首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Abstract   Amphibolites in the Haenggongni area (Haenggongni amphibolite) and the Okbang area (Okbang amphibolite) in northeastern Yeongnam massif, South Korea occur as a sill-like body or inclusions within the metasedimentary sequences of the Proterozoic Wonnam Group. Major and trace element characteristics demonstrate that both amphibolites have tholeiitic chemical affinity. They are characterized by nearly flat rare earth element (REE) patterns, and low contents of immobile incompatible elements and have low values of Zr/Y, Ti/Y, La/Nb and Ta/Yb ratios, indicating enriched (E)-type mid-oceanic ridge basalt (MORB) affinities for their protoliths. This suggests that amphibolite protoliths formed in an extensional rift setting leading up to ocean opening. In combination with the previous studies in Yeongnam massif, three protolith types of amphibolites are assumed (E-type MORB, within-plate basalt and volcanic arc basalt). They could have been originated in different tectonic settings and/or different episodes. These characteristics are clearly different from the amphibolites in the Gyeonggi massif and Okcheon belt, in which most of the amphibolites show a within-plate basalt affinity that developed in continental rift zone.  相似文献   

2.
Abyssal peridotites collected along the highly oblique-spreading Lena Trough north of Greenland and Spitsbergen have mineral compositions that are similar to residual abyssal peridotites, except for high sodium concentrations in clinopyroxene (cpx). Most samples are lherzolites with light rare earth element (REE)-depleted cpx trace element patterns, but significantly fractionated middle to heavy REE ratios at relatively high heavy REE concentrations. Such characteristics can only be explained by initial melting of a garnet peridotite followed by low degrees of melting in the stability field of spinel peridotite. The residual garnet signature requires either a high potential temperature of the upwelling mantle, or elevated solidus-lowering water contents. The limited spinel field melting suggests a deep cessation of melt extraction, possibly because of the presence of a thick lithospheric cap. This is consistent with the extremely low effective spreading rate and the vicinity to a passive continental margin, which allow conductive cooling to reach deeper levels than commonly estimated for faster mid-ocean ridges. High sodium concentrations in cpx are neither explainable by melt refertilization, nor by a simple diffusion mechanism. The efficient fractionation of sodium from the light REE requires post-melting metasomatism, which is typically restricted to the subcontinental lithosphere. This might imply that the Lena Trough peridotites represent unroofed subcontinental mantle, from which no melt was extracted during the opening of the Lena Trough. It is more likely that sodic metasomatism occurred after partial melting underneath the Lena Trough, and that such an enrichment process is responsible for elevated sodium concentrations in abyssal peridotites elsewhere. Sodium in cpx of residual peridotites can therefore not serve as an indicator of partial melting or melt refertilization.  相似文献   

3.
Geochemistry and petrogenesis of ophiolites from Northern Pindos (Greece)   总被引:1,自引:0,他引:1  
The ophiolitic complex of Northern Pindos (Greece) contains ocean-floor basalts and low-Ti mafic rocks. The former rocks are similar to recent mid-ocean ridge basalts with a light REE depletion and a La/Yb ratio < 2. The low-Ti rocks resemble boninites in their high Mg and very low Ti and Zr contents and in their REE patterns which have convex-downwards shape with a slight light REE enrichment. However, their Zr/Ti, Ti/V and Zr/Y ratios are lower than in boninites. Both rock-types could be generated by dynamic partial melting of a rising upper mantle diapir. Slight enrichment in light REE, Sr, Rb and Ba in low-Ti rocks could be the result of either metasomatic or alteration processes. Although a subduction zone origin of the sequence is possible, the geochemical data do not necessarily imply such a setting.  相似文献   

4.
143Nd/144Nd,87Sr/86Sr and trace element results are reported for volcanic and plutonic rocks of the Aleutian island arc. The Nd and Sr isotopic compositions plot within the mantle array with εNd values of from 6.5 to 9.1 and87Sr/86Sr ratios of from 0.70289 to 0.70342. Basalts have mildly enriched light REE abundances but essentially unfractionated heavy REE abundances, while andesites exhibit a greater degree of light to heavy REE fractionation. Both the basalts and andesites have significant large ion lithophile element to light rare earth element (LILE/LREE) enrichments. Variations in the isotopic compositions of Nd and Sr are not related to the spatial distribution of volcanoes in the arc, nor are they related to temporal differences. εNd and87Sr/86Sr do not correlate with major element compositions but do, however, correlate with certain LILE/LREE ratios (e.g. BaN/LaN). Plutonic rocks have isotropic and trace element characteristics identical to some of the volcanic rocks. Rocks that make up the tholeiitic, calc-alkaline and alkaline series in the Aleutians do not come from isotopically distinct sources, but do exhibit some differing LILE characteristics.Given these elemental and isotopic constraints it is shown that the Aleutian arc magmas could not have been derived directly from homogeneous MORB-type mantle, or fresh or altered MORB subducted beneath the arc. Mixtures of partially altered MORB with deep-sea sediment can in principle account for the isotopic characteristics and most of the observed LILE/LREE enrichments. However, some samples have exceedingly high LILE/LREE enrichments which cannot be accounted for by sediment contamination alone. For these samples a more complex scenario is considered whereby dehydration and partial melting of the subducted slab, containing less than 8% sediment, produces a LILE-enriched (relative to REE) metasomatic fluid which interacts with the overlying depleted mantle wedge. The isotopic and LILE characteristics of the mantle are extremely sensitive to metasomatism by small percentages of added fluid, whereas major elements are not substantially effected, Major element compositions of Aleutian magmas are dominantly controlled by the partial melting of this mantle and subsequent crystal fractionation; whereas isotopic and LILE characteristics are determined by localized mantle heterogeneities.  相似文献   

5.
Major and trace element compositions of amphibolites and quartzose rocks in the 230-m-thick metamorphic sole underlying the mantle section of the Oman ophiolite in Wadi Tayin area were determined to investigate the chemical characteristics of the hydrous fluid released from subducted amphiboltie-facies slab. The fluid-immobile element compositions indicate that protoliths of these rocks are mid-ocean ridge basalt-like tholeiite and deep-sea chert, which is consistent with the idea that these rocks represent Tethyan oceanic crust overridden during the early, intraoceanic thrusting stage of the Oman ophiolite emplacement. The rare-earth element (REE) and high field-strength element concentrations of the amphibolites show limited variations, within a factor of two except for a few evolved samples, throughout transect of the sole. On the other hand, concentrations of fluid-mobile elements, especially B, Rb, K and Ba, in amphibolites are highly elevated in upper 30 m of the sole (> 600 °C in peak metamorphic temperature), suggesting the equilibration with evolved, B-Rb-K-Ba-rich fluids during prograde metamorphism. The comparison with amphibolites in the lower 150 m (500 to 550 °C) demonstrates that the trace element spectra of the fluids equilibrated with the high-level amphibolites may vary as a function of metamorphic temperature. The fluids are characterized by striking enrichments of B, Rb, K and Ba and moderate to minor enrichments of Sr, Li, Be and Pb. At higher temperature (up to 700 °C), the fluids become considerably enriched in light REE and Nb in addition to the above elements. The estimated trace element spectra of the fluids do not coincide with the compositions of basalts from matured intra-oceanic arcs, but satisfactorily explain the characteristics of the low-Pb andesites and boninites found in the Oman ophiolite. Compositional similarity between the boninites of Oman and other localities suggests that the fluids estimated here well represent the amphibolite-derived fluids involved in the magmatism of immatured, hot, shallow subduction zones.  相似文献   

6.
Abstract   Spinel lherzolite is a minor component of the deep-seated xenolith suite in the Oki-Dogo alkaline basalts, whereas other types of ultramafic (e.g. pyroxenite and dunite) and mafic (e.g. granulite and gabbro) xenoliths are abundant. All spinel lherzolite xenoliths have spinel with a low Cr number (Cr#; < 0.26). They are anhydrous and are free of modal metasomatism. Their mineral assemblages and microtextures, combined with the high NiO content in olivine, suggest that they are of residual origin. But the Mg numbers of silicate minerals are lower (e.g. down to Fo86) in some spinel lherzolites than in typical upper mantle residual peridotites. The clinopyroxene in the spinel lherzolite shows U-shaped chondrite-normalized rare-earth element (REE) patterns. The abundance of Fe-rich ultramafic and mafic cumulate xenoliths in Oki-Dogo alkali basalts suggests that the later formation of those Fe-rich cumulates from alkaline magma was the cause of Fe- and light REE (LREE)-enrichment in residual peridotite. The similar REE patterns are observed in spinel peridotite xenoliths from Kurose and also in those from the South-west Japan arc, which are non-metasomatized in terms of major-element chemistry (e.g. Fo > 89), and are rarely associated with Fe-rich cumulus mafic and ultramafic xenoliths. This indicates that the LREE-enrichment in mantle rocks has been more prominent and prevalent than Fe and other major-element enrichment during the metasomatism.  相似文献   

7.
The pre-3100 m.y. old Ameralik dykes from West Greenland show a range in primary composition from primitive low-K, low-Ti tholeiites virtually identical in composition to ridge basalts of modern ocean crust, to more differentiated basaltic rocks similar to some present-day continental tholeiites. Primary variations are distinguished from secondary metasomatism using REE patterns, Ni, Sr, Ti and Zr contents and Mg number as a guide to the stage of differentiation reached by a particular sample and comparing this to the amount of alkalis present. The chemistry of the dykes is compared to that of metabasalts from Archaean greenstone belts and the use of chemistry alone to distinguish the crustal environment under which Archaean basic rocks were formed is questioned.  相似文献   

8.
Ferromanganese nodules from the Bauer Basin of the south equatorial Pacific are unlike virtually all oceanic nodules so far analyzed in showing negative Ce anomalies in their REE abundance patterns. In comparison with similarly Cu-Ni-enriched nodules from the north equatorial Pacific they are depleted in REE by 50–80% and are heavy REE enriched relative to intermediate REE. The REE patterns can be accounted for by the input of hydrothermal iron oxyhydroxides and associated REE to the Bauer Basin and the transfer of the REE to the nodules because of diagenetic reactions in the sediment. The excess iron input also is reflected in lower Cu/Ni ratios in the nodules as compared with nodules from the north equatorial zone, apparently because of the larger proportions of a residual Fe phase in the nodules relative to todorokite. Cerium anomalies of the Bauer Basin nodules range from ?0.17 to ?0.29 as compared with +0.33 to +0.07 in the north equatorial Pacific but show a parallel sensitivity of Ce anomaly to Mn/Fe ratios of the nodules. Nodules with the more positive anomalies within each group have the smallest Mn/Fe ratios and have been subjected to the greatest seawater influence whereas nodules with the more negative anomalies have the largest Mn/Fe ratios and have been subjected to the greatest diagenetic influence.  相似文献   

9.
The distribution and fractionation of rare-earth elements (REE) are studied in the surface and subsurface waters and rocks of the Albynskoe Gold-Bearing Placer. The obtained data show the rocks of the placer to be enriched with rare-earth elements and to feature the predominance of light lanthanides over heavy ones. Groundwater show an equality between the groups of light and heavy lanthanides, while in the surface waters the concentration of light REE is much higher than that of heavy ones, thus reflecting the composition of the drained ore rocks. The leaching of rare-earth elements from rocks by atmospheric water is intensified by agents produced by microorganisms in their vital activity.  相似文献   

10.
Sc, Y, Th, Cu and rare earth elements (REE) concentrations have been analyzed in 14 samples of surface sediments and in two gravity cores by means of ICP-MS. Mean concentrations of Sc, Y and Th in surface sediments are 6.23, 4.76 and 16.30 ppm, respectively, lower than those present in the Upper Continental Crust (UCC). Cu concentration in these sediments is very high, 1466 ppm, and is caused by inputs from the Odiel and Tinto rivers, affected by acid mine drainage. SigmaREE mean concentration is 106.8 ppm, lower than that observed in other rivers and estuaries. In the cores, Sc, Y and Th concentrations show a significant increase in the intermediate levels, between 10 and 40 cm depth. The same pattern exists with Cu, where concentrations of 4440 ppm can be reached. Vertical evolution patterns for Sc, Y, Cu and heavy REE (HREE) are similar, and contrary to those shown by Th, light REE (LREE) and middle REE (MREE). Plots of North American Shale Composite (NASC)-normalized REE data of surface sediments show a slight depletion in REE concentrations. Most samples present with middle REE enrichment relative to light REE and heavy REE. Conversely, samples of the intermediate levels of the cores show significant enrichment of REE relative to NASC and high values in the (La/Gd)NASC and (La/Yb)NASC ratios. These anomalies in the fractionation patterns caused by enrichments in LREE and MREE concentrations is related to the presence of high concentrations of Th. They were generated by effluents from fertilizer factories between 1968 and 1998 which used phosphorite as source material.  相似文献   

11.
We report REE and minor element distributions for perovskites from seven kimberlites (South Africa and U.S.A.). The REE (1.6–6.3 oxides wt.%) are always strongly light REE enriched, often with Ce > La (chondrite-normalized), and show an expected close correlation with whole-rock analyses. Where examined, perovskite contains far more REE than coexisting apatite, by about an order of magnitude. Calculations indicate that iron is mostly present as Fe3+ and is low (1.0–2.9 wt.% Fe2O3) compared with perovskite from carbonatite complexes such as Oka (4.4 wt.% FeO [3]). In addition to established Nb (0.3–1.7 oxide wt.%), geochemically interesting elements encountered include Zr (up to 1.5 oxide wt.%), Ba and Sr (up to 0.2, 0.4 oxide wt.% respectively). Specific geological applications suggest a possible genetic link between Wesselton pipe and Benfontein Sills kimberlites, and that carbonate-rich dikes in the Premier mine were derived from kimberlites. The overall similarities with incompatible element-rich titanates in veined mantle peridotites suggest a more direct link between kimberlite magmatism and mantle metasomatism.  相似文献   

12.
Ultramafic xenoliths in mesozoic diorite in west shandong province   总被引:19,自引:2,他引:17  
Deep-seated xenoliths are common in alkali ba-salts, kimberlites and lamprophyres[1]. These host rocks are all basic or ultrabasic volcanic and subvol-canic rocks originating from mantle. Reports of ul-tramafic xenoliths found in plutons are uncommon except those of Mesozoic diorites in North China[2—6]. This paper provides detailed mineralogy, petrology and geochemistry of ultramafic xenoliths in Tietong-gou pluton, Laiwu, Shandong Province, and discusses the possibility of their deep-sea…  相似文献   

13.
REE, Y, Rb, Sr, Cs, Ba, Pb, Th, U, Zr, Hf, and Sn are reported for a basalt, low-Si andesite, andesite, high-K andesite, dacite and rhyolite from the calc-alkaline volcanic belt of Calimani-Harghita Mountains (Rumenian Carpathians). The basalt, low-Si andesite and andesite show identical chondrite-normalized REE patterns with fractionated light REE (La-Sa) and unfractionated heavy REE (Gd-Yb). The dacite shows similar pattern but lower ΣREE. The high-K andesite and rhyolite have a distinctively different REE pattern strongly fractionated for both light and heavy REE. These differences point to different genetical mechanism for the high-K andesite-rhyolite and basalt-low-Si andesite-andesite-dacite magmas. The high-K andesite and rhyolite magmas are believed to represent primary melts of an undergoing oceanic slab; the basalt, low-Si andesite, andesite and dacite magmas are considered to be produced by partial melting of garnet pyroxenite bodies derived by reaction between the primary melts of the undergoing oceanic slab and the peridotitic mantle overlying the Benioff zone.  相似文献   

14.
Sixteen sets of apatite/liquid partition coefficients (Dap/liq) for the rare earth elements (REE; La, Sm, Dy, Lu) and six values for Sr were experimentally determined in natural systems ranging from basanite to granite. The apatite + melt (glass) assemblages were obtained from starting glasses artificially enriched in REE, Sr and fluorapatite components; these were run under dry and hydrous conditions of 7.5–20 kbar and 950–1120°C in a solid-media, piston-cylinder apparatus. An SEM-equipped electron microprobe was used for subsequent measurement of REE and Sr concentrations in coexisting apatites and quenched glasses. The resulting partition coefficient patterns resemble previously determined apatite phenocryst/groundmass concentration ratios in the following respects: (1) the rare earth patterns are uniformly concave downward (i.e., the middle REE are more compatible in apatite than the light and heavy REE); (2) DREEap/liq is much higher for silicic melts than for basic ones; and (3) strontium (and therefore Eu2+) is less concentrated by apatite than are the trivalent REE. The effects of both temperature and melt composition on DREEap/liq are systematic and pronounced. At 950°C, for example, a change in melt SiO2 content from 50 to 68 wt.% causes the average REE partition coefficient to increase from ~7 to ~30. A 130°C increase in temperature, on the other hand, results in a two-fold decrease in DREEap/liq. Partitioning of Sr is insenstitive to changes in melt composition and temperature, and neither the Sr nor the REE partition coefficients appear to be affected by variations in pressure or H2O content of the melt.The experimentally determined partition coefficients can be used not only in trace element modelling, but also to distinguish apatite phenocrysts from xenocrysts in rocks. Reported apatite megacryst/host basalt REE concentration ratios [12], for example, are considerably higher than the equilibrium partition coefficients, which suggest that in this particular case the apatite is actually xenocrystic.A reversal experiment incorporated in our study yielded diffusion profiles of REE in apatite, from which we extracted a REEαCa interdiffusion coefficient of 2–4×10?14 cm2/s at 1120°C. Extrapolated downward to crustal temperatures, this low value suggests that complete REE equilibrium between felsic partial melts and residual apatite is rarely established.  相似文献   

15.
The abundance and distribution of rare earth elements (REE) and their signatures in the Vigo Ria were studied from 50 samples of surface sediments and related to the geological formation in its watershed. The total amount of REE in the Ria is heterogeneous. It ranges from 220 mg kg−1 in the southern middle Ria margin in the vicinity of the Galiñeiro geological shore complex, which contains REE-enriched minerals, to 2 mg kg−1 near the Ria mouth due to dilution with high levels of carbonated biogenic particles (31% of Ca). Rare earth elements of the Ria sediments are considerably enriched in light-REE relative to heavy-REE (a LREE/HREE ratio of 9.7±1.6) and also show a slightly negative Eu-anomaly. Low European shale normalised REE patterns were distinguished in the innermost sediments of Vigo Ria, but were not correlated with Al. This suggests a minor contribution of REE from upstream freshwater inputs to the sediments in the middle Vigo Ria zone. Normalised REE ratios in the middle Ria imply that fine particles enriched in REE may be exported from the Ria to shelf mud patches and REE can be useful as sediment tracers of Ria input on the shelf.  相似文献   

16.
Os isotope ratios of mantle peridotites have been considered to be largely immune to recent melt-rock interaction. However, Os isotope ratios and PGE (Platinum group elements) concentrations of the Yong’an xenoliths have been significantly modified by melt percolation, and are not suitable for determining the formation age of lithosphere mantle in Yong’an. In this study, the Yong’an spinel peridotite xenoliths are divided into two groups: N-Type and E-Type. The N-Type group including cpx (clinopyroxene)-poor lherzolite and harzburgite, shows a large variation of Cr#(sp) (13.2-48) and sulfur contents (from 171 ppm to below detection limit), whereas the E-Type peridotites are mainly refractory harzburgites and are characterized by high Cr#(sp) (35.3-42.2) and overall low sulfur contents (below 51 ppm). Both types show similar major and REE (rare earth element) patterns. Furthermore, the N-Type peridotites display a restricted range of iridium-group PGE (IPGE), Os/Ir and Ru/Ir ratios (Os/Ir = 0.64-1.12, Ru/Ir = 1.52-1.79) and variable palladium-group PGE (PPGE) contents (3.4-14.9 ppb), whereas the E-Type peridotites show a large variation of Os/Ir and Ru/Ir ratios (Os/Ir = 0.33-0.84, Ru/Ir = 0.94-1.6), and a restricted range of PPGE (4.3-6.9 ppb). 187Os/188Os ratios of E-Type peridotites are higher than those of N-Type peridotites at comparable fertility levels. These results suggest that N-Type peridotites may have been overprinted by metasomatism via small melt fractions, in which the percolation of the volatile-rich, small melt fractions only resulted in LILE (large ion lithophile element) enrichment of clinopyroxene, and their whole rock PGE contents and Re-Os isotope values were little changed. Moreover, E-Type peridotites may have been modified by melt-rock reaction involving relatively large melt fractions, which may result in the formation of secondary cpx and olivine and the removal of IPGE-bearing minerals such as Ru-Os-(Ir) alloys or laurite, followed by precipitation of secondary sulfides from melt with radiogenic isotopic signature.  相似文献   

17.
Abundant metabasites occur in highly deformed granitic and migmatitic gneisses as blocks and lenses of tens of meter size around the Haiyangsuo area, northeast part of Sulu UHP belt, eastern China. They comprise garnet-pyroxene granulites, eclogitized granulites and amphibolites. Their protolith compositions were mainly olivine tholeiite and quartz tholeiite, and show variation from Mg-rich to Fe-rich component as tholeiitic cumulates. Pearce’s element ratio slopes suggested that protolith of these rocks were comagmatic, and generated from a primary magma by fractional crystallization of plagioclase, olivine and clinopyroxene. The crystallization differentiation has also been evidenced by trace elements, such as parallel REE patterns, Ni vs Ce variations, Sr increasing depletions, although the large ion lithophile elements (LILE) were modified to different extent during metamorphism. Trace element composition and Nd isotopes indicate a depleted mantle origin for these rocks. But they are not likely to be fragments of ophiolites or tholeiites connected with subduction, they formed probably at intra-continent environment. Sm-Nd whole rock isochron age of 2252±180Ma indicates approximately the formation age of igneous protolith of these rocks, almost 2000Ma earlier than the formation of the Dabie-Sulu UHP collision zone at about 240–220 Ma.  相似文献   

18.
Major, trace and rare earth elements were measured in 27 samples of the Middle to Late Permian limestones from the Tieqiao section located on the marginal zone of an isolated platform (Laibin, South China). Shale-normalized REE+Y patterns of all samples show notably negative Ce anomalies (0.21–0.66, average 0.33), slightly positive Gd anomalies (1.08–1.30, average 1.20), and positive Y anomalies with superchondritic Y/Ho ratios (36–91, average 55), which are consistent with those of modern shallow seawater. Their relative LREEs enrichment with higher NdSN/YbSN ratios (0.58–1.80) than those of modern shallow seawater (0.21–0.50) suggests complicated sources of REEs for all samples. Compared with geochemical features of sediments influenced by terrigenous particles and hydrothermal fluids, it is concluded that ambient shallow seawater was the primary source of REEs in these limestones. Comparing the indicators of REE+Y elements (ΣREE, NdSN/YbSN, Ce/Ce*, Gd/Gd*, Eu/Eu* and Y/Ho) in limestones with those in bedded cherts from the Tieqiao section, we consider that limestone and bedded chert have similar sources of REE+Y elements: ambient shallow seawater with more or less hydrothermal fluids. In addition, there is a completely negative correlation between CaCO3 and SiO2 contents in limestones and bedded cherts. These results imply that precipitation of CaCO3 was inhibited by that of SiO2 which was derived mainly from hydrothermal fluid, especially in bedded cherts from the Tieqiao section.  相似文献   

19.
Vertical profiles of dissolved rare earth elements (REEs) were obtained in the Bay of Bengal and the Andaman Sea. The REE concentrations at various depths in the Bay of Bengal are the highest in the Indian Ocean. This is attributable ultimately to the large outflow of the Ganges–Brahmaputra and Irrawaddy rivers, but the dissolved REE flux to surface waters alone cannot explain the large and near-constant REE enrichment throughout the entire water column. The underlying fan sediments serve as not a source but a sink for dissolved REE(III)s. Absence of excess 228Ra in the deep waters suggests that lateral input of dissolved REEs from slope sediments is also small in these regions. Partial (<0.3%) dissolution of detrital particles, which are carried by the rivers and lateral surface currents and subsequently settle through the water column, appears to be a predominant source for the dissolved REEs. Vertical profiles showing an almost linear increase with depth are common features for the light and middle REEs everywhere, but their concentration levels are variable from basin to basin and from element to element. This suggests that their oceanic distributions respond quickly to the variation of particle flux and its REE composition through reversible exchange equilibrium with suspended and sinking particles much like the case for Th. The relative importance of the vertical geochemical processes of reversible scavenging over the horizontal basin-scale ocean circulation with passive regeneration like nutrients decreases systematically from the light to the heavy REEs. Using a model, the mean oceanic residence times of REEs in the Bay of Bengal are estimated to range from 37 years for Ce to 140–1510 years for the strictly trivalent REEs. In the deep water of the Andaman Sea, isolated from the Bay of Bengal by the Andaman–Nicobar Ridge (maximum sill depth of ∼1800 m), the REE concentrations are almost uniform presumably due to rapid vertical mixing. The REE(III) concentrations are similar to that of ∼1250 m depth water in the Bay of Bengal, consistent with other oceanographic properties. However, the REE composition of the deep water appears to be altered slightly by preferential scavenging of the light REE(III) at the bottom boundary of the basin.  相似文献   

20.
Rare earth element abundances have been measured in pyroxenitic (19.6% MgO) to gabbroic (7.7% MgO) rocks from the upper part of a thick, layered komatiite lava flow (Fred's Flow) in Munro Township, Ontario. This flow apparently erupted as a highly basic liquid which subsequently differentiated into layers of ultramafic cumulate rocks and a basaltic residual liquid. The analyzed rocks have compositions and spinifex or equigranular textures interpreted to indicate that they represent the complete range of liquids that were present during the differentiation of the lava.All the analyzed rocks are depleted in light REE, and also exhibit a slight depletion of Yb and Er relative to Gd and Dy. Chondrite-normalized Ce and Yb abundances range from 3.2 to 7.8 and 5.1 to 9.7 respectively. Proportions of fractionating minerals were estimated using a major element petrological mixing program and petrographic data. REE modeling based on these results indicates that the dominant process relating the samples is low-pressure fractional crystallization of olivine, followed at lower temperatures by clinopyroxene and plagioclase. Except for Eu, correspondence between observed and calculated REE abundances obviates any need to appeal to processes of major REE redistribution during diagenesis and low-grade metamorphism. Major differences in REE patterns of other ultramafic and mafic komatiitic lava flows [6,11], therefore, probably reflect different episodes of partial melting and/or differences in mantle source composition. The consistency of the REE in the layered flow, however, supports the concept that mafic komatiites can also be derived from ultrabasic parental magmas by low-pressure fractional crystallization. The light-REE-depleted patterns of these komatiites resemble those of modern MORB, suggesting that the mantle source of the komatiites had undergone a previous melting episode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号