首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exhumed basin margin‐scale clinothems provide important archives for understanding process interactions and reconstructing the physiography of sedimentary basins. However, studies of coeval shelf through slope to basin‐floor deposits are rarely documented, mainly due to outcrop or subsurface dataset limitations. Unit G from the Laingsburg depocentre (Karoo Basin, South Africa) is a rare example of a complete basin margin scale clinothem (>60 km long, 200 m‐high), with >10 km of depositional strike control, which allows a quasi‐3D study of a preserved shelf‐slope‐basin floor transition over a ca. 1,200 km2 area. Sand‐prone, wave‐influenced topset deposits close to the shelf‐edge rollover zone can be physically mapped down dip for ca. 10 km as they thicken and transition into heterolithic foreset/slope deposits. These deposits progressively fine and thin over tens of km farther down dip into sand‐starved bottomset/basin‐floor deposits. Only a few km along strike, the coeval foreset/slope deposits are bypass‐dominated with incisional features interpreted as minor slope conduits/gullies. The margin here is steeper, more channelized and records a stepped profile with evidence of sand‐filled intraslope topography, a preserved base‐of‐slope transition zone and sand‐rich bottomset/basin‐floor deposits. Unit G is interpreted as part of a composite depositional sequence that records a change in basin margin style from an underlying incised slope with large sand‐rich basin‐floor fans to an overlying accretion‐dominated shelf with limited sand supply to the slope and basin floor. The change in margin style is accompanied with decreased clinoform height/slope and increased shelf width. This is interpreted to reflect a transition in subsidence style from regional sag, driven by dynamic topography/inherited basement configuration, to early foreland basin flexural loading. Results of this study caution against reconstructing basin margin successions from partial datasets without accounting for temporal and spatial physiographic changes, with potential implications on predictive basin evolution models.  相似文献   

2.
The understanding of how clinoforms develop is approached based on shape and dimensions, correlation between geometric parameters, and internal characteristics of clinothems bounded by clinoform surfaces in high‐resolution 2D seismic data from the Giant Foresets Formation, Taranaki Basin, offshore New Zealand. The study subdivides the observed clinothems to identify nine types: 1. Oblique 2. Tangential oblique 3. Tangential oblique chaotic 4. Sigmoidal symmetrical 5. Sigmoidal divergent 6. Sigmoidal chaotic 7. Asymmetrical top‐heavy 8. Asymmetrical bottom‐heavy 9. Complex. Accommodation is a dominant control on the type of clinothem that develops, whereby limited accommodation promotes clinothems with significant shelf‐edge advance and low trajectory angles, while increasing accommodation promotes higher trajectory angles and increased deposition on the shelf. Further variations in shape, slope and deposition are influenced by many factors of which sediment influx appears be a fundamental driver. Sigmoidal clinothems tend to show a strong relationship between their maximum thickness and average thickness, their overall slope and maximum foreset angle, along with a high correlation between average thickness and toe advance. This suggests that they distribute sediment in a manner that may be possible to predict and quantify. The increasing steepness of the foreset slope from bottom‐heavy to symmetrical to top‐heavy clinothems, respectively, is dominantly the result of decreasing sediment influx. The clinothems with the steepest slopes, along with chaotic clinothems, are associated with comparatively large toe advance suggesting a strong link between over‐steepened slopes and/or collapse, and processes promoting sediment deposition along the basin floor. Apart from toe advance, the two types of chaotic clinothems develop differently from each other, and from their assumed parent‐clinothem. Tangential oblique chaotic forms steepen, and shelf‐edge advance is limited, suggesting upper slope collapse. Sigmoidal chaotic clinothems have comparatively higher shelf‐edge advance, lower shelf‐edge trajectories and gentler slopes and profiles, suggesting different processes are responsible for their development and resulting shape.  相似文献   

3.
4.
Analysis of shelf‐edge trajectories in prograding successions from offshore Norway, Brazil, Venezuela and West Africa reveals systematic changes in facies associations along the depositional dip. These changes occur in conjunction with the relative sea‐level change, sediment supply, inclination of the substratum and the relief of the margin. Flat and ascending trajectories generally result in an accumulation of fluvial and shallow marine sediments in the topset segment. Descending trajectories will generally result in erosion and bypass of the topset segment and deposition of basin floor fans. An investigation of incised valley fills reveals multiple stages of filling that can be linked to distinct phases of deepwater fan deposition and to the overall evolution of the margin. In the case of high sediment supply, like the Neogene Niger and Orinoco deltas, basin floor fans may develop systematically even under ascending trajectory styles. In traditional sequence stratigraphic thinking, this would imply the deposition of basin floor fans during a period of relative sea‐level highstand. Facies associations and sequence development also vary along the depositional strike. The width and gradient of the shelf and slope show considerable variations from south to north along the Brazilian continental margin during the Cenozoic. During the same time interval, the continental shelf may display high or low accommodation conditions, and the resulting stacking patterns and facies associations may be utilized to reconstruct palaeogeography and for prediction of lithology. Application of the trajectory concept thus reveals nuances in the rock record that would be lost by the application of traditional sequence stratigraphic work procedures. At the same time, the methodology simplifies the interpretation in that less importance is placed on interpretation and labelling of surface boundaries and systems tracts.  相似文献   

5.
Late Miocene lacustrine clinoforms of up to 400 m high are mapped using a 1700 km2 3‐D seismic data set in the Dacian foreland basin, Romania. Eight Meotian clinoforms, constructed by sediment from the South Carpathians, prograded around 25 km towards southwest. The individual clinothems show thin (10–60 m thick), if any, topsets, disrupted foresets and highly aggradational bottomsets. Basin‐margin accretion occurred in three stages with changing of clinoform heights and foreset gradients. The deltaic system prograded into an early‐stage deep depocenter and contributed to high gradient clinoforms whose foresets were dominated by closely (100–200 m) spaced 1.5–2 km wide V‐shaped sub‐lacustrine canyons. During intermediate‐stage growth, 2–4 km wide canyons were dominant on the clinoform foresets. From the early to intermediate stages, the lacustrine shelf edges were consistently indented. The late‐stage outbuilding was characterised by smaller clinoforms with smoother foresets and less indentation along the shelf edge. Truncated and thin topsets persisted through all three stages of clinoform evolution. Nevertheless, the resulting long‐term flat trajectory shows alternating segments of forced and low‐amplitude normal regressions. The relatively flat trajectory implies a constant base level over time and was due to the presence of the Dacian–Black Sea barrier that limited water level rise by spilling to the Black Sea. Besides the characteristic shelf‐edge incision of the thin clinoform topsets and the resultant sediment bypass at the shelf edge, the prolonged regressions of the shelf margin promoted steady sediment supply to the basin. The high sediment supply at the shelf edges generated long‐lived slope sediment conduits that provided sustained sediment transport to the basin floor. Clinothem isochore maps show that large volumes of sediment were partitioned into the clinoform foresets, and especially the bottomsets. Sediment predominantly derived from frequent hyperpycnal flows contributed to very thick, ca. 300–400 m in total, bottomsets. Decreasing subsidence over time from the foredeep resulted in diminishing accommodation and clinoform height, reduced slope channelization and smoother slope morphology.  相似文献   

6.
Interplays among diachronous tectonism, uneven sediment supply, and local marine hydraulic processes make the northern margin of the South China Sea (SCS) an ideal location to investigate the complexity of along‐strike variability in shelf margins. This study examines shelf‐margin morphology, stratigraphy, and sedimentation from the northern SCS using multichannel seismic reflection profiles complemented with the data from commercial and ocean drilling sites. Analysis of seismic reflection profiles reveals three categories of shelf‐margin cross‐sectional profiles, the concave‐up, linear, and sigmoidal, according to which five margin sectors were recognized. Results show that these margin segments differ in relief, shelf‐edge trajectory, submarine canyon development, and long‐term accretion pattern. The westernmost margin sector, or the Yinggehai (YGH)‐western Qiongdongnan (QDN) margin, has appeared to be supply dominated since its commencement at ca. 10.5 Ma, which is characterized by well‐developed prograding clinoforms, low‐angle shelf‐edge trajectories, and an absence of canyons. Presence of concave‐up profiles is also suggestive of high sediment influx. In contrast, the eastern QDN margin was primarily regulated by local subsidence and faulting, leading to a stationary shelf‐edge migrating pattern and linear upper‐slope morphology. Densely distributed slope‐confined gullies indicate the margin’s disequilibrium and erosive nature. Further east, the Pearl River Mouth (PRM) margin formed much earlier (ca. 30 Ma) and experienced a more complicated accretion history, including three phases which were dominated by sequential marginal faulting (before ca. 30 Ma), basement structure (ca. 30–23 Ma), and sediment supply (ca. 23 Ma to the present). The overall sigmoidal morphology and truncated stratigraphy of this margin probably resulted from the sculpting of local marine processes, especially ocean currents and internal waves. The exception of the central PRM margin where concave‐up profiles develop is mainly related to canyon erosion. Overall, this study highlights the vital role of local forcing factors in controlling along‐margin variations and determining the final fates of different margin segments. A comparison between the northern SCS and other well‐established examples reveals that concave‐upward shelf‐margin shapes, which are usually associated with high sediment supply, little influence from hydraulic regimes, or sometimes, high degree of canyon development, may be an indicator of good reservoir potential beyond the shelf edge.  相似文献   

7.
《Basin Research》2018,30(4):671-687
The Mesozoic shelf margin in the Mahajanga Basin, northwest Madagascar, provides an example where inherited palaeobathymetry, coupled with sea‐level changes, high sediment supply and fluctuations in accommodation influenced the stacking patterns and geometry of clinoforms that accreted onto a passive rifted margin. Two‐dimensional (2D) seismic profiles are integrated with existing field data and geological maps to study the evolution of the margin. The basin contains complete records of transgression, highstand, regression and lowstand phases that took place from Jurassic to Cretaceous. Of particular interest is the Cretaceous, Albian to Turonian (ca. 113‐93 Ma), siliciclastic shelf margin that prograded above a drowned Middle Jurassic carbonate platform. The siliciclastic phase of the shelf margin advanced ca. 70 km within ca. 20 My, and contains 10 distinct clinoforms mapped along a 2D seismic reflection data set. The clinoforms show a progressive decrease in height and slope length, and a fairly constant slope gradient through time. The successive shelf edges begin with a persistent flat to slightly downward‐directed shelf‐edge trajectory that changes to an ascending trajectory at the end of clinoform progradation. The progressive decrease in clinoform height and slope length is attributed to a decrease in accommodation. The prograding margin is interpreted to have formed when siliciclastic input increased as eastern Madagascar was uplifted. This work highlights the importance of sediment supply and inherited palaeobathymetry as controls on the evolution of shelf margins and it provides a new understanding of the evolution of the Mahajanga Basin during the Mesozoic.  相似文献   

8.
A synthesis has been undertaken based on regionally compiled data from the post early Eocene foreland basin succession of Svalbard. The aim has been to generate an updated depositional model and link this to controlling factors. The more than kilometer thick progradational succession includes the offshore shales of the Gilsonryggen Member of the Frysjaodden Formation, the shallow marine sandstones of the Battfjellet Formation and the predominantly heterolithic Aspelintoppen Formation, together recording the progressive eastwards infill of the foredeep flanking the West Spitsbergen fold‐and‐thrust belt. Here we present a summary of the paleo‐environmental depositional systems across the basin, their facies and regional distribution and link these together in an updated depositional model. The basin‐margin system prograded with an ascending shelf‐edge trajectory in the order of 1°. The basin fill was bipartite, with offset stacked shelf and shelf‐edge deltas, slope clinothems and basin floor fans in the western and deepest part and a simpler architecture of stacked shelf‐deltas in the shallower eastern part. We suggest a foredeep setting governed by flexural loading, likely influenced by buckling, and potentially developing into a wedge top basin in the mature stage of basin filling. High‐subsidence rates probably counteracted eustatic falls with the result that relative sea‐level falls were uncommon. Distance to the source terrain was small and sedimentation rates was temporarily high. Time‐equivalent deposits can be found outbound of Stappen High in the Vestbakken Volcanic Province and the Sørvestsnaget Basin 300 km further south on the Barents Shelf margin. We cannot see any direct evidence of coupling between these more southerly systems and the studied one; southerly diversion of the sediment‐routing, if any, may have taken place beyond the limit of the preserved deposits.  相似文献   

9.
Foreland basin strata provide an opportunity to review the depositional response of alluvial systems to unsteady tectonic load variations at convergent plate margins. The lower Breathitt Group of the Pocahontas Basin, a sub‐basin of the Central Appalachian Basin, in Virginia preserves an Early Pennsylvanian record of sedimentation during initial foreland basin subsidence of the Alleghanian orogeny. Utilizing fluvial facies distributions and long‐term stacking patterns within the context of an ancient, marginal‐marine foreland basin provides stratigraphic evidence to disentangle a recurring, low‐frequency residual tectonic signature from high‐frequency glacioeustatic events. Results from basin‐wide facies analysis, corroborated with petrography and detrital zircon geochronology, support a two end‐member depositional system of coexisting transverse and longitudinal alluvial systems infilling the foredeep during eustatic lowstands. Provenance data suggest that sediment was derived from low‐grade metamorphic Grenvillian‐Avalonian terranes and recycling of older Palaeozoic sedimentary rocks uplifted as part of the Alleghanian orogen and Archean‐Superior‐Province. Immature sediments, including lithic sandstone bodies, were deposited within a SE‐NW oriented transverse drainage system. Quartzarenites were deposited within a strike‐parallel NE‐SW oriented axial drainage, forming elongate belts along the western basin margin. These mature quartzarenites were deposited within a braided fluvial system that originated from a northerly cratonic source area. Integrating subsurface and sandstone provenance data indicates significant, repeated palaeogeographical shifts in alluvial facies distribution. Distinct wedges comprising composite sequences are bounded by successive shifts in alluvial facies and define three low‐frequency tectonic accommodation cycles. The proposed tectonic accommodation cycles provide an explanation for the recognized low‐frequency composite sequences, defining short‐term episodes of unsteady westward migration of the flexural Appalachian Basin and constrain the relative timing of deformation events during cratonward progression of the Alleghanian orogenic wedge.  相似文献   

10.
The study describes the depositional development and sediment partitioning in a prograding paralic Triassic succession. The deposits are associated with the advance of large prism‐scale clinoforms across a shallower platform area. Approaching the platform, the limited accommodation and associated relative higher rates of deposition generated straighter clinoforms with lower foreset angles. The vertical restriction across the platform is interpreted to have amplified the tidal signature. Sediment was redistributed from the coast into increasingly sandy delta‐front deposits, compared to offshore equivalents. The deposits comprise extensive compound dune fields of amalgamated and increasingly clean sandbodies up‐section. Rapid deposition of significant amounts of sand led to differential subsidence and growth‐faulting in the delta front, with downthrown fault blocks further amplifying the tidal energy through funnelling. A mixed‐energy environment created along‐strike variability along the delta front with sedimentation governing process‐regime. Areas of lower sedimentation were reworked by wave and storm‐action, whereas high sedimentation rates preserved fluvially dominated mouth bars. A major transgression, however, favoured tidally dominated deposits also in these areas, attributed to increasing rugosity of the coastline. Formation of an extensive subaqueous platform between the coast and delta front dampened incoming wave energy, and tidally dominated deposits dominate the near‐shore successions. Meanwhile formation of wave‐built sand‐bars atop the platform attest to continued wave influence. The strong tidal regime led to the development of a heterolithic near‐shore tidally dominated channel system, and sandier fluvial channels up‐river. The highly meandering tidal channels incising the subaqueous platform form kilometre wide successions of inclined heterolithic stratification. The fluvially dominated channels which govern deposition on the delta plain are narrower and slightly less deep, straighter, generally symmetric and filled with cleaner sands. This study provides important insight into tidal amplification and sand redistribution during shallowing on a wide shelf, along with along‐strike process‐regime variability resulting from variations in sediment influx.  相似文献   

11.
The Sivas Basin, located in the Central Anatolian Plateau of Turkey, is a foreland basin that records a complex interaction between sedimentation, salt tectonics and regional shortening during the Oligo‐Miocene leading to the formation of numerous mini‐basins. The Oligocene sedimentary infill of the mini‐basins consists of a thick continental succession, the Karayün Formation, comprising a vertical succession of three main sub‐environments: (i) playa‐lake, (ii) fluvial braided, and (iii) saline lacustrine. These sub‐environments are seen as forming a large Distributive Fluvial System (DFS) modified through time as a function of sediment supply and accommodation related to regional changes in climate and tectonic regime. Within neighbouring mini‐basins and despite a similar vertical stratigraphic succession, subtle variations in facies assemblages and thickness are observed in stratigraphic units of equivalent age, thus demonstrating the local control exerted by halokinesis. Stratigraphic and stratal patterns reveal in great detail the complex interaction between salt tectonics and sedimentation including different types of halokinetic structures such as hooks, wedges and halokinetic folds. The regional variations of accommodation/sediment supply led to coeval changes in the architectural patterns recorded in the mini‐basins. The type of accommodation regime produces several changes in the sedimentary record: (i) a regime dominated by regional accommodation limits the impact of halokinesis, which is recorded as very small variations in stratigraphic thickness and facies distribution within and between mini‐basins; (ii) a regime dominated by localized salt‐induced accommodation linked to the subsidence of each individual mini‐basin enhances the facies heterogeneity within the DFS, causing sharp changes in stratigraphic thickness and facies assemblages within and between mini‐basins.  相似文献   

12.
Recent advances in our understanding of palaeovalleys are largely guided by examples from passive margins, in which accommodation increases down depositional dip. This study tests these models against a dataset from the Pennsylvanian Breathitt Group of the central Appalachian foreland basin, USA. This fluvio‐deltaic succession contains extensive erosionally based fluvio‐estuarine sand bodies that can be tracked over 80 km down depositional dip from a proximal zone of high accommodation close to the orogenic margin to a distal, lower accommodation zone close to the cratonic margin of the basin. The sand bodies are up to 25 m thick, multi‐storey and characterized in their lower parts by strongly amalgamated storeys containing sandy fluvial to estuarine bar accretion elements, and in their middle to upper parts by more fully preserved storeys up to 10 m thick and laterally extensive over 100s of metres. The upper storeys include abandonment channel‐fills of heterolithic marine or marginal marine deposits or muddy to sandy point‐bar elements. Three major regional‐scale architectures include: (i) Tabular sand bodies that everywhere incise open marine prodelta and mouth bar facies and are interpreted as palaeovalleys formed during falling stage and lowstand systems tracts, when eustatic sea‐level fall outpaced tectonic subsidence across the entire study area. (ii) Sand bodies that incise genetically related floodplain lake and/or bay‐fill minor mouth bar deposits up depositional dip and open marine prodelta and mouth bar facies down dip. These stacked distributary channel deposits map down dip into palaeovalleys and formed when up dip subsidence rate resulted in positive, but reduced rate of accommodation creation, while lower tectonic subsidence rate down‐dip resulted in incision. (iii) Sand bodies that incise genetically related floodplain, lake and/or bay‐fill minor mouth bars up dip and pass down‐dip into genetically related unconfined floodplain, prodelta and mouth bar deposits. These sand bodies represent stacked distributary channel fills and channel amalgamation was the product of high rates of lateral migration, typical of the behaviour of channels above their backwater reach. Case (2) sand bodies demonstrate that in rapidly subsiding foreland basins, cross‐shelf palaeovalleys may form down depositional dip from aggradational, distributive fluival strata. Additionally, the genetic relationship between stacked distributary channels and palaeovalleys supports recent models for palaeovalley formation that emphasize diachronous, cut‐and‐fill during falling stage and lowstands of relative sea level.  相似文献   

13.
A delay in the onset of sedimentation during fault‐related subsidence at a basin margin can occur in both extensional settings, where footwall tilting may cause a diversion of drainage patterns, and in strike‐slip basins, where a source area may be translated along the basin margin. The ‘initial depth’ created by this delay acts as pre‐depositional accommodation and is a partly independent variable. It controls the geometry of the first stratal units deposited at the basin margin and thus modifies the response of the depositional system to subsequent, syndepositional changes in accommodation. In systems with a sharp break in the depositional profile, such as the topset edge in coarse‐grained deltas, the initial depth controls the foreset height and therefore the progradational distance of the topset edge. The topset length, in turn, influences topset accommodation during cyclical base level variations and therefore is reflected in the resulting stacking patterns at both long‐ and short‐term time scales. In the simplified cases modelled in this study, it is the relationship between the initial depth and the net increase in depth over the interval of a relative sea‐level cycle (ΔH) that governs long‐ and short‐term stacking patterns. In situations where the initial depth is significantly larger than ΔH, the topset accommodation of the first delta is insufficient to contain the volume of sediment of younger sequences formed during subsequent relative sea‐level cycles. Therefore, the depositional system tends to prograde over a number of relative sea‐level cycles before the topset area increases so that the long‐term stacking pattern changes to aggradation. Stacking patterns of high‐frequency sequences are influenced by a combination of topset accommodation available and position of the short‐term relative sea‐level cycles on the rising or falling limb of a long‐term sea‐level curve. This determines whether deposits of short‐term cycles are accommodated in delta topsets or foresets, or in both. Variations in stacking pattern caused by different initial depths may be misinterpreted as due to relative sea level or sediment supply changes and it is necessary to consider initial bathymetry in modelling and interpretation of stacking patterns, especially in fault‐bounded basins.  相似文献   

14.
Sequence stratigraphy provides an understanding of the interplay between eustasy, sediment supply and accommodation in the sedimentary construction of passive margins. We used this approach to follow the early to middle Miocene growth of the New Jersey margin and analyse the connection between relative changes of sea level and variable sediment supply. Eleven candidate sequence boundaries were traced in high-resolution multi-channel seismic profiles across the inner margin and matched to geophysical log signatures and lithologic changes in ODP Leg 150X onshore coreholes. Chronologies at these drill sites were then used to assign ages to the intervening seismic sequences. We conclude that the regional and global correlation of early Miocene sequences suggests a dominant role of global sea-level change but margin progradation was controlled by localized sediment contribution and that local conditions played a large role in sequence formation and preservation. Lowstand deposits were regionally restricted and their locations point to both single and multiple sediment sources. The distribution of highstand deposits, by contrast, documents redistribution by along shelf currents. We find no evidence that sea level fell below the elevation of the clinoform rollover, and the existence of extensive lowstand deposits seaward of this inflection point indicates efficient cross-shelf sediment transport mechanisms despite the apparent lack of well-developed fluvial drainage.  相似文献   

15.
In this study, we integrate 3D seismic reflection, wireline log, biostratigraphic and core data from the Egersund Basin, Norwegian North Sea to determine the impact of syn‐depositional salt movement and associated growth faulting on the sedimentology and stratigraphic architecture of the Middle‐to‐Upper Jurassic, net‐transgressive, syn‐rift succession. Borehole data indicate that Middle‐to‐Upper Jurassic strata consist of low‐energy, wave‐dominated offshore and shoreface deposits and coal‐bearing coastal‐plain deposits. These deposits are arranged in four parasequences that are aggradationally to retrogradationally stacked to form a net‐transgressive succession that is up to 150‐m thick, at least 20 km in depositional strike (SW‐NE) extent, and >70 km in depositional dip (NW‐SE) extent. In this rift‐margin location, changes in thickness but not facies are noted across active salt structures. Abrupt facies changes, from shoreface sandstones to offshore mudstones, only occur across large displacement, basement‐involved normal faults. Comparisons to other tectonically active salt‐influenced basins suggest that facies changes across syn‐depositional salt structures are observed only where expansion indices are >2. Subsidence between salt walls resulted in local preservation of coastal‐plain deposits that cap shoreface parasequences, which were locally removed by transgressive erosion in adjacent areas of lower subsidence. The depositional dip that characterizes the Egersund Basin is unusual and likely resulted from its marginal location within the evolving North Sea rift and an extra‐basinal sediment supply from the Norwegian mainland.  相似文献   

16.
Seismic mapping of high-resolution multichannel seismic profiles along the New Jersey margin illustrates how characteristics of middle–late Miocene clinoformal sequence boundaries (SBs) change markedly along strike in presumed response to local depositional and erosional processes. Most SBs converge from SW to NE, in part as a result of the influence of underlying basin morphology on accommodation space, but also in response to differential subsidence and presumed along-strike variations in sediment supply from the adjacent margin. The curvature of clinoform breaks, historically viewed as marking palaeo-shelf edges, is variable and such breaks are rarely sharp. Gently curved palaeo-shelf/slope transitions cannot be assigned precise palaeobathymetric significance and probably instead reflect post-depositional sediment reworking. The amount of erosional truncation landward of clinoform breaks varies significantly. Documented along-strike variability in SB morphology occurs, even though middle–late Miocene palaeo-shelf edges are nearly linear in plan view. Therefore, such linearity cannot be a product of uniform sedimentary processes and/or accumulation along strike, but instead reflects elongation of depocentres of originally variable cross-sectional geometry, possibly with the assistance of along-strike currents. The observed lateral geometric heterogeneity of Neogene sequences can exert profound and unwanted influences on the outcome of scientific drilling intended to calibrate seismic stratigraphic interpretations in the absence of sufficient three-dimensional (3D) seismic control.  相似文献   

17.
The adequate documentation and interpretation of regional‐scale stratigraphic surfaces is paramount to establish correlations between continental and shallow marine strata. However, this is often challenged by the amalgamated nature of low‐accommodation settings and control of backwater hydraulics on fluvio‐deltaic stratigraphy. Exhumed examples of full‐transect depositional profiles across river‐to‐delta systems are key to improve our understanding about interacting controlling factors and resultant stratigraphy. This study utilizes the ~400 km transect of the Cenomanian Mesa Rica Sandstone (Dakota Group, USA), which allows mapping of down‐dip changes in facies, thickness distribution, fluvial architecture and spatial extent of stratigraphic surfaces. The two sandstone units of the Mesa Rica Sandstone represent contemporaneous fluvio‐deltaic deposition in the Tucumcari sub‐basin (Western Interior Basin) during two regressive phases. Multivalley deposits pass down‐dip into single‐story channel sandstones and eventually into contemporaneous distributary channels and delta‐front strata. Down‐dip changes reflect accommodation decrease towards the paleoshoreline at the Tucumcari basin rim, and subsequent expansion into the basin. Additionally, multi‐storey channel deposits bound by erosional composite scours incise into underlying deltaic deposits. These represent incised‐valley fill deposits, based on their regional occurrence, estimated channel tops below the surrounding topographic surface and coeval downstepping delta‐front geometries. This opposes criteria offered to differentiate incised valleys from flood‐induced backwater scours. As the incised valleys evidence relative sea‐level fall and flood‐induced backwater scours do not, the interpretation of incised valleys impacts sequence stratigraphic interpretations. The erosional composite surface below fluvial strata in the continental realm represents a sequence boundary/regional composite scour (RCS). The RCS’ diachronous nature demonstrates that its down‐dip equivalent disperses into several surfaces in the marine part of the depositional system, which challenges the idea of a single, correlatable surface. Formation of a regional composite scour in the fluvial realm throughout a relative sea‐level cycle highlights that erosion and deposition occur virtually contemporaneously at any point along the depositional profile. This contradicts stratigraphic models that interpret low‐accommodation settings to dominantly promote bypass, especially during forced regressions. Source‐to‐sink analyses should account for this in order to adequately resolve timing and volume of sediment storage in the system throughout a complete relative sea‐level cycle.  相似文献   

18.
This article reports a stratigraphic and structural analysis of the Neogene‐Quaternary Valdelsa Basin (Central Italy), filled with up to 1000 m of uppermost Miocene to lower Pleistocene strata. The succession is subdivided into seven unconformity‐bounded stratigraphic units (synthems, or large‐scale depositional sequences) that include fluvio‐deltaic and shallow‐marine deposits. Structures related to basin shoulders and internal boundaries controlled the Neogene location and geometry of different depocentres. During the Tortonian‐Messinian, a buried NE‐trending high related to regional, basin‐transverse lineaments separated two adjacent sub‐basins. During the lower Pliocene, compressional displacement along NW‐trending, thrust‐related highs controlled the distribution of depocentres and dispersal of sediment. Extensional tectonics, although previously considered the dominant deformation style affecting the rear of the Northern Apennines since the late Miocene, is no longer considered a dominant control on tectono‐sedimentary development of the Valdelsa basin. Instead, the Valdelsa Basin shares features with continental hinterland basins of orogenic belts where compression, extension, and transcurrent stress fields determine a complex spatial and temporal record of accommodation and sediment supply. In the Valdelsa Basin tectonics and eustatic sea‐level fluctuations were dominant in forcing the deposition of sedimentary cycles at several scales. Zanclean and Gelasian large‐scale depositional sequences were mainly controlled by crustal shortening, whereas a eustatic signal was preferentially recorded during the Piacenzian. Smaller scale depositional sequences, common to most synthems, were controlled by orbitally forced glacio‐eustatic cycles.  相似文献   

19.
Shelf-margin clinoforms and prediction of deepwater sands   总被引:1,自引:1,他引:1  
Early Eocene successions from Spitsbergen and offshore Ireland, showing well‐developed shelf‐margin clinoforms and a variety of deepwater sands, are used to develop models to predict the presence or absence of turbidite sands in clinoform strata without significant slope disturbance/ponding by salt or mud diapers. The studied clinoforms formed in front of narrow to moderate width (10–60 km) shelves and have slopes, 2–4°, that are typical of accreting shelf margins. The clinoforms are evaluated in terms of both shelf‐transiting sediment‐delivery systems and the resultant partitioning of the sand and mud budget along their different segments. Although this sediment‐budget partitioning is controlled by sediment type and flux, shelf width and gradient, process regime on the shelf and relative sea‐level behaviour, the most tell‐tale or predictive signs in the stratigraphic record appear to be (1) sediment‐delivery system type, (2) degree of shelf‐edge channelling and (3) character of shelf‐edge trajectory through time. The clinoform data sets from the Porcupine Basin (wells and 3‐D seismic) and from the Central Basin on Spitsbergen (outcrops) suggest that river‐dominated deltas are the most efficient delivery systems for dispersing sand into deep water beyond the shelf‐slope break. In addition, low‐angle or flat, channelled shelf‐edge trajectories associate with co‐eval deepwater slope and basin‐floor sands, whereas rising trajectories tend to associate with muddy slopes and basin floors. Characteristic features of the shelf‐edge, slope and basin‐floor segments of clinoforms for these trajectory types are documented. Seismic lines along the slope to basin‐floor transects tend to show apparent up‐dip sandstone pinchouts, but most of these are likely to be simply sidelap features. Dip lines aligned along the axes of sandy fairways show that stratigraphic traps are unlikely, unless slope channels become mud‐filled or are structurally partitioned. Another feature that is prominent in the data sets examined is the lack of slope onlap. During the relative rise of sea level back up to the shelf, the clinoform slopes are generally mud‐prone and they are characteristically aggradational.  相似文献   

20.
Rift basin tectono‐stratigraphic models indicate that normal fault growth controls the sedimentology and stratigraphic architecture of syn‐rift deposits. However, such models have rarely been tested by observations from natural examples and thus remain largely conceptual. In this study we integrate 3D seismic reflection, and biostratigraphically constrained core and wireline log data from the Vingleia Fault Complex, Halten Terrace, offshore Mid‐Norway to test rift basin tectono‐stratigraphic models. The geometry of the basin‐bounding fault and its hangingwall, and the syn‐rift stratal architecture, vary along strike. The fault is planar along a much of its length, bounding a half‐graben containing a faultward‐thickening syn‐rift wedge. Locally, however, the fault has a ramp‐flat‐ramp geometry, with the hangingwall defined by a fault‐parallel anticline‐syncline pair. Here, an unusual bipartite syn‐rift architecture is observed, comprising a lower faultward‐expanding and an upper faultward‐thinning wedge. Fine‐grained basinfloor deposits dominate the syn‐rift succession, although isolated coarse clastics occur. The spatial and temporal distribution of these coarse clastics is complex due to syn‐depositional movement on the Vingleia Fault Complex. High rates of accommodation generation in the fault hangingwall led to aggradational stacking of fan deltas that rapidly (<5 km) pinch out basinward into offshore mudstone. In the south of the basin, rapid strain localization meant that relay ramps were short‐lived and did not represent major, long‐lived sediment entry points. In contrast, in the north, strain localization occurred later in the rift event, thus progradational shorefaces developed and persisted for a relatively long time in relay ramps developed between unlinked fault segments. The footwall of the Vingleia Fault Complex was characterized by relatively low rates of accommodation generation, with relatively thin, progradational hangingwall shorelines developed downdip of the fault block apex, sometime after the onset of sediment supply to the hangingwall. We show that rift basin tectono‐stratigraphic models need modifying to take into account along‐strike variability in fault structure and basin physiography, and the timing and style of syn‐rift sediment dispersal and facies, in both hangingwall and footwall locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号