首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Ericson Formation was deposited in the distal foredeep of the Cordilleran foreland basin during Campanian time. Isopach data show that it records early dynamic subsidence and the onset of basin partitioning by Laramide uplifts. The Ericson Formation is well exposed around the Rock Springs uplift, a Laramide structural dome in southwestern Wyoming; the formation is thin, regionally extensive, and does not display the wedge‐shaped geometry typical of foredeep deposits. Sedimentation in this area was controlled both by activity in the thrust belt and by intraforeland tectonics. The Ericson Formation is ideally situated both spatially and temporally to study the transition from Sevier to Laramide (thin‐ to thick‐skinned) deformation which corresponded to the shift from flexural to dynamic subsidence and the demise of the Cretaceous foreland basin system. We establish the depositional age of the Ericson Formation as ca. 74 Ma through detrital zircon U–Pb analysis. Palaeocurrent data show a generally southeastward transport direction, but northward indicators near Flaming Gorge Reservoir suggest that the intraforeland Uinta uplift was rising and shedding sediment northward by late Campanian time. Petrographic data and detrital zircon U–Pb ages indicate that Ericson sediment was derived from erosion of Proterozoic quartzites and Palaeozoic and Mesozoic quartzose sandstones in the Sevier thrust belt to the west. The new data place temporal and geographic constraints on attempts to produce geodynamic models linking flat‐slab subduction of the oceanic Farallon plate to the onset of the Laramide orogenic event.  相似文献   

2.
《Basin Research》2018,30(Z1):401-423
The Lobo Formation of southwestern New Mexico consists of spatially variable continental successions attributed to the Laramide orogeny (80–40 Myr), although its age and provenance are virtually undocumented. This study combines sedimentological, magnetostratigraphical and geochronological data to infer the timing and origin of the Lobo Formation. Measured sections of Lobo strata at two locations, Capitol Dome in the Florida Mountains and in the Victorio Mountains, indicate significant differences in depositional environments and sediment provenance. At Capitol Dome, where Lobo strata were deposited above a syncline developed in Palaeozoic strata, deposition took place in fluvial, palustrine and marginal lacustrine settings, with alluvial‐fan deposits only at the top of the formation. Combined magnetostratigraphy and a young U–Pb detrital zircon age suggest deposition of the section at Capitol Dome from ~60 to 52 Ma. The Lobo Formation in the Victorio Mountains was deposited in alluvial‐fan and fluvial settings; the age of deposition is poorly bracketed between 66 ± 2 Ma, the weighted‐mean age of two young zircons, and middle Eocene (~40 Ma), the approximate age of overlying volcanic rocks. U–Pb zircon ages from sandstones at the Victorio and Capitol Dome localities indicate that different source rocks provided sediment to the Lobo Formation. Local Proterozoic basement (~1.47–1.45 Ga) dominated the source of the Lobo Formation in the Victorio Mountains, consistent with abundant granitic clasts that are present in the proximal facies there; a diverse range of grain ages suggest that recycled Lower Cretaceous strata provided the dominant source for Lobo Formation sediment at the Capitol Dome locality. The U–Pb data suggest that the depositional systems at the two sites were not connected. Contrasts in depositional setting and detrital zircon provenance indicate that the Palaeogene Lobo Formation in southwest New Mexico was deposited in an assemblage of local depositional settings, possibly in separate structural basins, as a consequence of Laramide tectonics in the region.  相似文献   

3.
The details of how narrow, orogen‐parallel ocean basins are filled with sediment by large axial submarine channels is important to understand because these depositional systems commonly form in through‐like basins in various tectonic settings. The Magallanes foreland basin is an excellent location to study an orogen‐parallel deep‐marine system. Conglomerate lenses of the Upper Cretaceous Cerro Toro Formation have been previously interpreted to represent the fill of a single submarine channel (4–8 km wide, >100 km long) that funneled coarse detritus southward along the basin axis. This interpretation was based on lithologic correlations. New U/Pb dating of zircons from volcanic ashes and sandstones, coupled with strontium isotope stratigraphy, refine the controls on depositional ages and provenance. Results demonstrate that north‐south oriented conglomerate lenses are contemporaneous within error limits (ca. 84–82 Ma) supporting that they represent parts of an axial channel belt. Channel deposits 20 km west of the axial location are 87–82 Ma in age. These channels are partly contemporaneous with the ones within the axial channel belt, making it likely that they represent feeders to the axial channel system. The northern Cerro Toro Formation spans a Turonian to Campanian interval (ca. 90–82 Ma) whereas the formation top, 70 km to the south, is as young as ca. 76 Ma. Kolmogorov–Smirnoff statistical analysis on detrital zircon age distributions shows that the northern uppermost Cerro Toro Formation yields a statistically different age distribution than other samples from the same formation but shows no difference relative to the overlying Tres Pasos Formation. These results suggest the partly coeval deposition of both formations. Integration of previously acquired geochronologic and stratigraphic data with new data show a pronounced southward younging pattern in all four marine formations in the Magallanes Basin. Highly diachronous infilling may be an important depositional pattern for narrow, orogen‐parallel ocean basins.  相似文献   

4.
Determining both short‐ and long‐term sedimentation rates is becoming increasingly important in geomorphic (exhumation and sediment flux), structural (subsidence/flexure) and natural resource (predictive modelling) studies. Determining sedimentation rates for ancient sedimentary sequences is often hampered by poor understanding of stratigraphic architecture, long‐term variability in large‐scale sediment dispersal patterns and inconsistent availability of absolute age data. Uranium–Lead (U‐Pb) detrital zircon (DZ) geochronology is not only a popular method to determine the provenance of siliciclastic sedimentary rocks but also helps delimit the age of sedimentary sequences, especially in basins associated with protracted volcanism. This study assesses the reliability of U‐Pb DZ ages as proxies for depositional ages of Upper Cretaceous strata in the Magallanes‐Austral retroarc foreland basin of Patagonia. Progressive younging of maximum depositional ages (MDAs) calculated from young zircon populations in the Upper Cretaceous Dorotea Formation suggests that the MDAs are potential proxies for absolute age, and constrain the age of the Dorotea Formation to be ca. 82–69 Ma. Even if the MDAs do not truly represent ages of contemporaneous volcanic eruptions in the arc, they may still indicate progressive‐but‐lagged delivery of increasingly younger volcanogenic zircon to the basin. In this case, MDAs may still be a means to determine long‐term (≥1–2 Myr) average sedimentation rates. Burial history models built using the MDAs reveal high aggradation rates during an initial, deep‐marine phase of the basin. As the basin shoaled to shelfal depths, aggradation rates decreased significantly and were outpaced by progradation of the deposystem. This transition is likely linked to eastward propagation of the Magallanes fold‐thrust belt during Campanian‐Maastrichtian time, and demonstrates the influence of predecessor basin history on foreland basin dynamics.  相似文献   

5.
The Petrified Forest of Lesbos comprises silicified tree fossils at multiple stratigraphic levels within the Lower Miocene Sigri Pyroclastic Formation. Our objective was to understand the interplay of tectonic setting, structural evolution, volcanological setting and basin evolution in the preservation of this remarkable natural monument. Sections were logged for lithology, sedimentary structures and hydrothermal alteration. Orientations of fallen fossil trees were measured. Samples were taken for mineralogical and geochemical analysis. 40Ar/39Ar dating was carried out on mineral separates from four samples. Widespread andesite‐dacite domes, the Eressos Formation, intrude and overlie metamorphic basement and are overlain by the Sigri Pyroclastic Formation, which comprises several hundreds of metres of pyroclastic flow tuffs (unwelded ignimbrites) interbedded with fluvial conglomerate and volcaniclastic sandstone. The Sigri Pyroclastic Formation ranges in age from 21.5 to 22 Ma, where it overlies the lacustrine Gavathas Formation, to younger than 18.4 Ma. Tuffs and fluvial conglomerates in the Sigri Pyroclastic Formation coarsen eastwards, and petrified trees and soil horizons occur throughout the Formation. The recurrence of pyroclastic flows was approximately one every 20 ka, so destructive flows were relatively infrequent, allowing the development of climax vegetation between most eruptions. Conglomerate‐filled channels show that rivers flowed westwards. Tree fall directions indicate NW to N movement of pyroclastic flows, implying a source near the younger Mesotopos–Tavari caldera to the south. The basin, which formed in a NNE‐trending dextral strike‐slip regime, provided some topographic steering. Following the Sigri Pyroclastic Formation at ca. 18 Ma, there was a rapid increase in the pace of volcanic activity, with the eruption of thick lava sequences and welded ignimbrites, and intrusion of dykes and laccoliths in SW Lesbos. Rapid burial by permeable tuffs, silica from alteration of volcanic ash, and later hydrothermal circulation all contributed to the preservation of the petrified trees.  相似文献   

6.
Early Mesozoic Basins in the Yanshan Fold–Thrust Belt (YFTB), located along the northern margin of the North China Craton (NCC), record significant intraplate deformation of unknown age. In this article, we present evidence for the rapid exhumation of high‐grade basement rocks along the northern margin of the NCC in the Early Mesozoic. U–Pb geochronology of detrital zircons constrains the maximum depositional ages of syntectonic sedimentary units that formed during the unroofing of basement rocks and plutons in the Xiabancheng Basin. In the Early Mesozoic, the Xiabancheng Basin recorded a dramatic transformation in depositional environments, related to a significant change in the regional tectonic setting. In this study, the tectonic evolution of the YFTB is established from paleocurrent data and U–Pb zircon ages of sandstone and granitic gravels of the Xingshikou Formation, Xiabancheng Basin. The paleocurrent direction of meandering fluvial facies in the Triassic Liujiagou and Ermaying Formations are from east to west. In contrast, the overlying Xingshikou Formation consists of alluvial fan facies with paleocurrent directions from north‐northwest to south‐southeast. The lower and middle segments of the Xingshikou Formation record rapid exhumation of basement rocks along the northern margin of the NCC. U‐Pb ages of detrital zircons within the Xingshikou Formation are characterized by three major U–Pb age groups: 2.2–2.5 Ga, 1.7–1.8 Ga and 193–356 Ma. From 193 Ma to 356 Ma, a subsidiary peak occurs at 198 ± 5 Ma, constraining the sedimentation age of the Xingshikou Formation to the Early Jurassic. Zircon from the Wangtufang pluton in the northern portion of the Xiabancheng Basin yields U–Pb ages of 191 ± 1 Ma and 207 ± 1 Ma. Within error, these crystallization ages are identical to detrital zircon ages of 206 ± 1 Ma and 206 ± 2 Ma obtained for granitic gravel clasts in the Xingshikou Formation. Thus, the Wangtufang pluton and surrounding basement rocks must have experienced rapid uplift and exhumation during the Early Jurassic. The onset of exhumation along the northern margin of the NCC occurred at ca. 198–180 Ma.  相似文献   

7.
The Patagonian Magallanes retroarc foreland basin affords an excellent case study of sediment burial recycling within a thrust belt setting. We report combined detrital zircon U–Pb geochronology and (U–Th)/He thermochronology data and thermal modelling results that confirm delivery of both rapidly cooled, first‐cycle volcanogenic sediments from the Patagonian magmatic arc and recycled sediment from deeply buried and exhumed Cretaceous foredeep strata to the Cenozoic depocentre of the Patagonian Magallanes basin. We have quantified the magnitude of Eocene heating with thermal models that simultaneously forward model detrital zircon (U–Th)/He dates for best‐fit thermal histories. Our results indicate that 54–45 Ma burial of the Maastrichtian Dorotea Formation produced 164–180 °C conditions and heating to within the zircon He partial retention zone. Such deep burial is unusual for Andean foreland basins and may have resulted from combined effects of high basal heat flow and high sediment accumulation within a rapidly subsiding foredeep that was floored by basement weakened by previous Late Jurassic rifting. In this interpretation, Cenozoic thrust‐related deformation deeply eroded the Dorotea Formation from ca. 5 km burial depths and may be responsible for the development of a basin‐wide Palaeogene unconformity. Results from the Cenozoic Río Turbio and Santa Cruz formations confirm that they contain both Cenozoic first‐cycle zircon from the Patagonian magmatic arc and highly outgassed zircon recycled from older basin strata that experienced burial histories similar to those of the Dorotea Formation.  相似文献   

8.
The effectiveness of detrital zircon thermochronology as a means of linking hinterland evolution and continental basin sedimentation studies is assessed by using Mesozoic continental sediments from the poorly understood Khorat Plateau Basin in eastern Thailand. New uranium lead (U‐Pb) and fission‐track (FT) zircon data from the Phu Kradung Formation identify age modes at 141 ± 17 and 210 ± 24 Ma (FT) and 2456 ± 4, 2001 ± 4, 251 ± 3, and 168 ± 2 Ma (U‐Pb), which are closely similar to data from the overlying formations. The FT data record post‐metamorphic cooling, whereas the U‐Pb data record zircon growth events in the hinterland. Comparison is made between detrital zircon U‐Pb data from ancient and modern sources across Southeast Asia. The inherent stability of the zircon U‐Pb system means that 250 Myr of post‐orogenic sedimentary recycling fails to change the regional zircon U‐Pb age signature and this precludes use of the U‐Pb approach alone for providing unique provenance information. Although the U‐Pb zircon results are consistent with (but not uniquely diagnostic of) the Qinling Orogenic Belt as the original source terrane for the Khorat Plateau Basin sediments, the zircon FT cooling data are more useful as they provide the key temporal link between basin and hinterland. The youngest zircon FT modes from the Khorat sequence range between 114 ± 6 (Phra Wihan Formation) and 141 ± 17 Ma (Phu Kradung Formation) that correspond to a Late Jurassic/Early Cretaceous reactivation event, which affected the Qinling Belt and adjacent foreland basins. The mechanism for regional Early Cretaceous erosion is identified as Cretaceous collision between the Lhasa Block and Eurasia. Thus, the Khorat Plateau Basin sediments might have originated from a reactivation event that affected a mature hinterland and not an active orogenic belt as postulated in previous models.  相似文献   

9.
Located on the southern margin of the Lhasa terrane in southern Tibet, the Xigaze forearc basin records Cretaceous to lower Eocene sedimentation along the southern margin of Asia, prior to and during the initial stages of continental collision with the Tethyan Himalaya in the Early Eocene. We present new measured stratigraphic sections, totalling 4.5 km stratigraphic thickness, from a 60 km E–W segment of the western portion of the Xigaze forearc basin, northeast of the Lopu Kangri Range (29.8007° N, 84.91827° E). In addition, we apply U–Pb detrital zircon geochronology to constrain the provenance and maximum depositional ages of investigated strata. Stratigraphic ages range between ca. 88 and ca. 54 Ma and sedimentary facies indicate a shoaling‐upward trend from deep‐marine turbidites to fluvial deposits. Depositional environments of coeval Cretaceous strata along strike include deep‐marine distal turbidites, slope‐apron debris‐flow deposits and marginal marine carbonates. This along‐strike variability in facies suggests an irregular paleogeography of the Asian margin prior to collision. Paleocene–Eocene strata are composed of shallow marine carbonates with abundant foraminifera such as Nummulites‐Discocyclina and Miscellanea‐Daviesina and transition into fluvial deposits dated at ca. 54 Ma. Sandstone modal analyses, conglomerate clast compositions and detrital zircon U–Pb geochronology indicate that forearc detritus in this region was derived solely from the Gangdese magmatic arc to the north. In addition, U–Pb detrital zircon age spectra within the upper Xigaze forearc stratigraphy are similar to those from Eocene foreland basin strata south of the Indus‐Yarlung suture near Sangdanlin, suggesting that the Xigaze forearc was a possible source of Sangdanlin detritus by ca. 55 Ma. We propose a model in which the Xigaze forearc prograded south over the accretionary prism and onto the advancing Tethyan Himalayan passive margin between 58 and 54 Ma, during late stage evolution of the forearc basin and the beginning of collision with the Tethyan Himalaya. The lack of documented forearc strata younger than ca. 51 Ma suggests that sedimentation in the forearc basin ceased at this time owing to uplift resulting from continued continental collision.  相似文献   

10.
The Salar de Atacama Basin holds important information regarding the tectonic activity, sedimentary environments and their variations in northern Chile during Cretaceous times. About 4000 m of high‐resolution stratigraphic columns of the Tonel, Purilactis and Barros Arana Formations reveal braided fluvial and alluvial facies, typical of arid to semi‐arid environments, interrupted by scarce intervals with evaporitic, aeolian and lacustrine sedimentation, displaying an overall coarsening‐upward trend. Clast‐count and point‐count data evidence the progressive erosion from Mesozoic volcanic rocks to Palaeozoic basement granitoids and deposits located around the Cordillera de Domeyko area, which is indicative of an unroofing process. The palaeocurrent data show that the source area was located to the west. The U/Pb detrital zircon geochronological data give maximum depositional ages of 149 Ma for the base of the Tonel Formation (Agua Salada Member), and 107 Ma for its middle member (La Escalera Member); 79 Ma for the lower Purilactis Formation (Limón Verde Member), and 73 Ma for the Barros Arana Formation. The sources of these zircons were located mainly to the west, and comprised from the Coastal Cordillera to the Precordillera. The ages and pulses record the tectonic activity during the Peruvian Phase, which can be split into two large events; an early phase, around 107 Ma, showing uplift of the Coastal Cordillera area, and a late phase around 79 Ma indicating an eastward jump of the deformation front to the Cordillera de Domeyko area. The lack of internal deformation and the thicknesses measured suggest that deposition of the units occurred in the foredeep zone of an eastward‐verging basin. This sedimentation would have ended with the K‐T phase, recognized in most of northern Chile.  相似文献   

11.
The El Rito and Galisteo depocenters in north-central New Mexico archive tectonically-driven Paleogene drainage reorganization, the effects of which influenced sedimentation along the northwestern margin of the Gulf of Mexico. Although separated by ~100 km and lacking depositional chronology for the El Rito Formation, the two aforementioned New Mexican depocenters are commonly considered remnants of a single basin with coeval deposition and shared accommodation mechanism. Detrital zircon U-Pb maximum depositional ages indicate that the El Rito and Galisteo formations are not coeval. Moreover, stratigraphic thickness trends and mapping relationships indicate different accommodation mechanisms for the Galisteo and El Rito depocenters; tectonically-induced subsidence versus infilling of incised topography, respectively. The regional unconformity that bounds the base of both the El Rito and Galisteo formations is a correlative surface induced by local tectonic activity and associated drainage reorganization in the early Eocene, and was diachronously buried by northward onlap of fluvial sediments. Detrital zircon distributions in both depocenters indicate increased recycling of Mesozoic strata above the unconformity, but diverge upsection as topographic prominence of local basement-involved uplifts waned. Sediment capture in these depocenters is coeval with deposition in other externally-drained Laramide basins. Further, it corresponds to a period of low Laramide province-derived sediment input and replacement by Appalachian-sourced sediment along the northwestern margin of the Gulf of Mexico during a basin-wide transgression. This illustrates the potential effect that pockets of sediment storage within the catchment of a transcontinental drainage system can have over the sedimentary record in the receiving marine basin.  相似文献   

12.
《Basin Research》2018,30(4):708-729
The north–south trending, Late Cretaceous to modern Magallanes–Austral foreland basin of southernmost Patagonia lacks a unified, radiometric, age‐controlled stratigraphic framework. By simplifying the sedimentary fill of the basin to deep‐marine, shallow‐marine and terrestrial deposits, and combining 13 new U‐Pb detrital zircon maximum depositional ages (DZ MDAs) with published DZ MDAs and U‐Pb ash ages, we provide the first attempt at a unified, longitudinal stratigraphic framework constrained by radiometric age controls. We divide the foreland basin history into two phases, including (1) an initial Late Cretaceous shoaling upward phase and (2) a Cenozoic phase that overlies a Palaeogene unconformity. New DZ samples from the shallow‐marine La Anita Formation, the terrestrial Cerro Fortaleza Formation and several previously unrecognized Cenozoic units provide necessary radiometric age controls for the end of the Late Cretaceous foreland phase and the magnitude of the Palaeogene unconformity in the Austral sector of the basin. These samples show that the La Anita and Cerro Fortaleza Formations have Campanian DZ MDAs, and that overlying Cenozoic strata have Eocene to Miocene DZ MDAs. By filling this data gap, we are able to provide a first attempt at constructing a basinwide, age‐controlled stratigraphic framework for the Magallanes–Austral foreland basin. Results show southward progradation of shallow marine and terrestrial environments from the Santonian through the Maastrichtian, as well as a northward increase in the magnitude of the Palaeogene unconformity. Furthermore, our new age data significantly impact the chronology of fossil flora and dinosaur faunas in Patagonia.  相似文献   

13.
The Andean Orogen is the type‐example of an active Cordilleran style margin with a long‐lived retroarc fold‐and‐thrust belt and foreland basin. Timing of initial shortening and foreland basin development in Argentina is diachronous along‐strike, with ages varying by 20–30 Myr. The Neuquén Basin (32°S to 40°S) contains a thick sedimentary sequence ranging in age from late Triassic to Cenozoic, which preserves a record of rift, back arc and foreland basin environments. As much of the primary evidence for initial uplift has been overprinted or covered by younger shortening and volcanic activity, basin strata provide the most complete record of early mountain building. Detailed sedimentology and new maximum depositional ages obtained from detrital zircon U–Pb analyses from the Malargüe fold‐and‐thrust belt (35°S) record a facies change between the marine evaporites of the Huitrín Formation (ca. 122 Ma) and the fluvial sandstones and conglomerates of the Diamante Formation (ca. 95 Ma). A 25–30 Myr unconformity between the Huitrín and Diamante formations represents the transition from post‐rift thermal subsidence to forebulge erosion during initial flexural loading related to crustal shortening and uplift along the magmatic arc to the west by at least 97 ± 2 Ma. This change in basin style is not marked by any significant difference in provenance and detrital zircon signature. A distinct change in detrital zircons, sandstone composition and palaeocurrent direction from west‐directed to east‐directed occurs instead in the middle Diamante Formation and may reflect the Late Cretaceous transition from forebulge derived sediment in the distal foredeep to proximal foredeep material derived from the thrust belt to the west. This change in palaeoflow represents the migration of the forebulge, and therefore, of the foreland basin system between 80 and 90 Ma in the Malargüe area.  相似文献   

14.
We present field and seismic evidence for the existence of Coniacian–Campanian syntectonic angular unconformities within basal foreland basin sequences of the Austral or Magallanes Basin, with implications for the understanding of deformation and sedimentation in the southern Patagonian Andes. The studied sequences belong to the mainly turbiditic Upper Cretaceous Cerro Toro Formation that includes a world‐class example of conglomerate‐filled deep‐water channel bodies deposited in an axial foredeep depocentre. We present multiple evidence of syntectonic deposition showing that the present internal domain of the fold‐thrust belt was an active Coniacian–Campanian wedge‐top depozone where deposition of turbidites and conglomerate channels of Cerro Toro took place. Cretaceous synsedimentary deformation was dominated by positive inversion of Jurassic extensional structures that produced elongated axial submarine trenches separated by structural highs controlling the development and distribution of axial channels. The position of Coniacian‐Campanian unconformities indicates a ca. 50–80 km advance of the orogenic front throughout the internal domain, implying that Late Cretaceous deformation was more significant in terms of widening the orogenic wedge than all subsequent Andean deformation stages. This south Patagonian orogenic event can be related to compressional stresses generated by the combination of both the collision of the western margin of Rocas Verdes Basin during its closure, and Atlantic ridge push forces due to its accelerated opening, during a global‐scale plate reorganization event.  相似文献   

15.
The tectonic evolution of the Tian Shan, as for most ranges in continental Asia is dominated by north‐south compression since the Cenozoic India‐Asia collision. However, precollision governing tectonic processes remain enigmatic. An excellent record is provided by thick Palaeozoic – Cenozoic lacustrine to fluvial depositional sequences that are well preserved in the southern margin of the Junggar Basin and exposed along a foreland basin associated to the Late Cenozoic rejuvenation of the Tian Shan ranges. U/Pb (LA‐ICP‐MS) dating of detrital zircons from 14 sandstone samples from a continuous series ranging in age from latest Palaeozoic to Quaternary is used to investigate changes in sediment provenance through time and to correlate them with major tectonic phases in the range. Samples were systematically collected along two nearby sections in the foreland basin. The results show that the detrital zircons are mostly magmatic in origin, with some minor input from metamorphic zircons. The U‐Pb detrital zircon ages range widely from 127 to 2856 Ma and can be divided into four main groups: 127–197 (sub‐peak at 159 Ma), 250–379 (sub‐peak at 318 Ma), 381–538 (sub‐peak at 406 Ma) and 543–2856 Ma (sub‐peak at 912 Ma). These groups indicate that the zircons were largely derived from the Tian Shan area to the south since a Late Carboniferous basin initiation. The provenance and basin‐range pattern evolution of the southern margin of Junggar Basin can be generally divided into four stages: (1) Late Carboniferous – Early Triassic basin evolution in a half‐graben or post‐orogenic extensional context; (2) From Middle Triassic to Upper Jurassic times, the southern Junggar became a passively subsiding basin until (3) being inverted during Lower Cretaceous – Palaeogene; (4) During the Neogene, a piedmont developed along the northern margin of the North Tian Shan block and Junggar Basin became a true foreland basin.  相似文献   

16.
Zircon U–Pb geochronometry, heavy mineral analyses and conventional seismic reflection data were used to interpret the provenance of the Lower Triassic Bunter Sandstone Formation. The succession was sampled in five Danish wells in the northern part of the North German Basin. The results show that sediment supply was mainly derived from the Ringkøbing‐Fyn High situated north of the basin and from the Variscan belt located south of the basin. Seismic reflection data document that the Ringkøbing‐Fyn High was a local barrier for sediment transport during the Early Triassic. Hence, the Fennoscandian Shield did not supply much sediment to the basin as opposed to what was previously believed. Sediment from the Variscan belt was transported by wind activity across the North German Basin when it was dried out during deposition of the aeolian part of the Volpriehausen Member (lower Bunter Sandstone). Fluvial sand was supplied from the Ringkøbing‐Fyn High to the basin during precipitation events which occurred most frequently when the Solling Member was deposited (upper Bunter Sandstone). Late Neoproterozoic to Carboniferous zircon ages predominate in the Volpriehausen Member where the dominant age population with a peak age of 337 Ma corresponds to the culmination of Variscan high‐grade metamorphism, whereas a secondary age population with a peak at 300 Ma matches the timing of volcanism and magmatism at the Carboniferous/Permian boundary in the northern Variscan belt. Parts of the basement in the Ringkøbing‐Fyn High were outcropping during the Early Triassic and zircon ages similar to this Mesoproterozoic basement are present in the Bunter Sandstone. The heavy mineral assemblage of the Solling Member is uniform and has a high garnet content compared to the contemporaneous sediments in the Norwegian‐Danish Basin and in the southern part of the North German Basin. This finding confirms that a local source in the Ringkøbing‐Fyn High supplied most of the fluvial sediment in the northern part of the North German Basin. The northernmost part of the Bunter Sandstone is situated on a platform area that is separated from the basin area by a broad WNW–ESE‐oriented fault zone. The most promising reservoir in the basin area is the aeolian Volpriehausen Member since the sandstone has a wide lateral distribution and a constant thickness. The alluvial to ephemeral fluvial Solling Member may be a good reservoir in the platform area and marginal basin area, but the complex sand‐body architecture makes it difficult to predict the reservoir quality.  相似文献   

17.
Constraining the thermal and denudational evolution of continental margins from extensional episodes to early orogenic stages is critical in the objective to better understand the sediment routing during the growth of orogenic topography. Here, we report 160 detrital zircon U/Pb ages and 73 (U‐Th)/He ages from Albian, Upper Cretaceous and Eocene sandstones from the south‐central Pyrenees. All samples show dominant zircon U/Pb age peaks at 310–320 Ma, indicating a primary contribution from Variscan granites of the central Pyrenean Axial Zone. A secondary population at 450–600 Ma documents zircon grains sourced from the eastern Pyrenees. Zircon (U‐Th)/He ages recovered from older samples document, a Triassic age peak at ca. 241 Ma, corresponding to denudation coeval with the initiation of Atlantic rifting. An Early Cretaceous cooling event at ca. 133 Ma appears consistent with rift‐related exhumation and thermal overprint on the Iberian margin. The (U‐Th)/He age peaks from ca. 80 Ma to ca. 68 Ma with decreasing depositional ages are interpreted to reflect the southward‐migrating thrust‐related exhumation on the pro‐wedge side of the Pyrenean orogen. The increase in lag times, from ca. 15 Ma in the Tremp Formation (ca. 65 Ma) to 28 Ma in the Escanilla Formation (ca. 40 Ma), suggests decreasing exhumation rates from 0.4 km Myr–1 to 0.2 km Myr–1. The apparent inconsistency with convergence rates is used to infer that rocks cooled at 68 Ma may have resided in the crust before final exhumation to the surface. Finally, the cooling event observed at 68 Ma provides support to the inferred acceleration of convergence, shortening and exhumation during Late Cretaceous times.  相似文献   

18.
Unravelling early Cenozoic basin development in northern Tibetan Plateau remains crucial to understanding continental deformation mechanisms and to assessing models of plateau growth. We target coarse-grained red beds from the Cenozoic basal Lulehe Formation in the Qaidam basin by combining conglomerate clast compositions, paleocurrent determinations, sandstone petrography, heavy mineral analysis and detrital zircon U–Pb geochronology to characterize sediment provenance and the relationship between deformation and deposition. The red beds are dominated by matrix-supported, poorly sorted clastic rocks, implying low compositional and textural maturity and short transport distances. Although most sandstones have high (meta)sedimentary lithic fragment contents and abundant heavy minerals of metamorphic origin (e.g., garnet, epidote and chlorite), spatiotemporal differences in detrital compositions are evident. Detrital zircon grains mainly have Phanerozoic ages (210–280 Ma and 390–480 Ma), but Proterozoic ages (750–1000 Ma, 1700–2000 Ma and 2300–2500 Ma) are also prominent in some samples. Analysed strata display dissimilar (including south-, north- and west-directed) paleocurrent orientations. These results demonstrate that the Cenozoic basal deposits were derived from localized, spatially diverse sources with small drainage networks. We advocate that initial sedimentary filling in the northern Qaidam basin was fed by parent-rocks from the North Qaidam-South Qilian belts and the pre-Cenozoic basement within the Qaidam terrane interior, rather than southern distant Eastern Kunlun regions. Seismic and drilling well stratigraphic data indicate the presence of paleohighs and syn-sedimentary reverse faults and noteworthy diversity in sediment thickness of the Lulehe Formation, revealing that the Qaidam terrane exhibited as several isolated depocenters, rather than a coherent basin, in the early stage of the Cenozoic deposition. We suggest the Cenozoic Qaidam basin to have developed in a contractional deformation regime, which supports models with synchronous deformation throughout most of Tibet shortly after the India-Eurasia collision.  相似文献   

19.
Sedimentary strata in the Lhasa terrane of southern Tibet record a long but poorly constrained history of basin formation and inversion. To investigate these events, we sampled Palaeozoic and Mesozoic sedimentary rocks in the Lhasa terrane for detrital zircon uranium–lead (U–Pb) analysis. The >700 detrital zircon U–Pb ages reported in this paper provide the first significant detrital zircon data set from the Lhasa terrane and shed new light on the tectonic and depositional history of the region. Collectively, the dominant detrital zircon age populations within these rocks are 100–150, 500–600 and 1000–1400 Ma. Sedimentary strata near Nam Co in central Lhasa are mapped as Lower Cretaceous but detrital zircons with ages younger than 400 Ma are conspicuously absent. The detrital zircon age distribution and other sedimentological evidence suggest that these strata are likely Carboniferous in age, which requires the existence of a previously unrecognized fault or unconformity. Lower Jurassic strata exposed within the Bangong suture between the Lhasa and Qiangtang terranes contain populations of detrital zircons with ages between 200 and 500 Ma and 1700 and 2000 Ma. These populations differ from the detrital zircon ages of samples collected in the Lhasa terrane and suggest a unique source area. The Upper Cretaceous Takena Formation contains zircon populations with ages between 100 and 160 Ma, 500 and 600 Ma and 1000 and 1400 Ma. Detrital zircon ages from these strata suggest that several distinct fluvial systems occupied the southern portion of the Lhasa terrane during the Late Cretaceous and that deposition in the basin ceased before 70 Ma. Carboniferous strata exposed within the Lhasa terrane likely served as source rocks for sediments deposited during Cretaceous time. Similarities between the lithologies and detrital zircon age‐probability plots of Carboniferous rocks in the Lhasa and Qiangtang terranes and Tethyan strata in the Himalaya suggest that these areas were located proximal to one another within Gondwanaland. U–Pb ages of detrital zircons from our samples and differences between the geographic distribution of igneous rocks within the Tibetan plateau suggest that it is possible to discriminate a southern vs. northern provenance signature using detrital zircon age populations.  相似文献   

20.
The James Ross Basin, in the northern Antarctic Peninsula, exposes which is probably the world thickest and most complete Late Cretaceous sedimentary succession of southern high latitudes. Despite its very good exposures and varied and abundant fossil fauna, precise chronological determination of its infill is still lacking. We report results from a magnetostratigraphic study on shelfal sedimentary rocks of the Marambio Group, southeastern James Ross Basin, Antarctica. The succession studied covers a ~1,200 m‐thick stratigraphic interval within the Hamilton Point, Sanctuary Cliffs and Karlsen Cliffs Members of the Snow Hill Island Formation, the Haslum Crag Formation, and the lower López de Bertodano Formation. The basic chronological reference framework is given by ammonite assemblages, which indicate a Late Campanian – Early Maastrichtian age for the studied units. Magnetostratigraphic samples were obtained from five partial sections located on James Ross and Snow Hill islands, the results from which agree partially with this previous biostratigraphical framework. Seven geomagnetic polarity reversals are identified in this work, allowing to identify the Chron C32/C33 boundary in Ammonite Assemblage 8‐1, confirming the Late Campanian age of the Hamilton Point Member. However, the identification of the Chron C32/C31 boundary in Ammonite Assemblage 8‐2 assigns the base of the Sanctuary Cliffs Member to the early Maastrichtian, which differs from the Late Campanian age previously assigned by ammonite biostratigraphy. This magnetostratigraphy spans ~14 Ma of sedimentary succession and together with previous partial magnetostratigraphies on Early‐Mid Campanian and Middle Maastrichtian to Danian columns permits a complete and continuous record of the Late Cretaceous distal deposits of the James Ross Basin. This provides the required chronological resolution to solve the intra‐basin and global correlation problems of the Late Cretaceous in the Southern Hemisphere in general and in the Weddellian province in particular, given by endemism and diachronic extinctions on invertebrate fossils, including ammonites. The new chronostratigraphic scheme allowed us to calculate sediment accumulation rates for almost the entire Late Cretaceous infill of the distal James Ross Basin (the Marambio Group), showing a monotonous accumulation for more than 8 Myr during the upper Campanian and a dramatic increase during the early Maastrichtian, controlled by tectonic and/or eustatic causes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号