首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Qualitative and quantitative characterization of mangrove vegetation structure and dynamics is required for assessment of coastal habitat vulnerability. Changes in mangrove forests around Douala, Cameroon, have been documented using aerial photography between 1974 and 2009. The distribution pattern of tree species was also assessed in 2009 following the point-centered quarter method (PCQM+) protocol. Pristine mangroves observed in 1974 had been disturbed markedly in 2003 and 2009. Some of the pre-existing mangroves were entirely replaced by settlements, road, and crops (maize, bean, banana, oil palm, green vegetables, and sugar cane plantations). From 1974 to 2003, 39.86 % of mangrove forests have disappeared; the net loss of 22.10 % occurred between 2003 and 2009 alone. Mangrove forest area had decreased 53.16 % around Douala over a 35-year period from 1974 to 2009 concurrent with a substantial increase of settlements (60 %), roads (233.33 %), agriculture areas (16 %), non-mangrove areas (193.33 %), and open water (152.94 %). Field survey showed that almost one third of the quadrants in the remaining mangrove forest were empty. The disrupted mangrove forest has an overall mean height, absolute density, and basal area of 19.80 m, 158 trees ha?1, and 110.44 m2 ha?1, respectively. In comparison with scientific literature on mangrove degradation, this puts the mangroves around Douala at the top of the “peri-urban mangrove degradation” list. In addition, beyond listing of mangrove plants on the Red List of Threatened Species which will seldom lead to widely distributed species being listed, we call for the creation of a Red List of Locally Threatened Ecosystems, which in contrast is likely to list mangroves as an ecosystem under critical risk of (local) extinction in many countries around the globe, in particular, peri-urban sites.  相似文献   

2.
Dr. J. Karte 《GeoJournal》1983,7(4):329-340
As formed by frost-action and the presence of intensely frozen ground periglacial phenomena, especially microrelief features, are good examples for geomorphic phenomena as being clearly dependent upon specific climatic conditions. Whereas climate controls and delimits the formation and occurrence of periglacial phenomena at a zonal and regional scale, non-climatic vegetational, topographical and edaphic factors are significant within the climatically defined boundary conditions at a smaller scale. It can be shown that each type of periglacial phenomenon is dependent on specific climatic and edaphic conditions. Data on these conditions are compiled in several tables. On the other hand, because of this dependence on specific environmental conditions periglacial phenomena are at the same time diagnostic indicators for such conditions. As to climate they are indicators for specific climatically defined types of frozen ground and for thermal conditions in terms of mean values, such as mean air temperatures, freezing and thawing indexes. Spatial associations of genetically different types of periglacial phenomena indicate the extent and regional subdivision of the periglacial environment and its climatic limits. The definition of the climate-diagnostic value of present periglacial phenomena is an essential perequisite for the palaeoclimatic interpretation phenomena are sensitive to climatic variations of small amplitude and as such they are also indicators of recent short-term climatic changes. As to edaphic conditions they indicate frost-action potential of the groud and various soil properties which have practical implications. As edaphic indicators periglacial phenomena are of significance for terrain evaluation programmes in the Arctic for practical purposes.  相似文献   

3.
Mangrove forests are important sinks and sources of carbon especially for connections to coral reefs and seagrass beds. However, they are increasing under threat from anthropogenic influences. We investigated correlations between carbon fluxes from the sediment and water column in deforested and intact mangroves. Our findings show that deforestation has a negative effect on sediment organic carbon storage and CO2 fluxes. However, species richness and density showed a positive correlation with sediment organic carbon storage and CO2 fluxes. An increased density of saplings showed a positive relationship with dissolved inorganic and organic carbon draining the mangrove forest at high tide. This research offers insights into the importance of the key forest characteristics influencing the storage and fluxes of carbon. Alterations in mangrove carbon stocks and retention may affect connected ecosystems.  相似文献   

4.
The previously reported rapid spread of mangroves at Port Gawler on the northeastern shore of Gulf St Vincent, South Australia has continued. This is a tidal-dominated coastline where reduced incoming tidal currents have led to increased sedimentation on the tidal flat and the development of an area of samphire and mangroves that have split the tidal flat in two. We predict that the remaining sections of the tidal flat will eventually become a mature mangrove forest, although human activity may delay this process.  相似文献   

5.
Vulnerability assessment due to tropical storms has been attempted for larger spatial units, and the roles played by natural ecosystems like mangroves or hydrological variables like proximity to rivers or various socio-economic factors determining economic well-being are rarely taken into account. During cyclones, evacuation and relief works are undertaken at the village level, and thus, knowledge of relative vulnerability of the coastal villages is important to the policy makers. The paper studies 262 villages lying within a 10?km of the coast in one of the most cyclone prone districts of India and estimates the probability of expected human fatality due to severe cyclone for these villages. Such probabilities are calculated from a cyclone impact (human deaths) function where a wide range of factors including natural ecosystems are used to control for the exposure and adaptive capacity of the villages. The results show villages established in mangrove habitat areas (after clearing the forest) and those with more marginal workers (without any regular jobs) to face a very high death risk. In contrast, villages situated in the leeward side of existing mangrove forest or near a major river are seen to be facing a much lower risk of deaths. The results have important implications like conserving mangroves in cyclone-prone areas, priority evacuation of villages established in the mangrove habitat before a high-intensity cyclone, etc., for cyclone hazard management.  相似文献   

6.
The spatial and temporal variations of meiofaunal communities in mangrove systems were examined. Replicated cores were taken in mudflats between prop roots ofRhizophora mangle at five locations within the Gulf of Batabanó, Cuba, during 3 mo. There was a clear seasonality in the water column, but measured abiotic variables did not show obvious relations with meiofaunal patterns. The magnitude of change in salinity for each location appears to influence the meiofauna more than absolute values per se. The meiofauna from southern Pinar del Rio showed a higher variation in community structure, suggesting higher levels of stress in comparison with locations in eastern Isla, possibly due to the presence of human settlements, runoff from land, and apparent deterioration of mangroves. The considerable variation in the density and community structure estimates on global (geographical regions) and local (locations in the Gulf of Batabanó) scales could be caused by the high spatial variability in the mangrove microenvironment, coupled with associated methodological differences in the sampling. There was a low density of meiofauna (mean: 101 animals 10 cm−2) compared to other shallow tropical habitats. Mangroves from subtropical and temperate regions showed consistently higher meiofaunal densities than tropical mangroves, but causes of this putatively latitudinal pattern require further study. Future strategies for meiofaunal studies in mangrove systems should increase the temporal and spatial replication, include designed field experiments to test ecological hypotheses, and apply a species level approach with regards to nematode assemblages.  相似文献   

7.
Mangrove forest stores large organic carbon stocks in a setting that is highly vulnerable to climate change and direct anthropogenic influences. As such there is a need to elucidate the causes and consequences of land use change on these ecosystems that have high value in terms of ecosystem services. We examine the areal pattern of land types in a coastal region located in southern Iran over a period of 14 years to predict future loss and gain in land types to the year 2025. We applied a CA–Markov model to simulate and predict mangrove forest change. Landsat satellite images from 2000 to 2014 were used to analyze the land cover changes between soil, open water and mangroves. Major changes during this period were observed in soil and water which could be attributed to rising sea level. Furthermore, the mangrove area in the more seaward position was converted to open water due to sea-level rise. A cellular automata model was then used to predict the land cover changes that would occur by the year 2025. Results demonstrated that approximately 21 ha of mangrove area will be converted to open water, while mangroves are projected to expand by approximately 28 ha in landward direction. These changes need to be delineated to better inform precise mitigation and adaptation measures.  相似文献   

8.
Inter-annual variations of phytoplankton abundance and community organization were observed over a two-decade period along with the ancillary parameters at the land–ocean boundary associated with the Sundarban mangrove forest (21°32′ and 22°40′ N and 88°05′ and 89° E), along the NE Coast of the Bay of Bengal. The number of definable Bacillariophyceae species exceeded Dinophyceae taxa, and the total number of bloom-forming species declined from a maximum of ten in 2000 and a minimum of two in 2007. Blooms of the diatom Coscinodiscus radiatus were common in 2000 and 2007. Tide cycles and the onset of the monsoon season played important roles in diurnal and seasonal variability of phytoplankton. Phytoplankton biovolume showed seasonality, with the highest levels during post-monsoon periods and lowest levels during the monsoon period. Phytoplankton abundance was correlated to rainfall patterns, which may be altered by long-term changes in climate.  相似文献   

9.
Although hurricane disturbance is a natural occurrence in mangrove forests, the effect of widespread human alterations on the resiliency of estuarine habitats is unknown. The resiliency of mangrove forests in southwest Florida to the 2004 hurricane season was evaluated by determining the immediate response of mangroves to a catastrophic hurricane in areas with restricted and unrestricted tidal connections. The landfall of Hurricane Charley, a category 4 storm, left pronounced disturbances to mangrove forests on southwest Florida barrier islands. A significant and negative relationship between canopy loss and distance from the eyewall was observed. While a species-specific response to the hurricane was expected, no significant differences were found among species in the size of severely impacted trees. In the region farthest from the eyewall, increases in canopy density indicated that refoliation and recovery occurred relatively quickly. There were no increases or decreases in canopy density in regions closer to the eyewall where there were complete losses of crown structures. In pre-hurricane surveys, plots located in areas of management concern (i.e., restricted connection) had significantly lower stem diameter at breast height and higher stem densities than plots with unrestricted connection. These differences partially dictated the severity of effect from the hurricane. There were also significantly lower red mangrove (Rhizophora mangle) seedling densities in plots with restricted connections. These observations suggest that delays in forest recovery are possible in severely impacted areas if either the delivery of propagules or the production of seedlings is reduced by habitat fragmentation.  相似文献   

10.
A 10 m long peat core from the Kanaka Crater (20° 25′ S, 57° 31′ E), located at 560 m elevation in Mauritius, was analyzed for microfossils. Eight radiocarbon ages show the pollen record reflects environmental and climatic change of the last ca. 38 cal ka BP. The record shows that the island was continuously covered by forest with Erica heath (Philippia) in the uplands. Cyperaceous reedswamp with Pandanus trees was abundant in the coastal lowlands as well as locally in the waterlogged crater. The record shows changes in climatic humidity (wet from 38.0 to 22.7 cal ka BP, drier from 22.7 to 10.6 cal ka BP, and wetter again from 10.6 cal ka BP to recent) as the main response to climate change. A high turnover in montane forest species is evidenced at 22.7 cal ka BP and at the start of the Holocene. The limited altitudinal ranges in the mountains of Mauritius (maximum altitude 828 m), and changing humidity being more important than changing temperature, suggests that in response to climate change a reassortment in taxonomic composition of montane forests might be equally important as displacement of forest types to new altitudinal intervals. We found weak impact of the latitudinal migration of the Intertropical Convergence Zone and data suggest that the Indian Ocean Dipole is a more important driver for climatic change in the southwest Indian Ocean. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The distribution of mangrove biomass and forest structure along Shark River estuary in the Florida Coastal Everglades (FCE) has been correlated with elevated total phosphorus concentration in soils thought to be associated with storm events. The passage of Hurricane Wilma across Shark River estuary in 2005 allowed us to quantify sediment deposition and nutrient inputs in FCE mangrove forests associated with this storm event and to evaluate whether these pulsing events are sufficient to regulate nutrient biogeochemistry in mangrove forests of south Florida. We sampled the spatial pattern of sediment deposits and their chemical properties in mangrove forests along FCE sites in December 2005 and October 2006. The thickness (0.5 to 4.5 cm) of hurricane sediment deposits decreased with distance inland at each site. Bulk density, organic matter content, total nitrogen (N) and phosphorus (P) concentrations, and inorganic and organic P pools of hurricane sediment deposits differed from surface (0–10 cm) mangrove soils at each site. Vertical accretion resulting from this hurricane event was eight to 17 times greater than the annual accretion rate (0.30 ± 0.03 cm year−1) averaged over the last 50 years. Total P inputs from storm-derived sediments were equivalent to twice the average surface soil nutrient P density (0.19 mg cm−3). In contrast, total N inputs contributed 0.8 times the average soil nutrient N density (2.8 mg cm−3). Allochthonous mineral inputs from Hurricane Wilma represent a significant source of sediment to soil vertical accretion rates and nutrient resources in mangroves of southwestern Everglades. The gradient in total P deposition to mangrove soils from west to east direction across the FCE associated with this storm event is particularly significant to forest development due to the P-limited condition of this carbonate ecosystem. This source of P may be an important adaptation of mangrove forests in the Caribbean region to projected impacts of sea-level rise.  相似文献   

12.
The tropically associated black mangrove (Avicennia germinans) is expanding into salt marshes of the northern Gulf of Mexico (nGOM). This species has colonized temperate systems dominated by smooth cordgrass (Spartina alterniflora) in Texas, Louisiana, Florida and, most recently, Mississippi. To date, little is known about the habitat value of black mangroves for juvenile fish and invertebrates. Here we compare benthic epifauna, infauna, and nekton use of Spartina-dominated, Avicennia-dominated, and mixed Spartina and black mangrove habitats in two areas with varying densities and ages of black mangroves. Faunal samples and sediment cores were collected monthly from April to October in 2012 and 2013 from Horn Island, MS, and twice yearly in the Chandeleur Islands, LA. Multivariate analysis suggested benthic epifauna communities differed significantly between study location and among habitat types, with a significant interaction between the two fixed factors. Differences in mangrove and marsh community composition were greater at the Chandeleurs than at Horn Island, perhaps because of the distinct mangrove/marsh ecotone and the high density and age of mangroves there. Infaunal abundances were significantly higher at Horn Island, with tanaids acting as the main driver of differences between study locations. We predict that if black mangroves continue to increase in abundance in the northern GOM, estuarine faunal community composition could shift substantially because black mangroves typically colonize shorelines at higher elevations than smooth cordgrass, resulting in habitats of differing complexity and flooding duration.  相似文献   

13.
Brachyuran crab community structure was compared between mangrove sites under different management systems from four locations along the Melaka Straits-Andaman Sea Coast. Klong Ngao, a mangrove estuary in Ranong Province of southern Thailand, lies within a Biosphere Reserve designated in 1997. Sites were positioned in plantations at a former charcoal concession forest, a disused tin mine, and an abandoned shrimp pond along this estuary. The Merbok estuary in Kedah, Malaysia, is partially managed: the mangroves are cut for charcoal and poles on a small scale and the forests are left to regenerate naturally. The Matang Mangrove Forest Reserve in Perak, Malaysia, is heavily exploited but well managed, forRhizophora wood to produce charcoal, and has been for 100 years. Sites were positioned in plantations of different ages. Kuala Selangor Nature Park, Selangor, Malaysia, was established as a nature reserve in 1987 and contains mature mangrove forest regenerating naturally from previous selective felling. At Klong Ngao and Matang, mature reserve forest sites were also studied for comparison with plantation sites. The sites included both upstream and downstream locations and were of similar area, minimizing effects from possible species-area relationships. Sites were chosen with similar environmental conditions and with a dominance ofRhizophora spp. At each site per location, the brachyuran crabs were sampled quantitatively in 100 m2 quadrats by three independent 15-min timed crab catches. The crab community recorded was analyzed by univariate and multivariate statistical techniques. Management history plays an important role in moderating the crab community structure. The crab community also changes with the age of the mangrove forest stand. Sesarmid crabs consistently dominated in mature forests, whereas young plantations were colonized mainly by ocypodid crabs. The findings show that heavily effected sites—e.g., disused tin mining areas, former concession forests, and abandoned shrimp ponds—can be rehabilitated by planting mangroves and that the crab community is a useful ecological indicator of habitat status.  相似文献   

14.
通过测定泉州湾洛阳江河口红树林区表层沉积物中酸提重金属元素含量及桐花树、秋茄两种红树植物各部位中重金属元素含量,分析了重金属元素在两红树植物不同部位的分布特征及其富集和迁移能力,并初步探讨了两种红树植物体内各重金属元素的主要来源。红树林区各采样点表层沉积物中重金属元素酸提量顺序为:FeMnZnPbCuCrN iCo,Cu和Pb的平均酸提量超过第一类海洋沉积物质量标准限值。同种元素在两种红树植物不同部位中的含量顺序一致:Cu为根枝叶;N i为叶根枝;Fe、Mn、Cr、Zn、Pb、Co为根叶枝。两种红树植物对N i、Cr、Cu、Zn、Fe、Mn的富集能力高于Co和Pb。秋茄对Cu、N i、Mn、Fe、Co的富集能力比桐花树略强些,而对Zn、Cr、Pb的富集能力则相对弱些;但两种植物对各元素的富集能力都达不到超富集植物的要求。两种植物对N i元素的富集能力都大于其他元素,且都集中在叶部,其他元素则主要集中在根部。除N i外,其余元素在两植物体内的迁移系数均小于1。桐花树中的Cr和秋茄中的Cu、Zn、Mn主要来源于林地沉积物,其他元素在两植物各部位均有不同的来源。  相似文献   

15.
16.
Active rock glaciers are periglacial landforms consisting of coarse debris with interstitial ice or ice‐core. Recent studies showed that such landforms are able to support plant and arthropod life and could act as warm‐stage refugia for cold‐adapted species due to their microclimate features and thermal inertia. However, integrated research comparing active rock glaciers with surrounding landforms to outline their ecological peculiarities is still scarce. We analysed the abiotic (ground surface temperature and humidity, soil physical and chemical parameters) and biotic (plant and arthropod communities) features of two Alpine active rock glaciers with contrasting lithology (silicate and carbonate), and compared them with the surrounding iceless landforms as reference sites (stable slopes and active scree slopes). Our data show remarkable differences between stable slopes and unstable landforms as a whole, while few differences occur between active scree slopes and active rock glaciers: such landforms show similar soil features but different ground surface temperatures (lower on active rock glaciers) and different occurrence of cold‐adapted species (more frequent/abundant on active rock glaciers). Both plant and arthropod species distributions depend mainly on the geographical context as a function of soil pH and on the contrast between stable slopes and unstable landforms as a function of the coarse debris fraction and organic matter content, while the few differences between active scree slopes and active rock glaciers can probably be attributed to microclimate. The role of active rock glaciers as potential warm‐stage refugia for cold‐adapted species is supported by our data; however, at least in the European Alps, their role in this may be less important than that of debris‐covered glaciers, which are able to host cold‐adapted species even below the climatic tree line.  相似文献   

17.
To determine the role of mangroves for fisheries in the arid region of the Persian Gulf, we investigated fish community structure and trophic diversity in intertidal creeks with and without mangroves. Fish community abundances and biomass were compared across habitats and seasons. To identify variations in overall community trophic niches among habitats and seasons, we measured niches with size-corrected standard ellipse areas (SEAc) calculated from C and N stable isotope values. Although there was a slightly greater species richness occurred in mangrove creeks, we found a general similarity in the diversity patterns in creeks with and without mangroves. Also, there were no consistent differences in fish abundance or biomass for mangrove vs. non-mangrove fish collections. Community trophic diversity measured as SEAc also showed no significant difference between mangrove and non-mangrove sites. Instead, strong seasonal patterns were observed in the fish assemblages. Winter samples had consistently higher fish abundance and biomass than summer samples. Winter SEAc values were significantly higher, indicating that the fish community had a larger isotopic niche in winter than summer. Overall, we found that seasonality was much stronger than habitat in determining fish community structure and trophic diversity in the mangrove and non-mangrove ecosystems of Qeshm Island, Iran.  相似文献   

18.
Coastal wetlands are key features of the Earth's surface and are characterized by a diverse array of coupled geomorphological and biological processes. However, the links between the distribution of biodiversity (for example, species and structural diversity) and the formation of coastal geomorphology are not well-understood on a landscape scale most useful to coastal zone managers. This study describes the relationship between select geomorphological and biological mangrove community features (i.e. species composition and functional root type) in a landscape-distributed coastal zone of Dongzhaigang Bay, north-eastern Hainan Island, China. A total of 11 mangrove species and five functional aerial root types were encountered, with the location of species by root types being controlled by the elevation of the soil surface. Plank roots, prop roots and pneumatophores occupied the lowest intertidal elevations, while knee roots and fibrous roots of the mangrove fern, Acrostichum aureum, preferred the highest intertidal elevations. Surface sediment deposition in areas with mangroves was greater than deposition in non-mangrove forest zones, establishing an important biological mechanism for this large-area response because surface erosion/compaction was also more prominent within mangrove roots. Indeed, functional root type influenced the magnitude of deposition, erosion and compaction, with knee roots and pneumatophores being more effective in promoting deposition and preventing surface erosion/compaction than prop roots. These results indicate a potential role for vegetation type (especially functional root type) to influence coastal geomorphological processes at large landscape scales. While soil surface elevation is correlated to the distribution of mangrove species and functional root types, a significant feedback exists between elevation change and the capacity of those root types to influence coastal geomorphological differentiation within sustainable intertidal elevations. An enhanced understanding of geomorphological development, mangrove species distribution and functional root type may improve management to support nature-based solutions that adjust more effectively to sea-level rise through feedbacks.  相似文献   

19.
A field experiment was established in Bocas Del Toro, Panama to examine the relationship between sessile organisms living on mangrove prop roots and fish communities. Artificial mangrove roots (AMR) with different sets of artificial (AE) or real epibionts were established in five different locations in two separate years. Fish species in each plot were identified, counted, and their size estimated by visual census for 15 days in each replicate. In the artificial mangrove plots, the treatments with the most heterogeneous structure had significantly greater abundance of most families and species richness of fish in both years of the experiment. AMR plots with AEs attracted a more abundant and diverse fish assemblage than those with live epibionts, which had lower three-dimensional structure. All of the AMR plots had significantly greater fish abundance than comparable plots of sea grass alone. The location of the replicate also made a significant difference to fish abundance. The data indicate that prop-root epibionts can enhance fish abundance and diversity in mangroves, although the relationship may depend on the specific nature of the epibionts and fishes present.  相似文献   

20.
Coastal ecosystems such as mangroves fringing tropical coastlines have been recognized as natural protectors of the coastal areas against destructive attack of a tsunami. In this paper, the authors aim to investigate the interaction of a tsunami wave on a typical mangrove forest and to determine its performance in reducing the run-up. A laboratory experiment using a hydraulic flume with a mangrove forest model was carried out in which tests were conducted by varying the vegetation widths of 0, 1, 2 and 3?m and average densities of 8, 6 and 4 trees per 100?cm2 using a scale ratio of 1:100. Two conditions of water levels were considered in the experiments at several tsunami wave heights between 2.4 and 14?cm. The dam break method used in the experiments produced two types of waves. At low water condition, a bore was developed and subsequently, a solitary wave was produced during high water. The results of the experiments showed that in general, vegetation widths and densities demonstrate a dampening effect on tsunami run-up. A larger vegetation width was found to be more effective in dissipating the wave energy. The first 1?m width of mangrove forest could reduce 23?C32?% during high water and 31?C36?% during low water. Increasing the mangrove forest width to 2 and 3?m could further increase the average percentage of run-up reduction by 39?C50?% during high water and 34?C41?% during low water condition. It was also observed that densities of the mangrove forest do not influence the run-up reduction as significantly as the forest widths. For mangrove forest densities to be significantly enough to reduce more tsunami run-up, an additional density of 4 trees/100?m2 needs to be provided. The experiments also showed that mangrove roots are more effective in reducing the run-up compared to the trunks and canopies. The experiments managed to compare and present the usefulness of mangrove forests in dissipating wave energy and results produced are beneficial for initiating design guidelines in determining setback limits or buffer zones for development projects in mangrove areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号