首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Well-preserved metalliferous sediments and pillow basalts of Lower Ordovician age (ca. 490 Ma) have been studied in an attempt to specify the Nd isotopic composition of Iapetus seawater. Initial143Nd/144Nd ratios of the pillow basalts are indistinguishable from published initial ratios for the 505-Ma Bay of Islands ophiolite complex and are within the anticipated range for MORB-type basalts 500 Ma ago. Metalliferous sediments occur both interstitial to basalt pillows and as well-developed sedimentary accumulations. The initial143Nd/144Nd ratios for the non-interstitial variety range from 0.511851 to 0.511712 Nd = ?2.7to?5.4) and are considered to provide an estimate of143Nd/144Nd in Iapetus seawater. The interstitial metalliferous sediments show evidence for a significant basalt-derived Nd component. Although volcanic activity occurred at the margin of Iapetus essentially contemporaneous with the formation of the metalliferous sediments, it is clear that arc-type volcanic material was not a major source of Nd in Iapetus seawater. Rather the source of Nd was from continental regions with a similar average age to those supplying material to the present-day Atlantic Ocean.  相似文献   

2.
The combined use of Lu–Hf and Sm–Nd isotope systems potentially offers a unique perspective for investigating continental erosion, but little is known about whether, and to what extent, the Hf–Nd isotope composition of sediments is related to silicate weathering intensity. In this study, Hf and Nd elemental and isotope data are reported for marine muds, leached Fe-oxide fractions and zircon-rich turbidite sands collected off the Congo River mouth, and from other parts of the SE Atlantic Ocean. All studied samples from the Congo fan (muds, Fe-hydroxides, sands) exhibit indistinguishable Nd isotopic composition (εNd ~ ? 16), indicating that Fe-hydroxides leached from these sediments correspond to continental oxides precipitated within the Congo basin. In marked contrast, Hf isotope compositions for the same samples exhibit significant variations. Leached Fe-hydroxide fractions are characterized by εHf values (from ? 1.1 to + 1.3) far more radiogenic than associated sediments (from ? 7.1 to ? 12.0) and turbidite sands (from ? 27.2 to ? 31.6). εHf values for Congo fan sediments correlate very well with Al/K (i.e. a well-known index for the intensity of chemical weathering in Central Africa). Taken together, these results indicate that (1) silicate weathering on continents leads to erosion products having very distinctive Hf isotope signatures, and (2) a direct relationship exists between εHf of secondary clay minerals and chemical weathering intensity.These results combined with data from the literature have global implications for understanding the Hf–Nd isotope variability in marine precipitates and sediments. Leached Fe-hydroxides from Congo fan sediments plot remarkably well on an extension of the ‘seawater array’ (i.e. the correlation defined by deep-sea Fe–Mn precipitates), providing additional support to the suggestion that the ocean Hf budget is dominated by continental inputs. Fine-grained sediments define a diffuse trend, between that for igneous rocks and the ‘seawater array’, which we refer to as the ‘zircon-free sediment array’ (εHf = 0.91 εNd + 3.10). Finally, we show that the Hf–Nd arrays for seawater, unweathered igneous rocks, zircon-free and zircon-bearing sediments (εHf = 1.80 εNd + 2.35) can all be reconciled, using Monte Carlo simulations, with a simple weathering model of the continental crust.  相似文献   

3.
The distinctly different, εNd(0) values of the Atlantic, Indian, and Pacific Oceans requires that the residence time of Nd in the ocean (i.e., τNd) be on the order of, or less than, the ocean mixing time of ∼ 500–1500 yr. However, estimates of τNd, based on river influxes, range from 4000 to 15,000 yr, thus exceeding the ocean mixing time. In order to reconcile the oceanic Nd budget and lower the residence time by roughly a factor of 10, an additional, as yet unidentified, and hence “missing Nd flux” to the ocean is necessary. Dissolution of materials deposited on continental margins has previously been proposed as a source of the missing flux. In this contribution, submarine groundwater discharge (SGD) is examined as a possible source of the missing Nd flux. Neodymium concentrations (n = 730) and εNd(0) values (n = 58) for groundwaters were obtained from the literature in order to establish representative groundwater values. Mean groundwater Nd concentrations and εNd(0) values were used along with recent estimates of the terrestrial (freshwater) component of SGD (6% of river discharge on a global basis) to test whether groundwater discharge to the coastal oceans could account for the missing flux. Employing mean Nd concentrations of the compiled data base (i.e., 31.8 nmol/kg for all 730 analyses and 11.3 nmol/kg for 141 groundwater samples from a coastal aquifer), the global, terrestrial-derived SGD flux of Nd is estimated to range between 2.9 × 107 and 8.1 × 107 mol/yr. These estimates are of the same order of magnitude, and within a factor of 2, of the missing Nd flux (i.e., 5.4 × 107 mol/yr). Applying the SGD Nd flux estimates, the global average εNd(0) of SGD is predicted to be − 9.1, which is similar to our estimate for the missing Nd flux (− 9.2), and in agreement with the mean (± S.D.) εNd(0) measured in groundwaters (i.e., εNd(0) = −8.9 ± 4.2). The similarities in the estimated SGD Nd flux and corresponding εNd(0) values to the magnitude and isotope composition of the missing Nd flux are compelling, and suggest that discharge of groundwater to the oceans could account for the missing Nd flux. Future investigations should focus on quantifying the Nd concentrations and isotope compositions of groundwater from coastal aquifers from a variety of coastal settings, as well as the important geochemical reactions that effect Nd concentrations in subterranean estuaries in order to better constrain contributions of SGD to the oceanic Nd budget.  相似文献   

4.
Hafnium and Nd isotopes are increasingly used as paleoceanographic proxies. Comparing the “mantle–crust array” and the “seawater array” in plots of εHf vs. εNd, it has been observed that for a given εNd value the corresponding εHf value is higher for seawater than it is for terrestrial rocks. While this difference had initially been explained by significant hydrothermal input of mantle Hf into seawater, the currently favoured explanation is incongruent weathering of continental rocks producing radiogenic riverine Hf input.We here address this topic from the perspective of the behaviour of these two elements in seawater and in ferromanganese (Fe–Mn) crusts. We distinguish between a “truly dissolved” and a “dissolved” Hf and Nd pool, the latter being comprised of truly dissolved and colloid-bound (“colloidal”) Hf and Nd. While there exists a hydrothermal pathway for colloid-bound dissolved mantle Hf into the oceans, there is, in marked contrast to Nd, no important riverine pathway for colloidal or truly dissolved continental Hf. Owing to their respective chemical speciation in seawater, there exists truly dissolved Nd in the ocean, while the amount of truly dissolved Hf is insignificant.Neodymium is in exchange equilibrium between local seawater and both, the hydrous Fe and Mn oxides hydrogenetic Fe–Mn crusts are composed of. Due to continuous ad- and desorption there is continuous isotopic re-equilibration and the isotopic composition of Nd in a Fe–Mn crust reflects that of truly dissolved Nd in local ambient seawater. In contrast, Hf is only associated with the hydrous Fe oxides on which it forms surface precipitates that do not exchange with seawater. Due to this lack of isotopic re-equilibration, the isotopic composition of Hf in a Fe–Mn crust is the average of that of all the Hf scavenged during the lifetime of the hydrous Fe oxide particles. Since the Hf-bearing hydrous Fe oxides in a Fe–Mn crust do not form from local ambient seawater at the crust's growth site but are advected as colloids or fine particles, their Hf isotopic composition depends on the origin and migration pathway of these colloids. Hence, while Nd isotopes in Fe–Mn crusts provide reliable information on truly dissolved Nd in local ambient seawater, Hf isotopes rather indicate the origin and pathway of hydrous Fe oxide colloids, and might differ from truly dissolved Hf in local ambient seawater. This may explain the occasional decoupling of Nd and Hf isotopes in Fe–Mn crusts and supports the notion of a significant hydrothermal mantle signal of Hf in seawater.  相似文献   

5.
The inorganic silicate fraction extracted from bulk pelagic sediments from the North Pacific Ocean is eolian dust. It monitors the composition of continental crust exposed to erosion in Asia. 176Lu/177Hf ratios of modern dust are sub-chondritic between 0.011 and 0.016 but slightly elevated with respect to immature sediments. Modern dust samples display a large range in Hf isotopic composition (IC), −4.70<?Hf<+16.45, which encompasses that observed for the time series of DSDP cores 885/886 and piston core LL44-GPC3 extending back to the late Cretaceous. Hafnium and neodymium isotopic results are consistent with a dominantly binary mixture of dust contributed from island arc volcanic material and dust from central Asia. The Hf-Nd isotopic correlation for all modern dust samples, ?Hf=0.78?Nd+5.66 (n=22, R2=0.79), is flatter than those reported so far for terrestrial reservoirs. Moreover, the variability in ?Hf of Asian dust exceeds that predicted on the basis of corresponding ?Nd values (−4.7<?Hf<+2.5; −10.9<?Nd<−10.1). This is attributed to: (1) the fixing of an important unradiogenic fraction of Hf in zircons, balanced by radiogenic Hf that is mobile in the erosional cycle, (2) the elevated Lu/Hf ratio in chemical sediments which, given time, results in a Hf signature that is radiogenic compared with Hf expected from its corresponding Nd isotopic components, and (3) the possibility that diagenetic resetting of marine sediments may incorporate a significant radiogenic Hf component into diagenetically grown minerals such as illite. Together, these processes may explain the variability and more radiogenic character of Hf isotopes when compared to the Nd isotopic signatures of Asian dust. The Hf-Nd isotope time series of eolian dust are consistent with the results of modern dust except two samples that have extremely radiogenic Hf for their Nd (?Hf=+8.6 and +10.3, ?Nd=−9.5 and −9.8). These data may point to a source contribution of dust unresolved by Nd and Pb isotopes. The Hf IC of eolian dust input to the oceans may be more variable and more radiogenic than previously anticipated. The Hf signature of Pacific seawater, however, has varied little over the past 20 Myr, especially across the drastic increase of eolian dust flux from Asia around 3.5 Ma. Therefore, continental contributions to seawater Hf appear to be riverine rather than eolian. Current predictions regarding the relative proportions of source components to seawater Hf must account for the presence of a variable and radiogenic continental component. Data on the IC and flux of river-dissolved Hf to the oceans are urgently required to better estimate contributions to seawater Hf. This then would permit the use of Hf isotopes as a monitor of past changes in erosion.  相似文献   

6.
Neodymium isotopic analyses have been measured on nine ophiolites and four orogenic lherzolites. εNd varies from +12 to +3 in the ophiolites and from +18 to +2 in the orogenic lherzolites. The majority of the analyses plot on a εNdSr correlation line as defined by Nd and Sr isotopic analyses of oceanic basalts. However, certain ophiolitic and lherzolitic samples exhibit high87Sr/86Sr ratios and as such lie to the right of the correlation line towards seawater compositions.From these data one can postulate several origins for ophiolites including that of mid-ocean ridges and ocean islands. If the orogenic lherzolites are interpreted as representative of the mantle occurring below active ridges a more complex model is required involving mantle heterogeneity and multi-episodic chemical fractionation starting prior to 2 Ga ago.  相似文献   

7.
Nd and Sr isotopic study of volcanic rocks from Japan   总被引:1,自引:0,他引:1  
Two older granitic rocks and some selected Quaternary volcanic rocks from the Japanese Islands were analyzed in a reconnaissance study for the purpose of examining the relationships between Nd and Sr isotopic abundances and the megatectonic structure around the Japanese Islands. Model ages of ~0.9 AE were determined by the Nd and Sr methods on a Paleozoic gneiss which confirms that a relatively ancient acidic basement exists in the Japanese Islands. The Nd and Sr isotopic data show that the Cretaceous granodiorite is the result of partial melting of older crust.The Nd of tholeiitic rocks from the Izu arc gives εNd ranging from 8.3 to 9.3 and with the corresponding εSr from ?14.5 to ?18.5. These results are identical to those found for the Mariana arc. These values are distinctly lower than typical MORB by around 1~2 εu. This difference in εNd between arcs and MORB is attributed to the contribution of oceanic sediments to the partial melts produced during subduction of oceanic crust. The Hakone volcano is clearly confirmed as belonging to an oceanic source by Nd isotopic results.εSrNd values of the volcanics from a section along the Fossa Magna show a clear indication that they are a blend of oceanic mantle material and continental crustal material. The crustal component clearly increases in going from south to north. Volcanics across the Northeast Japan arc also show a distinct correlation of εSrNd related to the position relative to the active subduction zone but with the opposite trend. These relationships of the present isotopic pattern and the zonal arrangement relative to the subduction zone suggest the former existence of a local spreading center in the Japan Sea.In general there appear to be regular isotopic relationships between the Izu-Mariana oceanic island arc and the continental island arc of Japan which indicates that partially melted or assimilated older continental basement is admixed with young rising oceanic arc magmas.  相似文献   

8.
A large sediment deposit known as the Meiji Drift, located in the northwestern Pacific Ocean, is thought to have formed from deep water exiting the Bering Sea, although no notable deep water forms there presently. We determine the terrigenous sources since 140 ka to the drift using bulk sediment 40Ar–39Ar and Nd isotopic analyses on the silt-sized (20–63 μm) terrigenous fraction from Ocean Drilling Program (ODP) Site 884 to reconstruct paleo-circulation patterns. There are large changes in both isotopic tracers, varying on glacial–interglacial cycles. During glacial intervals, bulk sediment 40Ar–39Ar ages range between 40 and 80 Ma, while Nd isotopic values range from εNd = ? 1 to + 2. During interglacial intervals, sediments become much younger and more radiogenic, with bulk sediment ages falling to 2–15 Ma and Nd isotopic values ranging between εNd = + 5 and + 9. These data and quantitative comparison to potential source rocks indicate that the young Kamchatkan and Aleutian Arcs, lying NW and NE of the Meiji Drift, contribute the majority of sediment during interglacials. Conversely, older source rocks, such as those drained by the Yukon River and northeast Russia are the dominant origin of sediments during glacials. Mixing model calculations suggest that as much as 35–45% of the sediment deposited in the Meiji Drift during glacials is from the Bering Sea. It remains unclear whether thermohaline-type circulation or focussing of Bering Sea flow lead to the glacial–interglacial sediment source changes observed here.  相似文献   

9.
In the Samail ophiolite,147Sm-143Nd,87Rb-87Sr, and18O/16O isotopic systems have been used to distinguish between sea-floor hydrothermal alteration and primary magmatic isotopic variations. The Rb-Sr and18O/16O isotopic systems clearly exhibit sensitivity to hydrothermal interactions with seawater while the Sm-Nd system appears essentially undisturbed. Internal isochrons have been determined by the147Sm-143Nd method using coexisting plagioclase and pyroxene and give crystallization ages of 130 ± 12m.y. from Ibra and 100 ± 20 m.y. from Wadi Fizh. These ages are interpreted as the time of formation of the Samail oceanic crust and are older than the inferred emplacement age of 65–85 m.y. The initial143Nd/144Nd ratios for a tectonized harzburgite, cumulate gabbros, plagiogranite, sheeted dikes and a basalt have a limited range in εNd of from 7.5 to 8.6 for all lithologies, demonstrating a clear oceanic affinity and supporting earlier interpretations based on geologic observations and geochemistry. The87Sr/86Sr initial ratios on the same rocks have an extremely large range of from 0.70296 to 0.70650 (εSr = ?19.7 to +30.5) and the δ18O values vary from 2.6 to 12.7. These large variations are clearly consistent with hydrothermal interaction of seawater with the oceanic crust. A model is presented for the closed system exchange of Sr and O, that in principle illustrates how the Sr isotopic data may be utilized to estimate the water/rock ratio and subsequently used to evaluate the temperature of equilibration between the water and silicates from the18O/16O water-rock fractionation.  相似文献   

10.
Isotopic and major and trace element analysis of nine samples of eruptive products spanning the history of the Mt. St. Helens volcano suggest three different episodes; (1) 40,000–2500 years ago: eruptions of dacite with εNd = +5, εSr = ?10, variable δ18O,206Pb/204Pb ~ 18.76, Ca/Sr ~ 60, Rb/Ba ~ 0.1, La/Yb ~ 18, (2) 2500-1000 years ago: eruptions of basalt, andesite and dacite with εNd = +4 to +8, εSr = ?7 to ?22, variable δ18O (thought to represent melting of differing mantle-crust reservoirs), 206Pb/204Pb= 18.81?18.87, variable Ca/Sr, Rb/Ba, La/Yb and high Zr, (3) 1000 years ago to present day: eruptions of andesite and dacite with εNd = +6, εSr = ?13, δ18O~6‰, variable206Pb/204Pb, Ca/Sr ~ 77, Rb/Ba= 0.1, La/Yb ~ 11. None of the products exhibit Eu anomalies and all are LREE enriched. There is a strong correlation between87Sr/86Sr and differentiation indices. These data are interpreted in terms of a mantle heat source melting young crust bearing zircon and garnet, but not feldspar, followed by intrusion of this crustal reservoir by mantle-derived magma which caused further crustal melting and contaminated the crustal magma system with mafic components. Since 1000 years ago all the eruptions have been from the same reservoir which has displayed a much more gradual re-equilibration of Pb isotopic compositions than other components suggesting that Pb is being transported via a fluid phase. The Nd and Sr isotopic compositions lie along the mantle array and suggest that the mantle underneath Mt. St. Helens is not as depleted as MORB sources. There is no indication of seawater involvement in the source region.  相似文献   

11.
Sm-Nd and Rb-Sr analyses of tektites and other impactites can be used to place constraints on the age and provenance of target materials which were impact melted to form these objects. Tektites have large negative εNd(0) values and are uniform within each tektite group while the εSr(0) are large positive values and show considerable variation within each group. Chemical, trace element, and isotopic compositions of tektites are consistent with production by melting of sediments derived from old terrestrial continental crust. Each tektite group is characterized by a uniform Nd model age,TCHURNd, interpreted as the time of formation of the crustal segment which weathered to form the parent sediment for the tektites: (1) ~1.15 AE for Australasian tektites; (2) ~1.91 AE for Ivory Coast tektites; (3) ~0.9 AE for moldavites; (4) ~0.65 AE for North American tektites, and (5) ~0.9 AE for high-Si irghizites. Sr model ages,TURSr, are variable within each group reflecting Rb-Sr fractionation and in the favorable limit of very high Rb/Sr ratios, approach the time of sedimentation of the parent material which melted to form the tektites. Australasian tektites are derived from ~0.25 AE sediments, moldavites from ~0.0 AE sediments, Ivory Coast tektites from ~0.95 AE sediments. Possible parent sediments of other tektite groups have poorly constrained ages. Our data on moldavites and Ivory Coast tektites are consistent with derivation from the Ries and Bosumtwi craters, respectively. Irghizites are isotopically distinct from Australasian tektites and are probably not related. Sanidine spherules from a Cretaceous-Tertiary boundary clay have initial εNd ~ +2; εSr ~ +5 and are not derived from old continental crust or meteoritic feldspar. They may represent a mixture of basaltic oceanic crust and sediments, implying an oceanic impact. These isotopic results are also consistent with a volcanic origin for the spherules.  相似文献   

12.
Benthic foraminiferal oxygen and carbon isotopic records from Southern Ocean sediment cores show that during the last glacial period, the South Atlantic sector of the deep Southern Ocean filled to roughly 2500 m with water uniformly low in δ13C, resulting in the appearance of a strong mid-depth nutricline similar to those observed in glacial northern oceans. Concomitantly, deep water isotopic gradients developed between the Pacific and Atlantic sectors of the Southern Ocean; the δ13C of benthic foraminifera in Pacific sediments remained significantly higher than those in the Atlantic during the glacial episode. These two observations help to define the extent of what has become known as the ‘Southern Ocean low δ13C problem’. One explanation for this glacial distribution of δ13C calls upon surface productivity overprints or changes in the microhabitat of benthic foraminifera to lower glacial age δ13C values. We show here, however, that glacial-interglacial δ13C shifts are similarly large everywhere in the deep South Atlantic, regardless of productivity regime or sedimentary environment. Furthermore, the degree of isotopic decoupling between the Atlantic and Pacific basins is proportional to the magnitude of δ13C change in the Atlantic on all time scales. Thus, we conclude that the profoundly altered distribution of δ13C in the glacial Southern Ocean is most likely the result of deep ocean circulation changes. While the characteristics of the Southern Ocean δ13C records clearly point to reduced North Atlantic Deep Water input during glacial periods, the basinal differences suggest that the mode of Southern Ocean deep water formation must have been altered as well.  相似文献   

13.
Nd isotopic characteristics of S- and I-type granites   总被引:1,自引:0,他引:1  
The initial Nd and Sr isotopic composition has been determined in S- and I-type granites from the Paleozoic Berridale and Kosciusko Batholiths of southeast Australia. The Nd and Sr isotopic variations form a strongly covariant array with S-types granites having a relatively restricted range inεNd values from ?6.1 to ?9.8 but a large range in initial87Sr86Sr of from 0.7094 to 0.7184. These characteristics are indicative of an~1400-m.y. sedimentary or metasedimentary source for S-types. I-types have variable initial Nd ranging from +0.4 to ?8.9, and a more limited range in initial87Sr86Sr of from 0.70453 to 0.7119. These isotopic characteristics are consistent with a two-component mixing model whereby a depleted mantle-like component (DMC) withεNd = +6 and87Sr86Sr= 0.703, is mixed with a crustal component (CC) havingεNd = ?9 and87Sr86Sr= 0.720. Although this two-component mixing model satisfies the isotopic constraints the source rock chemistry of the I-types is not compatible with the large proportion (up to 50%) of sedimentary material implied by the isotopic data. This indicates that more than two components are required to account for both the isotopic and chemical data. Both the chemical and isotopic data are consistent with I-type granites having been formed from source rocks of predominantly mantle derivation and obtained progressively from the mantle over a period of 1000 m.y. prior to granite formation.  相似文献   

14.
The147Sm143Nd and146Sm142Nd isotope systematics have been investigated in five chondrites and the achondrites Moama and Angra dos Reis (ADOR). The new chondrite data and those we have reported before are all consistent with our previously reported reference values for CHUR (“chondritic uniform reservoir”) of (143Nd/144Nd)CHUR0 = 0.511847 and (147Sm/144Nd)CHUR0 = 0.1967. Most of the bulk chondrites analyzed have 143Nd/144Nd and 147Sm/144Nd within 0.5 ε-units and 0.15% of the CHUR values, respectively. This strongly suggests that the CHUR evolution is now known to within these error limits throughout the history of the solar system. The St. Severin chondrite yields an SmNd internal isochron age of T = 4.55 ± 0.33AE and an initial εNd = 0.11 ? 0.26. Much larger variations in Sm/Nd ratios were measured in mineral separates of the Moama and ADOR achondrites. Thus, very precise ages of 4.46 ± 0.03AE and4.564 ± 0.037AE were obtained for these meteorites, respectively. The initial εNd values obtained for Moama and ADOR are 0.03 ? 0.25and0.14 ? 0.20, respectively. The values obtained on these meteorites are fully consistent with the CHUR evolution curve. Initial εNd data on terrestrial igneous and meta-igneous rocks demonstrates that positive initial εNd values occur throughout the past 4 AE. This confirms our earlier report that a light rare earth element-depleted layer has existed throughout most of the Earth history and is the source of present-day mid-ocean ridge basalts. The inferred shape of the εNd vs. age curve for the depleted mantle suggests profound changes in tectonic regimes with time; in particular, it suggests a much higher rate of recycling of continental materials into the mantle during the Archean as compared to later time periods.146Sm142Nd systematics of ADOR and Moama are supportive of the hypothesis that146Sm was present in the early solar system and suggests a 146Sm/144Sm ratio of about 0.01 for the solar system ~ 4.56 AE ago. This inferred high146Sm abundance cannot be explained as a late injection from a supernova and must be due to galactic nucleo-synthesis.  相似文献   

15.
Water samples were collected from Baffin Bay and surrounding areas in order to evaluate this region as a potential source of Nd from old continental material to Atlantic water. The isotopic data ranged from εNd(0) = −9.0 to −26 with most of the data around εNd(0) = −20 compared with values of North Atlantic Deep Water (NADW) with εNd(0) = −13.5. The concentration of Nd in Baffin Bay waters was as high as 6 × 10−12 g/g compared with 2.5 × 10−12 g/g for NADW. The combination of low εNd and high Nd concentration indicates that Baffin Bay may be a significant source of Nd from very old crustal material. A simple box model was used to evaluate the contribution to the Nd budget of NADW and it was concluded that a substantial fraction of the Nd from ancient crustal sources that is required to maintain the isotopic composition of NADW could be supplied by Baffin Bay outflow.  相似文献   

16.
Measurements of143Nd/144Nd and147Sm/144Nd are reported for whole rocks and mineral separates from granulites of the Napier Complex at Fyfe Hills. Charnockites, leuconorites and gabbros yield a whole rock SmNd isochron age of3060 ± 160m.y. and an initial143Nd/144Nd ratio of0.50776 ± 10 (?Nd(3060m.y.) = ?2.0 ± 1.8). The negative ?Nd value and the presence of geologically induced dispersion in the data suggest that the isochron age does not represent the time of primary crystallization of the complex but instead indicates a time of later redistribution of Sm and Nd and partial re-equilibration of143Nd/144Nd ratios. This probably occurred during the upper granulite facies metamorphism which has also been dated at~ 3100m.y. by RbSr and UPb zircon studies [1]. Coexisting clinopyroxene, apatite and total rock fractions in two adjacent samples define an approximately linear array corresponding to an age of 2300 ± 300 m.y. This array indicates that redistribution of Sm and Nd and re-equilibration of143Nd/144Nd ratios occurred on an intermineral scale during the upper amphibolite to lower granulite facies metamorphism at~ 2450m.y.Due to the resetting of the SmNd system on both whole rock and mineral scales, the primary crystallization age of the igneous protolith is not well constrained by the present data, although it is clearly3100m.y. If it is assumed that the complex was derived initially from a depleted mantle reservoir(?Nd(T) ? 2), evolution of the negative ?Nd value of ?2.0 with the observed Sm/Nd ratios requires a prehistory of~ 380m.y. This implies a primary age of~ 3480m.y. However, substantially older primary ages can be inferred if the source reservoirs had?Nd(T) > 2 and/or substantial reductions in the Sm/Nd ratio occurred in whole rocks during the granulite facies metamorphism at 3100 m.y. Such an inferred reduction in the Sm/Nd ratio may have been the result of preferential loss of Sm relative to Nd, or introduction of a low Sm/Nd fluid with?Nd ≥ 0 during granulite facies metamorphism.  相似文献   

17.
Metasedimentary and metavolcanic rocks from the Archaean of West Greenland have been examined for evidence of crustal components greater than 3.8 Ga in age and for their compatibility with the presently adopted bulk Earth Sm-Nd parameters. Sm-Nd isotopic data have been obtained for the garbenschiefer metagabbro unit, metasediments from the Isua supracrustal belt, gneisses interior to the Isua belt and metasediments from the Malene supracrustal belt.Using estimates of emplacement age (T) of between 3.77 and 3.67 Ga for the parental volcanics to the garbenschiefer unit, initial143Nd/144Nd ratios yield positiveεNdT values between +1.0 and +3.1 (relative to the CHUR parameters) for seven out of eight samples. Model Sm-Nd ages for the Isua gneisses and metasediments are only compatible with their estimated stratigraphic ages if their sources were ca.+2εNd relative to CHUR at those times. Similarly, model Sm-Nd ages for the Malene samples are only compatible with stratigraphic age constraints when based on a source evolution with positiveεNdT. Implications of these results for the early development of the Earth's mantle are discussed.  相似文献   

18.
Published data showing a linear correlation between initial Nd and Sr isotope compositions in young basalts indicate the existence of a spectrum of isotopically distinct reservoirs in the mantle which represent either (1) mixtures of two homogeneous endmember reservoirs, one of which may be undifferentiated material or (2) fractionated reservoirs all derived from a homogeneous initial reservoir with the same ratio of enrichment factors for Sm/Nd and Rb/Sr. The slope of the correlation, which can be described approximately by (87Sr/86Sr) = ?3.74114 (143Nd/144Nd) + 2.61935orεNd = ?2.7 εSr, places constraints on the origin of these reservoirs and hence on the chemical evolution of the crust-mantle system. The reservoirs could be residual regions of the mantle left after ancient partial melting events. If so, the requirement of constant relative fractionation of Sm/Nd and Rb/Sr in refractory residues is a strong constraint on partial melting models. Calculations suggest that batch melting models are more compatible with this constraint than are fractional melting models, but models incorporating currently accepted distribution coefficients and residual phase assemblages cannot reproduce the observed isotope effects except under highly specific conditions. The slope of the correlation is not consistent with the hypotheses that chemical structure in the mantle is due to accretional heterogeneity or variable loss of elements to the core. If the mantle reservoirs are complementary in composition to the continental crust, and if the crust + mantle has εNd = 0andεSr = 0 and chondritic Sr/Nd, then Rb/Sr in the crust is calculated to be less than 0.10, suggesting that the crust may be more mafic in composition and contain a smaller proportion of the earth's Rb and heat-producing elements than previously estimated.  相似文献   

19.
The Nd isotopic composition of the aragonite skeleton of fossil deep-sea corals (Lophelia pertusa, Madrepora oculata and Desmophyllum dianthus) located in the northeastern Atlantic at water depths between 635 and 1300 m was investigated to reconstruct changes in the Atlantic mid-depth gyre circulation during the past millennium. The coral εNd values varied systematically from ? 11.8 to ? 14.4 during the past 1500 years, reflecting variations in seawater εNd and thus water mass provenance. Low εNd values (εNd = ? 14) occurred during the warm Medieval Climatic Anomaly (MCA) (between 1000 AD and 1250 AD) and during the most recent period (1950 AD to 2000 AD), interrupted by a period of significantly higher εNd values (~?12.5) during the Little Ice Age (LIA) (between 1350 AD and 1850 AD). One long-lived branching coral even recorded an abrupt systematic rise from low to high εNd values around 1250 AD over the course of its 10-year growth period.These variations are interpreted to result from variable contributions of the subpolar and subtropical Atlantic intermediate water masses, which today are characterized by εNd values of ? 15 and ~?11, respectively. The low εNd values observed during the warm MCA and during recent times imply a strong eastward extension of the mid-depth subpolar gyre (SPG) induced by a dominant positive phase of the North Atlantic oscillation (NAO). During the LIA, water from the subtropical gyre (STG) and potentially from the Mediterranean Sea Water (MSW) propagated further northward, as indicated by the higher coral εNd values. This pattern suggests a negative mean state of the NAO during the LIA, with weaker and more southerly located Westerlies and a westward contraction of the SPG. Variations in the contributions of the two gyres imply changes in the heat and salt budgets at intermediate depths during the past millennia that may have contributed to changes in the properties of North Atlantic inflow into the Nordic Seas and thus deep-water formation.  相似文献   

20.
Nd and Sr isotopic variations of Early Paleozoic oceans   总被引:4,自引:0,他引:4  
We report143Nd/144Nd and87Sr/86Sr isotopic data for Lower Paleozoic phosphatic brachiopod and conodont fossils. The data appear to represent the isotopic values of Early Paleozoic seawaters. We show that different paleoceanic water masses can be distinguished on the basis of their εNd signatures. Two sides of what is classically considered one circulating Iapetus Ocean have different εNd signatures from at least the Middle Cambrian until the Late Middle Ordovician. We infer two ocean basins between North America and Baltica separated by an island and/or shoal circulation barrier. Thus, it appears necessary to redefine the area of the Iapetus Ocean. The εNd signature of the redefined smaller Iapetus Ocean ranges from −5 to −9 and the εNd signature of the larger, coeval Panthalassa Ocean, including part of what was formerly called the Iapetus Ocean, ranges from −10 to −20. The first time that the εNd values are identical in these two water masses is coincident with the onset of the Taconic Orogeny of North America. The paleogeographic geometry we infer from this work is consistent with paleogeographic reconstructions having the Baltica continent at very high latitudes in the Early/Middle Ordovician. The εNd and faunal distribution support temperature-controlled conodont faunal provinciality. A rough mean age for exposed continental crust in the Early Paleozoic can be obtained from the average εNd value of Early Paleozoic Oceans. The data suggest that the mean age of the crust as a function of time has remained essentially constant or even decreased during the past 500 Ma, and suggest substantial additions of new crust to the continents through the Phanerozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号