首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent models of Ca, Al-rich inclusion (CAI) petrogenesis suggest that refractory inclusions may be residues of interstellar dust aggregates that were incompletely evaporated and partially melted in the solar nebula. These models, and the recent availability of new thermodynamic data, have led us to re-examine the traditional interpretation that lithophile refractory trace elements (LRTE) condensed as oxides in solid solution in refractory major condensates, while refractory noble metals (RNM) condensed as micron-sized nuggets of Pt-metal alloys. Calculations of LRTE-RNM alloy stability fields under nebular oxygen fugacities and partitioning experiments lead us to conclude that: (1) Ti, Zr, Nb, Hf, U, and Ta form stable alloys with RNM under nebular conditions; (2) the observation that metallic Zr, Nb, and Ta occur in some Pt-metal nuggets and grains is explained by the stability of these LRTE-RNM alloys under normal nebular oxygen fugacities; (3) metallic Ti, Hf, and U may also occur in some nuggets; (4) the lanthanides, the other actinides (Th, Pu), and Y do not form stable alloys, and thus probably do not occur alloyed with RNM; and (5) the partitioning of U (but not Th, Pu, or the REE) into RNM is a novel actinide and REE/actinide fractionation mechanism that is based on metal/silicate fractionation (rather than on the relative volatility of their oxides).We propose that micron-sized Pt-metal nuggets formed from smaller grains of RNM alloys and compounds during the evaporation and melting of primitive dust aggregates. This process would have been enhanced by: (1) the possibility that the RNM were present as compounds (especially with As and S) as well as metallic alloys in interstellar dust and in some primitive meteoritical material, since they often exhibit non-siderophile behavior; and (2) the fluxing of volatiles through CAI's during distillation. Microscopic nuggets are common in melilite chondrules, indicating that residence in a slowly-cooled silicate melt may have favored their formation. Cation diffusivity and variations in localfO2 can explain why metallic LRTE-bearing nuggets are not common in CAI's (despite the relative stability of LRTE-RNM alloys). We propose that the lithophile component of Fremdlinge is enriched in super-refractory elements, and that Group II CAI's formed from Fremdlinge-poor dust. We interpret the Group II REE fractionation as a pre-solar event, and predict that Nd/Sm dating will yield an age greater than the canonical age of the solar system. If metal/silicate fractionation in a cold solar nebula can explain Group II REE patterns, the possibility that Group II CAI's are also distillation residues cannot be excluded.  相似文献   

2.
We compare the equilibrium climate responses of a quasi-dynamical energy balance model to radiative forcing by equivalent changes in CO2, solar total irradiance (Stot) and solar UV (SUV). The response is largest in the SUV case, in which the imposed UV radiative forcing is preferentially absorbed in the layer above 250 mb, in contrast to the weak response from global-columnar radiative loading by increases in CO2 or Stot. The hypersensitive response of the climate system to solar UV forcing is caused by strongly coupled feedback involving vertical static stability, tropical thick cirrus ice clouds and stratospheric ozone. This mechanism offers a plausible explanation of the apparent hypersensitivity of climate to solar forcing, as suggested by analyses of recent climatic records. The model hypersensitivity strongly depends on climate parameters, especially cloud radiative properties, but is effective for arguably realistic values of these parameters. The proposed solar forcing mechanism should be further confirmed using other models (e.g., general circulation models) that may better capture radiative and dynamical couplings of the troposphere and stratosphere.  相似文献   

3.
In this work, the climatology of ionospheric scintillations at global positioning system (GPS) L-band frequency and the zonal drift velocities of scintillation-producing irregularities were depicted for the equatorial observatory of São Luis (2.33°S; 44.21°W; dip latitude 1.3°S), Brazil. This is the first time that the hourly, monthly, and seasonal variations of scintillations and irregularity zonal drifts at São Luis were characterized during periods of different solar activity levels (from December 1998 to February 2007). The percentage occurrence of scintillations at different sectors of the sky was also investigated, and the results revealed that the scintillations are more probable to be observed in the west sector of the sky above São Luis, whereas the north–south asymmetries are possibly related to asymmetries in the plasma density distribution at off-equatorial latitudes. The scintillations on GPS signals occurred more frequently around solar maximum years, but it is also clear from the results of a strong variability in the scintillation activity in the years with moderate solar flux during the descending phase of the solar cycle. The equatorial scintillations occur predominantly during pre-midnight hours with a broad maximum near the December solstice months. In general, weak level of scintillations (S 4 index between 0.2 and 0.4) dominated at all seasons; however, during the winter months around solar maximum years (although the scintillation occurrence is extremely low), stronger levels of scintillations (S 4 > 0.6) may occur at comparable rate with the weak scintillations. The irregularity zonal velocities, as estimated from the GPS spaced-receiver technique, presented a different scenario for the two seasons analyzed; during the equinoxes, the magnitude of the zonal velocities appeared not to change with the solar activity, whereas during the December solstice months, the larger magnitudes were observed around solar maximum years. Other relevant aspects of the observations are highlighted and discussed.  相似文献   

4.
(1) The observed anomalies in meteoritic oxygen isotope compositions are not due to an incomplete mixing of several dust or gas-plus-dust components in the solar nebula. If they were, other elements would display similar anomalies. (The FUN inclusions in Allende appear to be exceptions to this premise.) (2) The anomalies must therefore stem from differing degrees of incomplete exchange of oxygen isotopes between the primordial gas and dust components of the nebula. The dust is more likely to have been the16O-enriched component. (3) Since the isotopic difference between dust and gas probably could not have been preserved if the dust was ever completely vaporized in the nebula, the Ca,Al-rich inclusions (CAI's) in carbonaceous chondrites are unlikely to be condensates, but instead are distillation residues. (4) If so, the observed depletion of super-refractory elements in the Group II CAI's cannot have been accomplished by fractional condensation in the solar nebula. (5) Then this depletion, and a number of other properties of the components of primitive meteoritic material, must be relics of pre-solar system fractionations among different populations of interstellar dust grains.  相似文献   

5.
We investigated cloud properties of warm clouds in a tropical montane cloud forest at Pico del Este (1,051 m a.s.l.) in the northeastern part of Puerto Rico to address the question of whether cloud properties in the Caribbean could potentially be affected by African dust transported across the Atlantic Ocean. We analyzed data collected during 12 days in July 2011. Cloud droplet size spectra were measured using the FM-100 fog droplet spectrometer that measured droplet size distributions in the range from 2 to 49 µm, primarily during fog events. The droplet size spectra revealed a bimodal structure, with the first peak (D < 6 µm) being more pronounced in terms of droplet number concentrations, whereas the second peak (10 µm < D < 20 µm) was found to be the one relevant for total liquid water content (LWC) of the cloud. We identified three major clusters of characteristic droplet size spectra by means of hierarchical clustering. All clusters differed significantly from each other in droplet number concentration ( \(N_{\rm tot}\) ), effective diameter (ED), and median volume diameter (MVD). For the cluster comprising the largest droplets and the lowest droplet number concentrations, we found evidence of inhomogeneous mixing in the cloud. Contrastingly, the other two clusters revealed microphysical behavior, which could be expected under homogeneous mixing conditions. For those conditions, an increase in cloud condensation nuclei—e.g., from processed African dust transported to the site—is supposed to lead to an increased droplet concentration. In fact, one of these two clusters showed a clear shift of cloud droplet size spectra towards smaller droplet diameters. Since this cluster occurred during periods with strong evidence for the presence of long-range transported African dust, we hypothesize a link between the observed dust episodes and cloud characteristics in the Caribbean at our site, which is similar to the anthropogenic aerosol indirect effect.  相似文献   

6.
If the Earth was formed by accumulation of rocky bodies in the presence of the gases of the primordial solar nebula, the Earth at this formation stage was surrounded by a massive primordial atmosphere (of about 1 × 1026 g) composed mainly of H2 and He. We suppose that the H2 and He escaped from the Earth, owing to the effects of strong solar wind and EUV radiation, in stages after the solar nebula itself dissipated into the outer space.The primordial atmosphere also contained the rare gases Ne, Ar, Kr and Xe whose amounts were much greater than those contained in the present Earth's atmosphere. Thus, we have studied in this paper the dissipation of these rare gases due to the drag effect of outflowing hydrogen molecules. By means of the two-component gas kinetic theory and under the assumption of spherically symmetric flow, we have found that the outflow velocity of each rare gas relative to that of hydrogen is expressed in terms of only two parameters — the rate of hydrogen mass flow across the spherical surface under consideration and the temperature at this surface. According to this result, the rare gases were dissipated below the levels of their contents in the present atmosphere, when the mass loss rate of hydrogen was much greater than 1 × 1017 g/yr throughout the stages where the atmospheric mass decreased from 1 × 1026 g to 4 × 1019 g.  相似文献   

7.
Zusammenfassung In einer Diffusionsnebelkammer, die mit organischen Dämpfen gefüllt war, wurden durch ultraviolettes Licht neutrale Kondensationskerne erzeugt. Diese Kondensationskerne konnten in drei Gruppen eingeteilt werden, die sich nach ihrer Größe und Lebensdauer unterscheiden. Für die kleinsten Kondensationskerne ließ sich zeigen, daß sie freie organische Radikale sind (z.B. CH3).
Summary In a diffusion cloud chamber, filled with organic vapours, neutral condensation nuclei were produced by ultraviolet light. It was possible to divide these condensation nuclei into three groups, distinguishing in size and time of life. It was demonstrated for the smallest condensation nuclei to be free organic radicals (e.g. CH3).
  相似文献   

8.
A joint United States/Russian/French collaborative experiment was undertaken in March 1993 and March 1996. Projects LODE I and II (Lake Owens Dust Experiments) took place on the anthropogenically desertified playa (dry lakebed) and surrounding regions of Owens Lake, in east-central California. One of the five parts of Project LODE was to determine relationships between optical depth and flux of dust emitted from the dry lake. Project LODE II included subsequent dust plume measurements and size distributions obtained through April 1996, to further refine the flux measurements for distinct mineral aerosol source regions at Owens Lake. Size distributions of dust aerosol were determined and aerosol optical depths were calculated from sunphotometer solar extinction measurements taken downwind in plumes coming from the emissive areas of Owens Lake. This source was visually observed for 10 measured dust storms. The plume mass was calculated to be 1·5 × 109 g using ground-based measurements and ≥1·6 × 109 g from satellite data. Project LODE II results were found to be consistent with LODE I results for the south end of the playa, but flux values were found to be reduced for the northeastern portion of the playa by comparison. Vertical flux values estimated by sunphotometry were found to be consistent with values estimated via a micrometeorological method. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
10.
The effect of long-term (11-year solar cycle) solar UV variability on stratospheric chemical and thermal structure has been studied using a time-dependent one-dimensional model. Previous studies have suggested substantial variations in local and total ozone, and in stratospheric thermal structure from solar minimum to solar maximum. It is shown here that significant variations also occur in some of the trace constituents. Members of the HO x family and N2O exhibit the largest variations, and these changes, if detected, may provide additional means of verifying the presence of solar UV variability and its effects. Some of the species show large phase differences with the assumed solar flux variation. The role of chemical and transport time constants on the time variations of the trace species is examined. Comparisons with reported ozone and temperature data show reasonable agreement for the period 1960 to 1972.  相似文献   

11.
We study the mutual relation of sunspot numbers and several proxies of solar UV/EUV radiation, such as the F10.7 radio flux, the HeI 1083 nm equivalent width and the solar MgII core-to-wing ratio. It has been noted earlier that the relation between these solar activity parameters changed in 2001/2002, during a large enhancement of solar activity in the early declining phase of solar cycle 23. This enhancement (the secondary peak after the Gnevyshev gap) forms the maximum of solar UV/EUV parameters during solar cycle 23. We note that the changed mutual relation between sunspot numbers and UV/EUV proxies continues systematically during the whole declining phase of solar cycle 23, with the UV/EUV proxies attaining relatively larger values for the same sunspot number than during the several decennia prior to this time. We have also verified this evolution using the indirect solar UV/EUV proxy given by a globally averaged f0(F2) frequency of the ionospheric F2 layer. We also note of a simultaneous, systematic change in the relation between the sunspot numbers and the total solar irradiance, which follow an exceptionally steep relation leading to a new minimum. Our results suggest that the reduction of sunspot magnetic fields (probably photospheric fields in general), started quite abruptly in 2001/2002. While these changes do not similarly affect the chromospheric UV/EUV emissions, the TSI suffers an even more dramatic reduction, which cannot be understood in terms of the photospheric field reduction only. However, the changes in TSI are seen to be simultaneous to those in sunspots, so most likely being due to the same ultimate cause.  相似文献   

12.
Knowledge of seasonal variation in soil structural and related properties is important for the determination of critical periods during which soil is susceptible to accelerated erosion and other degradative processes. The purpose of this research was to evaluate the magnitude of seasonal variations in selected soil and deposited sediment properties in relation to soil erodibility for a Miamian silt-loam soil (Typic Hapludalf) in central Ohio. Erosion plots (USLE-type) were established on a 4·5% slope and maintained under bare, ploughed conditions from 1988 to 1991. Particle size distribution, bulk density(ρb), percentage water stable aggregates (WSA), soil organic carbon (SOC), and total soil nitrogen (TSN) of both soil and sediment samples were monitored between Autumn 1989 and Spring 1991. The soil and sediment particle size distributions followed no clear seasonal trends. Soil ρb increased following tillage (1·20 Mg m−3) and was highest (1·45 Mg m−3) during the autumn owing to soil slumping and consolidation upon drying. Low winter and spring values of ρb and %WSA (20–50% lower than in autumn) were attributed to excessive wetness and freeze–thaw effects. Both SOC and soil TSN contents progressively declined (from 2·18 to 1·79% and 1·97 to 1·75 g kg−1, respectively) after ploughing owing to maintenance of plots under bare, fallow conditions. Spring highs and autumn lows of sediment SOC (3·12 vs. 2·44%) and TSN (2·70 vs. 1·96 g kg−1) contents were a result of the combined effects of soil microbial activity and rainfall erosivity. Soil properties such as bulk density, SOC and WSA, which vary seasonally, can potentially serve as predictors of seasonal soil erodibility, which, in turn, could improve the predictive capacity of soil erosion prediction models. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Magnetic signature of different vegetation species in polluted environment   总被引:2,自引:0,他引:2  
Detailed magnetic study on vegetation samples from several strongly polluted and clean sites in Bulgaria is carried out in order to evaluate suitability of different species as passive dust collectors in magnetometry. From each location, available species among lichens, mosses, poplar leaves, dandelion, needles have been sampled. Magnetic susceptibility calculated on mass-specific basis shows wide variability between diamagnetic signal up to 846 × 10−8 m3/kg. Lichens and mosses are found to be the species, showing magnetic signals with the strongest contrast between clean and polluted environment. The main magnetic phase is magnetite-like according to the results from thermomagnetic analysis of susceptibility on magnetic extracts. Scanning electron microscopy (SEM) microphotographs reveal the presence of abundant particulate matter on vegetation surface both with anthropogenic (spherules) and lithogenic origin. Magnetic grain size deduced by the ratio of saturation remanent magnetization (SIRM) and mass-specific magnetic susceptibility (χ) and coercivities (Bc and Bcr) suggest that different species accumulate preferentially small SD-like grains from pollution emissions. Contrasting relationship of the ratio of anhysteretic remanent magnetization (ARM) and χ for polluted vs clean sites deduced by needles and lichens may be related to transformation of the accumulated dust particles within lichens’ tissue. This finding indicates that the exact species used as biological dust collector is of importance when studying spatial grain size distribution of magnetic dust particles. Pilot study on polycyclic aromatic hydrocarbons (PAH) content and its relation to magnetic parameters shows good correspondence between high levels of PAHs and high SIRM values for locations affected by non-ferrous industrial production.  相似文献   

14.
Great volcanic eruptions that eject much dust into the stratosphere are known to change climatic factors,e.g. temperature and solar radiation. It is known, on the other hand, that superimposed on the normal variation in the size of tree-rings is a variation caused by inequalities of climate. Therefore, the notion that tree-rings may preserve the date of several great volcanic eruptions seems probable. In order to support this statement, numerical investigations have been performed. Treering graphs of two Hungarian trees were compared with the chronological order of great volcanic eruptions. The mathematical correlation between the variation of the dust veil index (DVI) is examined, based on two-variate numerical computation. It is concluded that during periods subsequent to very great eruptions, exceptionally narrow rings were formed. A remarkable correlation has been found between the variation of mean values of the ring width and that of the dust veil index. Consequently, growth rings of trees in some cases record dates of great volcanic eruptions by responsing to temporary climatic changes caused by volcanic activity. This paper commemorates the 100th anniversary of the eruption of the Indonesian volcano Krakatau in 1883.  相似文献   

15.
Xenon isotopic analyses by stepwise heating are presented for two neutron-irradiated chondrites, Arapahoe (L5) and Bjurböle (L4). The iodine-xenon formation age of Arapahoe is the oldest yet observed, 9.9 ± 0.8 m.y. before that of Bjurböle. It is thus unlikely that younger ages found in carbonaceous chondrite magnetite record the condensation of the solar nebula. The composition of trapped xenon in Arapahoe is normal except for a deficiency of129Xe, where we infer 129/Xe132Xe= 0.56 ? 0.04, well below the apparent primordial solar system value. This need not conflict with higher values in other metamorphosed meteorites since growth of129Xe from decay of129I in xenon-depleted environments can be substantial. The contrast with apparent average solar system composition cannot be easily explained, however, since there is no way to generate one composition from the other. The simplest way to achieve low129Xe seems to be to suppose that before decay to129Xe r-process production at mass 129 condensed into dust as129I, and that Arapahoe's parent body formed in a region of the solar system substantially depleted of this dust before any isotopic homogenization by vaporization of the remaining dust. Arapahoe is not unique in having trapped129Xe-deficient xenon, nor in any other respect yet observed, so some such history evidently characterizes major groups of meteorites.  相似文献   

16.
中低纬地区电离层对CIR和CME响应的统计分析   总被引:1,自引:1,他引:0       下载免费PDF全文
本文利用中低纬日本地区(131°E,35°N)GPS-TEC格点化数据,分析了2001—2009年间109个共转相互作用区(CIR)事件、45个日冕物质抛射(CME)事件引起的地磁扰动期间电离层的响应.结果表明,电离层暴的类型随太阳活动的变化而有不同的变化,CIR事件引发的电离层正相暴、正负双相暴多发生在太阳活动下降年,负相暴多发生在高年,负正双相暴多发生在低年;CME事件引发的电离层正相暴和负相暴多发生在高年.CIR和CME引发的不同类型的电离层暴的季节性差异不大,在夏季多发生正负双相暴.电离层暴发生时间相对地磁暴的时延大部分在-6~6h之间,但CIR引发的电离层暴时延范围更广,在-12~24h之间,而CME引发的电离层暴时延主要在-6~6h之间.中低纬的电离层暴多发生在主相阶段,其中CIR引发的双相暴也会发生在初相阶段.电离层负暴多发生在AE最大值为800~1200nT之间.CIR引起的电离层扰动持续时间较长,一般在1~6天左右,而CME引起的电离层扰动持续时间一般在1~4天左右.  相似文献   

17.
This study simulates how spatial variations in particle‐size emissions from a playa affect bulk and size‐resolved dust concentration profiles during two contrasting wind erosion events (a small local and a large regional event) in the Channel Country, Lake Eyre Basin, Australia. The regional event had higher dust concentration as a result of stronger frontal winds and higher erodibility across the playa. For each event, two emission scenarios are simulated to determine if measured size‐resolved dust concentration profiles can be explained by spatial variability in source area emissions. The first scenario assumes that particle‐size emissions from source areas occur at a uniform rate, while the second scenario assumes that particle‐size emissions vary between and within source areas. The uniform emission scenario, reproduced measured bulk dust concentration profiles (R2 = 0·93 regional and R2 = 0·81 local), however simulated size‐resolved dust concentration profiles had poor statistical fits to measured size‐resolved profiles for each size class (the highest were R2 = 0·5 regional and R2 = 0·3 local). For the differential particle‐size emission scenario, the fit to the measured bulk dust concentration profiles is improved (R2 = 0·97 regional and R2 = 0·83 local). However, the fit to the size‐resolved profiles improved dramatically, with the lowest being R2 = 0·89 (regional) and R2 = 0·80 (local). Particle‐size emission models should therefore be tested against both bulk and size‐resolved dust concentration profiles, since if only bulk dust concentration profiles are used model performance may be over‐stated. As the source areas in the first 90 m upwind of the tower were similar for both events, the percentage contributions of each particle‐size class to total emissions can be compared. The contribution of each particle‐size class was similar even though the wind speed, turbulence and dust concentrations were significantly different; suggesting that the contribution of each particle‐size to the total emitted dusts is not related to wind speed and turbulence. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
It is proposed that a component of meteoric smoke, sodium bicarbonate (NaHCO3), provides particularly effective condensation nuclei for noctilucent clouds. This assertion is based on three conditions being met. The first is that NaHCO3 is present at sufficient concentration (104 cm–3) in the upper mesosphere between 80 and 90 km. It is demonstrated that there is strong evidence for this based on recent laboratory measurements coupled with atmospheric modelling. The second condition is that the thermodynamics of NaHCO3(H2O)n cluster formation allow spontaneous nucleation to occur under mesospheric conditions at temperatures below 140 K. The Gibbs free energy changes for forming clusters with n = 1 and 2 were computed from quantum calculations using hybrid density functional/Hartree-Fock (B3LYP) theory and a large basis set with added polarization and diffuse functions. The results were then extrapolated to higher n using an established dependence of the free energy on cluster size and the free energy for the sublimation of H2O to bulk ice. A 1-dimensional model of sodium chemistry was then employed to show that spontaneous nucleation to form ice particles (n > 100) should occur between 84 and 89 km in the high-latitude summer mesosphere. The third condition is that other metallic components of meteoric smoke are less effective condensation nuclei, so that the total number of potential nuclei is small relative to the amount of available H2O. Quantum calculations indicate that this is probably the case for major constituents such as Fe(OH)2, FeO3 and MgCO3.  相似文献   

19.
Extended periods of very low geomagnetic activity as described by very quiet intervals (VQI's) occur only at those times when the solar wind velocityV has a generally decreasing trend, i.e., they mainly occur either after the velocity peak of a high speed solar stream has passed the Earth, or at times when the Earth is immersed in a low speed solar plasma provided that the daily mean value ofdV/dt is negative. The VQI's most frequently start whendV/dt<0 anddB Z/dt>0 (B Z is the geocentric solar magnetrospheric-GSMZ-component of the IMF) and end most likely whendV/dt>0 anddB Z/dt<0. The temporal trends of the solar wind (SW) velocity affect the variation of thea p index only when the level of geomagnetic activity is generally low.It is suggested that a gradual expansion or contraction of the magnetosphere, associated with a slow variation of the SW pressure, plays a role in the modification of the reconnection-driven magnetohydrodynamic (MHD) fluctuations in the magnetosphere.  相似文献   

20.
A complex of geophysical phenomena (geomagnetic pulsations in different frequency ranges, VLF emissions, riometer absorption, and auroras) during the initial phase of a small recurrent magnetic storm that occurred on February 27–March 2, 2008, at a solar activity minimum has been analyzed. The difference between this storm and other typical magnetic storms consisted in that its initial phase developed under a prolonged period of negative IMF B z values, and the most intense wave-like disturbances during the storm initial phase were observed in the dusk and nighttime magnetospheric sectors rather than in the daytime sector as is observed in the majority of cases. The passage of a dense transient (with N p reaching 30 cm−3) in the solar wind under the southward IMF in the sheath region of the high-speed solar wind stream responsible for the discussed storm caused a great (the AE index is ∼1250 nT) magnetospheric substorm. The appearance of VLF chorus, accompanied by riometer absorption bursts and Pc5 pulsations, in a very long longitudinal interval of auroral latitudes (L ∼ 5) from premidnight to dawn MLT hours has been detected. It has been concluded that a sharp increase in the solar wind dynamic pressure under prolonged negative values of IMF B z resulted in the global (in longitude) development of electron cyclotron instability in the Earth’s magnetosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号