sites. Cluster analysis suggested that fish communities in widely separated vegetated sites were more similar to each other than to those in adjacent bare sites. Shallow vegetated (Zostera capricorni) habitats in the marine region of the river had greatest diversity and highest abundances of fish, particularly during recruitment periods. At these times, juveniles of many commercially important species were captured, including yellowfin bream (Acanthopagrus australis), sea mullet (Mugil cephalus), flat-tail mullet (Liza agentea), tarwhine (Rhabdosargus sarba), luderick (Girella tricuspidata), silver biddy (Gerres subfasciatus), and sand whiting (Sillago ciliata). The vegetated (Vallisneria gigantea) sites in the brackish region also had significantly more species and individuals during recruitment periods (spring) than bare sites. Although freshwater vegetated sites consistently had more individuals than freshwater bare sites, there were no significant differences in species richness between vegetated and bare habitats. The need to conservatively manage shallow-water fish habitats is stressed. *** DIRECT SUPPORT *** A01BY073 00004  相似文献   

11.
The objective of this study was to determine what effect, if any, large pile-supported platforms (piers) have on the habitat distribution and abundance of juvenile fishes. Trapping techniques were used in 1993 and 1994 under piers, in pile fields, and in open-water habitat types in shallow areas (<5 m) in the lower Hudson River estuary (40°44′N, 70°01′W). Nearly 1500 fishes, mostly juveniles, representing 24 species were collected in 1865 trap-days from May through October in the 2-yr study. The presence of relatively large numbers of young-of-the-year (YOY) fish during both years lends support to the idea that shallow areas in the lower Hudson River estuary currently function as nursery habitats for a variety of fishes. Two seasonal assemblages were apparent, but their composition varied somewhat between years.Microgadus tomcod andPseudopleuronectes americanus YOY dominated an early summer assemblage (May–July) while large numbers of YOYMorone saxatilis were collected as part of a late summer assemblage (August–September). The effects of habitat type on fish assemblage structure were significant during both years. Fish abundance and species richness were typically low under piers; YOY fishes were rare andAnguilla rostrata accounted for a large proportion of the total catch. In contrast, YOY fishes dominated collections at pile field and open-water stations, where abundance and species richness were high. These results indicate that habitat quality under the platforms of large piers (>20,000 m2) is probably poor for YOY fishes when compared with nearby pile field and open-water habitat types.  相似文献   

12.
Large, recreationally or commercially important populations of Atlantic sturgeon (Acipenser oxyrinchus), American shad (Alosa sapidissima), and striped bass (Morone saxatilis) occur in the Hudson River. Members of the Hudson River populations of these fishes also occur over a broad range along the Atlantic coast where they mix with conspecifics from other anadromous populations. For management purposes, it is imperative to be able to discriminate among individual stocks so that weak stocks may be protected and harvest may be allocated equitably. Because of their sensitivity and resistance to environmentally-induced temporal variation, molecular approaches have been increasingly employed in stock identification studies. However, post-Pleistocene recolonization of the Hudson River must have occurred less than 10,000 years ago—a relatively brief period for genetic divergence among populations. We tested whether various measures of DNA variation between Hudson River populations and adjacent populations of Atlantic sturgeon, American shad, and striped bass were sufficient to discriminate among their conspecific populations. American shad populations surveyed for mtDNA variation were highly diverse genotypically, but genotypic frequencies among the populations of the Connecticut, Hudson, and Delaware rivers were statistically homogenous (p>0.05). In contrast, Atlantic sturgeon (surveyed for mtDNA variation) and striped bass (surveyed for mtDNA and nuclear DNA variation) populations of the Hudson River were not genotypically diverse, but they were differentiated from northern and southern populations. Our results suggest higher gene flow (and lesser homing fidelity) among American shad populations in comparison with the two other species.  相似文献   

13.
To assess possible impacts on Lake Pontchartrain fishes from the 2005 hurricanes, we compared trawl, beach seine, and gillnet collections taken before (2000–2003, 2005) and after (2006–2009) to determine if significant assemblage changes occurred. We also compared basic environmental variables to test for hurricane-related changes. Significant post-hurricane changes in fish assemblages occurred in trawl (analysis of similarity (ANOSIM), R?<?0.090, p?<?0.05) and beach seine (ANOSIM, R?<?0.120, p?<?0.05) collections across all seasons. Gillnet assemblages exhibited changes in only one season (ANOSIM, R?=?0.045, p?<?0.05). These consistently low global R values (all R?<?0.120) across all gears suggest only minor compositional changes in species. When peak abundance periods were compared for individual species, Gulf menhaden (Brevoortia patronus) declined in trawl collections after the hurricanes (Friedman's test, χ 2?=?6.00, p?=?0.014) but increased in gillnet collections (Friedman's test, χ 2?=?5.00, p?=?0.025). Hardhead catfish (Ariopsis felis) increased in trawl collections, but Gulf pipefish (Syngnathus scovelli), naked gobies (Gobiosoma bosc), and rough silverside (Membras martinica) all declined in beach seine samples and Atlantic croakers (Micropogonias undulatus), Spanish mackerel (Scomberomorus maculatus), and sand seatrout (Cynoscion arenarius) all declined in gillnet samples. In general, salinity increased and water clarity and dissolved oxygen decreased after the hurricanes. While the overall composition of Lake Pontchartrain fish assemblages remains stable, the significant decline of some species and changes in certain environmental variables are cause for concern. Future monitoring should determine if all elements of this estuary will recover from these impacts.  相似文献   

14.
The structure of the fish community associated with eelgrass beds in the lower Chesapeake Bay was studied over a 14 month period. A total of 24,182 individuals in 48 species was collected by otter trawl with Leiostomus xanthurus (spot) comprising 63% of the collection, Syngnathus fuscus (northern pipefish) 14%, Anchoa mitchilli (bay anchovy) 9%, and Bairdiella chrysoura (silver perch) 5%. The density and diversity of fishes were higher in vegetated areas compared to unvegetated areas; fishes were more abundant in night collections Fish abundance and species number increased in the spring and early summer as both water temperature and eelgrass biomass increased and decreased in the fall and winter as temperature and eelgrass biomass decreased. Gill netting revealed some of the top predators in the system, especially the sandbar shark, Carcharhinus milberti. The fish community in the Chesapeake Bay was quite different from North Carolina eelgrass fish communities. Most notable was the rarity of the pinfish, Lagodon rhomboides, which may be a very important predator in the structuring of the epifaunal communities.  相似文献   

15.
Ten Spartina alterniflora plants were sampled monthly in a Louisiana estuary to determine the abundance and species composition of stem-dwelling meiofauna and small macrofauna. Most organisms were associated with epiphytic algae found relatively high on standing stems; one harpacticoid copepod, Leptocaris brevicornis, was associated with vascular tissue. Only 15% of the stem fauna was found within 6 cm of the sediment surface. Highest abundance of total meiofauna (>8,000 individuals per 100 cm2 stem surface) occurred in July. The overall seasonal average was 1,563 individuals per 100 cm2 (about 800 per stem). Nematodes (24% of the total) and harpacticoids (adults and copepodites 19%, and nauplii 15%), were abundant and omnipresent taxa. Rotifers (30%) were limited to the summer months, but were extremely abundant when present, 5,037 individuals per 100 cm2 in July. Mites were common (10%) while several groups, for example, amphipods, isopods, polychaetes, and insect larvae, were rare. The stem harpacticoid assemblage was not diverse; four sediment-dwelling and three species reported only from stems were recorded. Overall, abundance was low from December to May, and high from June through November. Winter and spring minima may have resulted from several factors. Estuarine water levels in the Gulf of Mexico are lowered by as much as 25 cm in the winter, and stems likely were desiccated. Highest rhizomatic growth occurs in the spring, and the resulting reduced epiphyte populations may have influenced meiofauna. The density of stem meiofauna above the sediment surface averaged about 225 individuals per 10 cm2 sediment surface, but frequently exceeded that in the surrounding sediments.  相似文献   

16.
Structural and functional characteristics of the Swartvlei estuary fish community are described. The detritivore group of fishes comprised 49% of the total catch biomass, zoobenthivores 25%, herbivores 18%, piscivores 6%, and epifauna/zooplanktivores 2%. The diets of 18 fish species, based on the analysis of 1,648 stomach contents, are presented. Selection by Swartvlei estuary fishes for zoobenthic invertebrates and aquatic macrophytes in different habitats was calculated using the linear index of selection. Results indicated a strong positive selection for epifaunal invertebrates and poor utilization of infauna and plants. Plant consumption by herbivorous fishes in the estuary centered around filamentous algae and diatoms growing onZostera capensis, rather than seagrass leaf material. The detrital base for both eelgrass- and sand-dominated areas in the Swartvlei estuary is emphasized, and most of the fish biomass was supported directly or indirectly by detritus. Large catches (mass per unit effort) in the macrophyte-free upper reaches site were attributed to the tidal input ofZostera leaves and associated algae to the area and its subsequent utilization by fishes through the detrital food chain.  相似文献   

17.
Chesapeake Bay is the largest estuary in the USA and comprises vast areas of polyhaline to freshwater, tidal fish habitat. The Bay experiences large temperature differences between winter and summer, which in combination with the variety of salinities enables approximately 240 species of fish to be temporary inhabitants. This dynamic environment leads to an ever-changing prey field for predators. The goal of this study was to characterize the diet of one of the few resident, euryhaline predators within the tidal rivers in Virginia, Lepisosteus osseus (longnose gar). The top five prey species were Morone americana, Brevoortia tyrannus, Fundulus spp., Micropogonias undulatus, and Leiostomous xanthurus. The diet composition varied with the seasonal fish assemblages, length of L. osseus, water temperature, and salinity. L. osseus consumed a greater amount of marine and anadromous fishes (%W?=?59.4 % and %N?=?56.5 %) than resident fishes (%W?=?40.6 % and %N?=?43.5 %). The seasonal influx of anadromous or coastal spawning fishes appears to be an important prey source for L. osseus and most likely other piscivores in the tributaries of Chesapeake Bay.  相似文献   

18.
We assessed fish assemblage stability over the last half century in Lake Pontchartrain, an environmentally degraded oligohaline estuary in southeastern Louisiana. Because assemblage instability over time has been consistently associated with severe habitat degradation, we attempted to determine whether fish assemblages in demersal, nearshore, and pelagic habitats exhibited change that was unrelated to natural fluctuations in environmental variables (e.g., assemblage changes between wet and dry periods). Collection data from three gear types (trawl, beach seine, and gill nets) and monthly environmental data (salinity, temperature, and Secchi depth) were compared for four collecting periods: 1954 (dry period), 1978 (wet period), 1996–1998 (wet period), and 1998–2000 (dry period). Canonical correspondence analysis (CCA) revealed that although the three environmental variables were significantly associated with the distribution and abundance patterns of fish assemblages in all habitats (with the exception of Secchi depth for pelagic samples), most fish assemblage change occurred among sampling periods (i.e., along a temporal gradient unrelated to changing environmental variables). Assemblage instability was the most pronounced for fishes collected by trawls from demersal habitats. A marked lack of cyclicity in the trawl data CCA diagram indicated a shift away from a baseline demersal assemblage of 50 yr ago. Centroid positions for the five most collected species indicated that three benthic fishes, Atlantic croaker (Micropogonias undulatus), spot (Leiostomus xanthurus), and hardhead catfish (Arius felis), were more dominant in past demersal assemblages (1954 and 1978). A different situation was shown for planktivorous species collected by trawls with bay anchovy (Anchoa mitchilli) becoming more dominant in recent assemblage and Gulf menhaden (Brevoortia patromus) remaining equally represented in assemblages over time. Changes in fish assemblages from nearshore (beach seine) and pelagic (gill net) habitats were more closely related to environmental fluctuations, though the CCA for beach seine data also indicated a decrease in the dominance ofM. undulatus and an increase in the proportion ofA. mitchilli over time. The reduced assemblage role of benthic fishes and the marked assemblage change indicated by trawl data suggest that over the last half century demersal habitats in Lake Pontchartrain have been impacted more by multiple anthropogenic stressors than nearshore or pelagic habitats.  相似文献   

19.
We examined the community structure of fish and selected decapod crustaceans and tested for within estuary differences among habitats at depths of 0.6 m to 7.9 m, in Great Bay and Little Egg Harbor in southern New Jersey. Several habitat types were identified a priori (e.g., eelgrass, sea lettuce, and marsh creeks) and sampled by trawl (4.9 m headrope, 19-mm mesh wings, 6.3-mm mesh liner), monthly, from June 1988 through October 1989. Repetitive (n=4) 2-min trawl tows were taken at each habitat type from 13 locations. The fishes and decapod crustaceans collected were typical of other Mid-Atlantic Bight estuaries but varied greatly inseasonal abundance and species. In the years sampled, bay anchovy (Anchoa mitchilli) was the dominant species (50.5% of the total number), followed by spot (Leiostomus xanthurus) (10.7%), Atlantic silverside (Menidia menidia) (9.7%), fourspine stickleback (Apeltes quadracus) (5.9%), blue crab (Callinectes sapidus) (4.6%), and northern pipefish (Syngnathus fuscus) (4.2%). The biota were examined by multi-dimensional scaling (MDS) for habitat associations and “best abiotic predictor” of community structure. Percent silt combined with salinity was the most important abiotic determinant of the faunal distributions among habitats. Temperature was a major factor influencing seasonal occurrence of the biota but had less effect on habitat comparisons. The analysis confirmed the distinct nature of the assemblages associated with the habitats, that is, eelgrass, upper estuary subtidal creeks, channels, and open bay areas. Several species were associated with specific habitats: for example,A. quadracus andS. fuscus with eelgrass, clupeids with subtidal creek stations,L. xanthurus with marsh channels, and black sea bass (Centropristis striata) and spotted hake (Urophycis regia) with sponge-peat habitat. Species richness appeared to be positively related to habitat structural heterogeneity. Thus, the best predictors for these estuarine fish and decapod crustacean assemblages were seasonal temperature, percent silt and salinity combined, and the physical heterogeneity of the habitat.  相似文献   

20.
Variability in early life stages of species that are permanent residents of the estuarine nekton is poorly understood, especially in systems with extensive areas of emergent vegetation (e.g., salt marshes and mangroves). Sampling small mobile nekton in these shallow intertidal habitats presents a difficult methodological challenge. Simulated aquatic microhabitats (SAMs) were used to collect the early life stages of resident nekton that remained on the emergent marsh surface after it was exposed by the tide and could not be adequately sampled by traditional methods. Where the intertidal is a prominent areal component of the estuary, a large portion of young nekton could be overlooked using other common survey methods (e.g., plankton tows or block nets). Populations of young fishes and natant crustaceans were monitored for a year at 3-d to 6-d intervals from both low and high intertidal elevations within each of two marsh sites on Sapelo Island, Georgia, USA. Three species accounted for >99% of the 41,023 individuals collected. These were the killifishesFundulus heteroclitus (57.0%) andF. luciae (4.0%), and the daggerblade grass shrimp,Palaemonetes pugio (38.4%). YoungF. heteroclitus were used in field enclosure experiments to relate abundance data to actual areal densities. Average annual estimated density of young nekton on the surface of the intertidal marsh at low tide was 7.2 individuals m?2. Early life stages of estuarine resident species, particularly those with demersal young, are not affected by the same physical processes influencing larval supply and recruitment variability in marine-spawned species. In salt marshes, biotic factors (e.g., adult reproductive activity, predation, and food limitation) may be more important as proximate causes of variation during the early life histories of resident nekton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号