首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The influence of the uncertainties of intra-seasonal wind stress forcing on Spring Predictability Barrier (SPB) in El Niño–Southern Oscillation (ENSO) prediction is studied with the Zebiak–Cane model and observational wind data which are analyzed with Continuous Wavelet Transform (CWT) and utilized to extract intra-seasonal wind stress signals as external forcing. The observational intra-seasonal wind stress forcing are joined into Zebiak–Cane model to get the Zebiak–Cane-add model and subsequently with the Conditional Nonlinear Optimal Perturbation (CNOP) method, the evolutions of the optimal initial errors (i.e., CNOPs), model errors caused by intra-seasonal wind stress uncertainties, and their joint errors based on ENSO events are calculated. By investigating their error growth rates and prediction errors of Niño-3 indices, the effect of observational intra-seasonal wind stress forcing on seasonal error growth of ENSO is explored and the impact of initial error and model error on ENSO predictability is compared quantitatively. The results show that the model errors led by observational intra-seasonal wind stress forcing could scarcely cause a significant SPB whereas the initial errors and their joint errors can do; hence, the initial errors are most likely the main error source of SPB. In fact, this result emphasizes the primary influence of initial errors on ENSO predictability and lays the basis of adaptive data assimilation for ENSO forecast.  相似文献   

2.
We present a Bayesian method that allows continuous updating the aperiodicity of the recurrence time distribution of large earthquakes based on a catalog with magnitudes above a completeness threshold. The approach uses a recently proposed renewal model for seismicity and allows the inclusion of magnitude uncertainties in a straightforward manner. Errors accounting for grouped magnitudes and random errors are studied and discussed. The results indicate that a stable and realistic value of the aperiodicity can be predicted in an early state of seismicity evolution, even though only a small number of large earthquakes has occurred to date. Furthermore, we demonstrate that magnitude uncertainties can drastically influence the results and can therefore not be neglected. We show how to correct for the bias caused by magnitude errors. For the region of Parkfield we find that the aperiodicity, or the coefficient of variation, is clearly higher than in studies which are solely based on the large earthquakes.  相似文献   

3.
It is well acknowledged that there are large uncertainties associated with radar-based estimates of rainfall. Numerous sources of these errors are due to parameter estimation, the observational system and measurement principles, and not fully understood physical processes. Propagation of these uncertainties through all models for which radar-rainfall are used as input (e.g., hydrologic models) or as initial conditions (e.g., weather forecasting models) is necessary to enhance the understanding and interpretation of the obtained results. The aim of this paper is to provide an extensive literature review of the principal sources of error affecting single polarization radar-based rainfall estimates. These include radar miscalibration, attenuation, ground clutter and anomalous propagation, beam blockage, variability of the ZR relation, range degradation, vertical variability of the precipitation system, vertical air motion and precipitation drift, and temporal sampling errors. Finally, the authors report some recent results from empirically-based modeling of the total radar-rainfall uncertainties. The bibliography comprises over 200 peer reviewed journal articles.  相似文献   

4.
The technique of tracing along magnetic field lines is widely used in magnetospheric physics to provide a magnetic frame of reference that facilitates both the planning of experiments and the interpretation of observations. The precision of any such magnetic frame of reference depends critically on the accurate representation of the various sources of magnetic field in the magnetosphere. In order to consider this important problem systematically, a study is initiated to estimate first the uncertainties in magnetic-field-line tracing in the magnetosphere that arise solely from the published (standard) errors in the specification of the geomagnetic field of internal origin. Because of the complexity in computing these uncertainties for the complete geomagnetic field of internal origin, attention is focused in this preliminary paper on the uncertainties in magnetic-field-line tracing that result from the standard errors in just the axisymmetric part of the internal geomagnetic field. An exact analytic equation exists for the magnetic field lines of an arbitrary linear combination of axisymmetric multipoles. This equation is used to derive numerical estimates of the uncertainties in magnetic-field-line tracing that are due to the published standard errors in the axisymmetric spherical harmonic coefficients (i.e. gn0 ± gn0). Numerical results determined from the analytic equation are compared with computational results based on stepwise numerical integration along magnetic field lines. Excellent agreement is obtained between the analytical and computational methods in the axisymmetric case, which provides great confidence in the accuracy of the computer program used for stepwise numerical integration along magnetic field lines. This computer program is then used in the following paper to estimate the uncertainties in magnetic-field-line tracing in the magnetosphere that arise from the published standard errors in the full set of spherical harmonic coefficients, which define the complete (non-axisymmetric) geomagnetic field of internal origin. Numerical estimates of the uncertainties in magnetic-field-line tracing in the magnetosphere, calculated here for the axisymmetric part of the internal geomagnetic filed, should be regarded as first approximations in the sense that such estimates are only as accurate as the published standard errors in the set of axisymmetric spherical harmonic coefficients. However, all procedures developed in this preliminary paper can be applied to the derivation of more realistic estimates of the uncertainties in magnetic-field-line tracing in the magnetosphere, following further progress in the determination of more accurate standard errors in the spherical harmonic coefficients.Also Visiting Reader in Physics, University of Sussex, Falmer, Brighton, BN1 9QH, UK  相似文献   

5.
Hyporheic exchange is the interaction of river water and groundwater, and is difficult to predict. One of the largest contributions to predictive uncertainty for hyporheic exchange has been attributed to the representation of heterogeneous subsurface properties. Our study evaluates the trade-offs between intrinsic (irreducible) and epistemic (reducible) model errors when choosing between homogeneous and highly complex subsurface parameter structures. We modeled the Steinlach River Test Site in Southwest Germany using a fully coupled surface water-groundwater model to simulate hyporheic exchange and to assess the predictive errors and uncertainties of transit time distributions. A highly parameterized model was built, treated as a “virtual reality” and used as a reference. We found that if the parameter structure is too simple, it will be limited by intrinsic model errors. By increasing subsurface complexity through the addition of zones or heterogeneity, we can begin to exchange intrinsic for epistemic errors. Thus, the appropriate level of detail to represent the subsurface depends on the acceptable range of intrinsic structural errors for the given modeling objectives and the available site data. We found that a zonated model is capable of reproducing the transit time distributions of a more detailed model, but only if the geological structures are known. An interpolated heterogeneous parameter field (cf. pilot points) showed the best trade-offs between the two errors, indicating fitness for practical applications. Parameter fields generated by multiple-point geostatistics (MPS) produce transit time distributions with the largest uncertainties, however, these are reducible by additional hydrogeological data, particularly flux measurements.  相似文献   

6.
A new computational scheme for calculating the first-arrival travel times on a rectangular grid of points is proposed. The new proposed method is of second-order accuracy. This means that the error of the calculated travel time is proportional to the second power of the grid spacing. The method should be sufficiently accurate for all applications in smooth seismic models. On the other hand, the method is not, in its present form, proposed for models with structural interfaces which make the method unstable and generate travel-time errors of the first order. Equations are also presented for the appropriate evaluation of the errors of calculated travel times to check their accuracy, and the proposed method is compared with other numerical methods. The method is developed, described and demonstrated in 2-D, but may also be extended to 3-D models and to general models with structural interfaces.  相似文献   

7.
Errors and uncertainties in hydrological, hydraulic and environmental models are often substantial. In good modelling practice, they are quantified in order to supply decision-makers with important additional information on model limitations and sources of uncertainty. Several uncertainty analysis methods exist, often with various underlying assumptions. One of these methods is based on variance decomposition. The method allows splitting the variance of the total error in the model results (as estimated after comparing model results with observations) in its major contributing uncertainty sources. This paper discusses an advanced version of that method where error distributions for rainfall, other inputs and parameters are propagated in the model and the “rest” uncertainties considered as model structural errors for different parts of the model. By expert knowledge, the iid assumption that is often made in model error analysis is addressed upfront. The method also addresses the problems of heteroscedasticity and serial dependence of the errors involved. The method has been applied by the author to modelling applications of sewer water quantity and quality, river water quality and river flooding.  相似文献   

8.
The study presents a theoretical framework for estimating the radar-rainfall error spatial correlation (ESC) using data from relatively dense rain gauge networks. The error is defined as the difference between the radar estimate and the corresponding true areal rainfall. The method is analogous to the error variance separation that corrects the error variance of a radar-rainfall product for gauge representativeness errors. The study demonstrates the necessity to consider the area–point uncertainties while estimating the spatial correlation structure in the radar-rainfall errors. To validate the method, the authors conduct a Monte Carlo simulation experiment with synthetic fields with known error spatial correlation structure. These tests reveal that the proposed method, which accounts for the area–point distortions in the estimation of radar-rainfall ESC, performs very effectively. The authors then apply the method to estimate the ESC of the National Weather Service’s standard hourly radar-rainfall products, known as digital precipitation arrays (DPA). Data from the Oklahoma Micronet rain gauge network (with the grid step of about 5 km) are used as the ground reference for the DPAs. This application shows that the radar-rainfall errors are spatially correlated with a correlation distance of about 20 km. The results also demonstrate that the spatial correlations of radar–gauge differences are considerably underestimated, especially at small distances, as the area–point uncertainties are ignored.  相似文献   

9.
Error analysis of multi-wavelength sun photometry   总被引:6,自引:0,他引:6  
The error terms involved in precision multi-wavelength sun photometry, as used to study atmospheric aerosols, are analyzed. The error terms treated include instrumental errors, calibration errors, and errors imposed by the atmosphere. It is shown that in order to derive accurate aerosol parameters, one must exercise great care in the photometer calibration. A procedure for accurate calibration is described, based on an intercalibration between extrapolations of the extraterrestrial solar spectral irradiance and irradiance of a standard lamp. Methods are described to assess, and reduce, uncertainties brought about by diffuse radiation in the photometer's field of view, temporal variations in aerosol optical depth, and gaseous absorption features at the operating wavelength. It is shown that if care is taken sun photometry can be used to derive monochromatic aerosol optical depth to an accuracy of several thousandths.  相似文献   

10.
The purpose of this paper is to determine uncertainty in the gauged range of the stage–gauged discharge relationship for 622 rating curves from 171 Australian Bureau of Meteorology Hydrologic Reference streamgauging Stations (HRS). Water agencies use many methods to establish rating curves. Here we adopt a consistent method across all stations and develop rating curves based on Chebyshev polynomials, and estimate uncertainties from standard regression errors in which residuals from the polynomials are adjusted to ensure they are homoscedastic and normally distributed. Uncertainty in input water level is also taken into account. The median uncertainties in mean response of the available gauged discharge relationship at median daily discharges for the HRS dataset range from +4.5 to ?4.2% (95% confidence band) and for individual gaugings from +29 to ?22% incorporating a water level uncertainty of ±4 mm. The uncertainties estimated are consistent with values estimated in Australia and elsewhere.  相似文献   

11.
The use of precipitation estimates from weather radar reflectivity has become widespread in hydrologic predictions. However, uncertainty remains in the use of the nonlinear reflectivity–rainfall (Z‐R) relation, in particular for mountainous regions where ground validation stations are often lacking, land surface data sets are inaccurate and the spatial variability in many features is high. In this study, we assess the propagation of rainfall errors introduced by different Z‐R relations on distributed hydrologic model performance for four mountain basins in the Colorado Front Range. To do so, we compare spatially integrated and distributed rainfall and runoff metrics at seasonal and event time scales during the warm season when convective storms dominate. Results reveal that the basin simulations are quite sensitive to the uncertainties introduced by the Z‐R relation in terms of streamflow, runoff mechanisms and the water balance components. The propagation of rainfall errors into basin responses follows power law relationships that link streamflow uncertainty to the precipitation errors and streamflow magnitude. Overall, different Z‐R relations preserve the spatial distribution of rainfall relative to a reference case, but not the precipitation magnitude, thus leading to large changes in streamflow amounts and runoff spatial patterns at seasonal and event scales. Furthermore, streamflow errors from the Z‐R relation follow a typical pattern that varies with catchment scale where higher uncertainties exist for intermediate‐sized basins. The relatively high error values introduced by two operational Z‐R relations (WSR‐57 and NEXRAD) in terms of the streamflow response indicate that site‐specific Z‐R relations are desirable in the complex terrain region, particularly in light of other uncertainties in the modelling process, such as model parameter values and initial conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Permeability measurements are critical to the calculation of water‐flow within hillslopes. Despite this, errors in permeability measurements are often ignored, and can be very large particularly in disturbance‐sensitive gley soils. This work compares the uncertainties associated with six field methods of permeametry applied to a gleyed soil in upland Britain. Slug tests, constant‐head borehole permeametry, and falling‐head borehole permeametry were undertaken on established piezometers. Additionally, ring permeametry and two types of trench tests were evaluated. Method‐related uncertainty due to proximity of impeding layers of high sorptivity soils produces under‐ and over‐estimates of permeability by a factor of up to 0·2 and 5, respectively. This uncertainty band is smaller than the observed effects of anisotropy and temporal variability. Had smearing and soil‐ring leakage errors not been minimized, the methodological uncertainties would have been so large that they would have distorted the true spatial field of permeability and its estimated impact on the balance of vertical and lateral flow. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The article proves the application of short-period sensors with extended frequency response as a reasonable alternative to broadband seismometers. We assessed uncertainties between magnitudes determined by short-period and broadband sensor data for earthquakes with M > 6 recorded at the Mikhnevo geophysical observatory in 2014. Data analysis consisted of body wave magnitude and surface wave magnitude estimates by standard seismological methods. Magnitude errors corresponded to the magnitude uncertainties in seismological catalogs.  相似文献   

14.
Based on the theory of information entropy concerning nonlinear errors,the growth rules for the nonlinear errors of the Lorenz system and its predictable components are studied.The results show that the impact of the uncertainties,both in the initial error and in the system itself,needs to be considered in a quantitative estimation of the system predictability.The nonlinear error growth is related to the magnitude of the initial error,and to the spatial distribution of the initial error vectors.Even if these initial errors have the same magnitude but different directions,there are also differences in the nonlinear error growth.The predictability of nonlinear error growth is related to the error component,but not related to the ratio of these components.The component with the highest/lowest rate of contribution does not necessarily have the greatest/least predictability.The different components have different predictabilities,and in different time periods,the different predictable components also have different predictabilities.  相似文献   

15.
Hypothesis testing about catchment functioning with conceptual hydrological models is affected by uncertainties in the model representation of reality as well as in the observed data used to drive and evaluate the model. We formulated a learning framework to investigate the role of observational uncertainties in hypothesis testing using conceptual models and applied it to the relatively data‐scarce tropical Sarapiqui catchment in Costa Rica. Observational uncertainties were accounted for throughout the framework that incorporated different choices of model structures to test process hypotheses, analyses of parametric uncertainties and effects of likelihood choice, a posterior performance analysis and (iteratively) formulation of new hypotheses. Estimated uncertainties in precipitation and discharge were linked to likely non‐linear near‐surface runoff generation and the potentially important role of soils in mediating the hydrological response. Some model‐structural inadequacies could be identified in the posterior analyses (supporting the need for an explicit soil‐moisture routine to match streamflow dynamics), but the available information about the observational uncertainties prevented conclusions about other process representations. The importance of epistemic data errors, the difficulty in quantifying them and their effect on model simulations was illustrated by an inconsistent event with long‐term effects. Finally we discuss the need for new data, new process hypotheses related to deep groundwater losses, and conclude that observational uncertainties need to be accounted for in hypothesis testing to reduce the risk of drawing incorrect conclusions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Doppler observations of U.S. Navy Navigation Satellites have been used to determine the Earth's pole position for the period 1967 to July 1972. Recent results are competitive in accuracy with astronomic results and exhibit about 0".02 agreement with astronomic pole positions. The differences are no larger than those between independent calculations of pole positions based on astronomic data (BIHvs. ILS). For a two-day span of observations made by 18 Doppler stations the uncertainty in computed pole position corresponding to random errors in observation is 0".002. However, the results have systematic errors with various frequencies which are primarily due to uncertainties in the gravity coefficients. Since these errors are independent of those producing systematic errors in astronomic results, the two techniques are complementary. Recent results of computation of polar motion based on laser observations of artificial Earth satellites have also produced results having accuracies comparable to Doppler and astronomic results. The analysis of the laser observations is based on the effect of pole position on the apparent inclination of satellite orbits; on the other hand, since the Doppler observations are made on polar orbiting satellites, they are more sensitive to errors in the component of pole position which lies in the orbit plane. As a result of this difference, biases in Doppler and laser results may be different in size or character.  相似文献   

17.
Maps of a series of characteristics were calculated and constructed for RF territory, including mean values of changes in runoff depths (evaluated by the main climate models of the Intergovernmental Panel on Climate Change) due to greenhouse effect estimated for 2040–2070; root-mean-square deviations from these values; relative errors of the estimates; mean values of changes in the runoff depth for different scenarios of greenhouse gas emissions; absolute and relative deviations of these values from their means for scenarios and integration of models. Chronological forecasts of possible changes in the mean runoff values for the rivers of Volga, Northern Dvina, Pechora, Ob, Yenisei, Lena, Yana, Indigirka, Kolyma, and Amur up to 2100 are calculated, and the root-mean-square errors of these characteristics are evaluated for the maximum number of uncertainties in the forecast. The greenhouse effect is shown to be less significant, other factors being the same, for rivers with small drainage basins and rivers with small modulus of flow.  相似文献   

18.
A mathematical formulation for optimal control of air pollution   总被引:3,自引:0,他引:3  
In recent years the urban air pollutions caused by emissions from industry, transportation and energy consuming for daily living are getting worse in many major cities of China. Peoples awareness on air quality is increasing. Routine monitoring and foreca…  相似文献   

19.
This review and commentary sets out the need for authoritative and concise information on the expected error distributions and magnitudes in observational data. We discuss the necessary components of a benchmark of dominant data uncertainties and the recent developments in hydrology which increase the need for such guidance. We initiate the creation of a catalogue of accessible information on characteristics of data uncertainty for the key hydrological variables of rainfall, river discharge and water quality (suspended solids, phosphorus and nitrogen). This includes demonstration of how uncertainties can be quantified, summarizing current knowledge and the standard quantitative results available. In particular, synthesis of results from multiple studies allows conclusions to be drawn on factors which control the magnitude of data uncertainty and hence improves provision of prior guidance on those uncertainties. Rainfall uncertainties were found to be driven by spatial scale, whereas river discharge uncertainty was dominated by flow condition and gauging method. Water quality variables presented a more complex picture with many component errors. For all variables, it was easy to find examples where relative error magnitudes exceeded 40%. We consider how data uncertainties impact on the interpretation of catchment dynamics, model regionalization and model evaluation. In closing the review, we make recommendations for future research priorities in quantifying data uncertainty and highlight the need for an improved ‘culture of engagement’ with observational uncertainties. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Topographic surveys inevitably contain error, introducing uncertainty into estimates of volumetric or mean change based on the differencing of repeated surveys. In the geomorphic community, uncertainty has often been framed as a problem of separating out real change from apparent change due purely to error, and addressed by removing measured change considered indistinguishable from random noise from analyses (thresholding). Thresholding is important when quantifying gross changes (i.e. total erosion or total deposition), which are systematically biased by random errors in stable parts of a landscape. However, net change estimates are not substantially influenced by those same random errors, and the use of thresholds results in inherently biased, and potentially misleading, estimates of net change and uncertainty. More generally, thresholding is unrelated to the important process of propagating uncertainty in order to place uncertainty bounds around final estimates. Error propagation methods for uncorrelated, correlated, and systematic errors are presented. Those equations demonstrate that uncertainties in modern net change analyses, as well as in gross change analyses using reasonable thresholds, are likely to be dominated by low-magnitude but highly correlated or systematic errors, even after careful attempts to reduce those errors. In contrast, random errors with little to no correlation largely cancel to negligible levels when averaged or summed. Propagated uncertainty is then typically insensitive to the precision of individual measurements, and is instead defined by the relative mean error (accuracy) over the area of interest. Given that real-world mean elevation changes in many landscape settings are often similar in magnitude to potential mean errors in repeat topographic analyses, reducing highly correlated or systematic errors will be central to obtaining accurate change estimates, while placing uncertainty bounds around those results provides essential context for their interpretation. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号