首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
东秦岭商丹构造带主要地质体的同位素年龄及其构造意义   总被引:9,自引:0,他引:9  
东秦岭商丹构造带内的武关岩群大陆裂谷火山-沉积岩系、松树蛇绿岩、丹凤岩群岛弧型火山-沉积岩系及主要岩浆侵入岩体主体形成于中、新元古代。中元古代是北秦岭地壳的主要垂向增生时期,晋宁期沿商丹构造带发生洋-陆俯冲-碰撞造山作用,导致北秦岭地壳的形成和侧向增生。  相似文献   

2.
秦岭造山带历经新元古代陆块汇聚与裂解、古生代沿商丹带俯冲增生与碰撞,以及中生代沿勉略带南北两大陆块最终碰撞造山,成为一多期次构造演化而成的复合型大陆造山带.其中,最为显著的是中生代早期伴随最终碰撞造山秦岭发生强烈构造岩浆事件,在陕西商州市以西的东、西秦岭地区乃至扬子地块西北缘形成了巨量的花岗岩体,构成秦岭巨大花岗岩带.  相似文献   

3.
从历史-因果论的角度,对亚洲大陆中部的演化-运动史,及其大地构造体制发展阶段的地质构造和成矿作用,进行了系统的阐述,重点阐述了东、西部构造差异的历史-动力学表现及其原因。研究表明:这种差异并非两个不同大陆壳体演化-运动上的差异造成,而是在同一大陆壳体形成与平向增生进程中东早西晚的历史背景条件下,由于东部与西部中生代、新生代陆内深部地幔热能聚集增强的上升流与热能发散衰减的下降流,共同组成的垂向热流环发生反转变化造成的结果,并得出了主导亚洲大陆中部东、西构造分异的主动性因素是陆内地幔热能聚散动力学机制的结论。同时指出,中新生代出现在亚洲大陆中部的东、西构造分异,是同一大陆壳体即东-中亚壳体自身历史-动力学构造分异的表现,它是亚洲大陆动力学中,与陆内克拉通活化及活化造山区的出现、青藏高原的隆升、东亚陆缘扩张带的形成并列的 4个重大事件之一,并在这些重大事件的动力学研究中占据关键性的核心地位。  相似文献   

4.
东北亚是由古生代中期至早中生代时期的大陆碰撞及其后晚中生代时期沿太平洋边缘出现的地体增生与左行走滑断层作用共同形成的。西伯利亚、中朝与扬子陆块的碰撞时代尚有争议;一些地质学家基于古地磁资料与生物古地理资料认为中朝陆块与扬子陆块是在早中生代时期沿秦岭缝合带碰撞对接的,而其他地质学家更趋向于中晚古生代碰撞。  相似文献   

5.
东北亚南区中—新生代大地构造轮廓   总被引:27,自引:6,他引:27       下载免费PDF全文
葛肖虹  马文璞 《中国地质》2007,34(2):212-228
东北亚南区是西太平洋构造带、北美大陆板块(或鄂霍次克板块)与中亚造山带、中朝、扬子板块等交汇部位,在泛大陆(Pangaea)拼合、裂解的宏观背景下中—新生代以来经历了多次构造事件的叠加,构造面貌比较复杂。包括朝鲜半岛在内,许多中—小型陆块的构造归属长期以来一直存在着争议,笔者根据近年来SHRIMP测年信息、生物古地理和相邻构造带的延伸,认为朝鲜半岛、日本飞驒—隐歧地块古生代应该归属于中朝板块;萨哈林岛—日本北海道归属于北美板块;布列亚—佳木斯—兴凯地块古生代归属于西伯利亚板块。20世纪80年代以来绝大多数学者都把本区中生代以来的构造发展同西太平洋壳向东北亚大陆的俯冲联系在一起,然而近年相当多学者从东亚大陆本身的陆-陆碰撞-挤出-扩张来寻求晚中生代以来地壳-岩石圈减薄的地球动力学原因。本区经历了晚海西—印支期古亚洲洋消亡和晚燕山期(晚侏罗—早白垩世)南北大陆的陆-陆碰撞汇聚两个时期,使中亚造山带扩展到中朝板块北缘的阴山—燕山地区,使地壳增厚,形成与现今青藏高原类似的高原地貌;早白垩世晚期—古近纪本区地壳-岩石圈减薄,出现大规模伸展型盆-山结构,郯—庐断裂北延,出现左行走滑错移,东部陆缘俯冲增生、太平洋板块运动转向,引起的挤压变形,以及古近纪晚期大面积准平原化,黑龙江、吉林古近纪隆起边缘断陷盆地中的许多重、贵金属砂矿矿床也多半形成在此期;新近纪本区地壳-岩石圈进一步减薄,大陆裂谷扩展为东亚—西太平洋裂谷带,形成NNE向伸展型盆-山结构,日本海打开,西太平洋岛弧形成,早更新世末初步形成地形阶梯,晚更新世以后才形成了控制着地热与水系分布的现今地貌格架。  相似文献   

6.
华北古大陆南缘构造格架与成矿   总被引:2,自引:1,他引:1  
东秦岭地区在前海西期表现为大陆边缘的构造活动,到海西期后特别是燕山期已属于陆内造山作用,因此称之为古大陆边缘。在对前海西期构造格架重塑的基础上,以不同建造、岩浆活动和分隔构造单元断裂资料分析为依据,以控制不同构造单元的断裂为界,自北而南将构造单元划分为:华山-熊耳山陆缘带、宽坪陆缘增生带、二郎坪弧后断陷带、秦岭古岛弧带和南秦岭泥盆纪断陷海盆。据陆缘构造发展阶段的沉积建造和岩石组合特点分为:华北陆块南缘太古宙古陆核边缘活动性沉积、早元古代华北陆块南缘古陆核边缘活动性缓慢沉积、中-新元古代华北陆块南缘拉张构造体制下的被动陆缘、加里东早期华北古陆南缘活动陆缘、早古生代华北陆块南缘太平洋型活动大陆边缘;中生代扬子与华北板块已经拼接,进一步发生陆内A型俯冲,构造型式为近南北向的深部构造作用。根据区域成矿的物质组成以及空间和时间上的分布特点,划分为5个成矿系统:前长城纪陆核活动性边缘沉积成矿系统、中-新元古代被动大陆边缘成矿系统、早加里东期构造体制转换期成矿系统、古生代活动大陆边缘成矿系统和中生代陆内碰撞造山成矿系统。  相似文献   

7.
作为显生宙最大的增生型造山带,中亚造山带夹持在西伯利亚克拉通和中朝克拉通、塔里木古陆之间,其形成与古亚洲洋演化紧密相关。其在漫长的地质演化历史中,经历了小洋盆俯冲作用导致的陆壳增生,多块体拼贴和后续变形作用造成的陆壳改造,以及随之伴生的多期次岩浆-变质作用。中亚造山带具多样的结构构造、物质组成,蕴藏大量的金属与非金属矿产资源,保存了亚洲大陆古生代增生聚合和洋陆格局转变的重要信息,是中外地质学者探讨大陆动力学演化过程的重要研究对象。  相似文献   

8.
“秦岭-大别-苏鲁”造山带中“古特提斯缝合带”的连接   总被引:7,自引:0,他引:7  
中国大陆西北部的"古特提斯缝合带"如何与东面的"秦岭-大别-苏鲁"造山带连接,是涉及中国大陆中部构造格架的关键问题之一。南秦岭造山带中的古特提斯蛇绿岩带和东秦岭-桐柏-大别-苏鲁造山带中三叠纪高压-超高压变质带的对比,以及一条位于两者之间的220~204 Ma的大型左行走滑剪切带的存在,提供了它们之间关系的新的视角,为此,我们提出南秦岭的勉略蛇绿岩带向东通过宁陕-湘河大型左行走滑剪切带,和大陆俯冲与深俯冲造成的"耀岭河-桐柏-大别-苏鲁"高压—超高压变质带北缘连接,构成"秦岭-大别-苏鲁"造山带中的古特提斯缝合带新模式。沿着这条边界,南秦岭构造单元可以分为南部的南秦岭被动陆缘单元和北部的南秦岭主动陆缘单元,后者向东的延伸由于南、北板块之间三叠纪的剪切碰撞而尖灭。  相似文献   

9.
华北地台是我国最大的早前寒武纪克拉通,一般认为其演化史中一个显著的特征是早奥陶世末到中石炭世初存在着巨大的沉积间断,但是近来的研究表明,地台外缘仍发育着上述间断期间的地层,从而可据此揭示出该时期地台的地史经历、大陆边缘的位置和性质,早古生代期间地台内部主要受南部被动大陆边缘的影响,海水源自古秦岭洋,朝鲜半岛上的所谓“临津江带”不宜与秦岭造山带对比,鄂尔多斯盆地西缘大陆边缘的确定,提示早古生代时阿拉善地块可能不属于中朝地台,周边大陆边缘的存在表明中朝地台是一个完整的陆块,不象是与杨子陆块来自统一的“中国地台”。  相似文献   

10.
利用Dickinson、Suczek等人建立的砂岩碎屑模型,对东秦岭-大别造山带南侧中生代盆地碎屑岩的组分特征进行研究,分析碎屑岩的物源区类型,认为中生代砂岩物源主要来自东秦岭-大别造山带、龙门山、江南逆冲带,具有明显的再旋回造山带属性,碎屑组分变化序列是盆缘造山带3期逆冲活动的沉积响应。通过分析中生代砂岩碎屑组分的构造意义,探讨了东秦岭-大别造山带中生代的构造演化及其盆山耦合关系。  相似文献   

11.
The Dabie–Sulu collision belt in China extends to the Hongseong–Odesan belt in Korea while the Okcheon metamorphic belt in Korea is considered as an extension of the Nanhua rift within the South China block. The Hongseong–Odesan belt divides Korea's Gyeonggi massif into northern and southern portions. The southern Gyeonggi massif and the Yeongnam massif are correlated with China's Yangtze and Cathaysia blocks, respectively, while the northern Gyeonggi massif is part of the southern margin of the North China block. The southern and northern Gyeonggi massifs rifted from the Rodinia supercontinent during the Neoproterozoic, to form the borders of the South China and North China blocks, respectively. Subduction commenced along the southern and eastern borders of the North China block in the Ordovician and continued until a Triassic collision between the North China and South China blocks. While subduction was occurring on the margin of the North China block, high-P/T metamorphic belts and accretionary complexes developed along the inner zone of southwest Japan from the Ordovician to the Permian. During the subduction, the Hida belt in Japan grew as a continental margin or continental arc. Collision between the North and South China blocks began in Korea during the Permian (290–260 Ma), and propagated westwards until the Late Triassic (230–210 Ma) creating the sinistral TanLu fault in China and the dextral fault in the Hida and Hida marginal belt in Japan. Phanerozoic subduction and collision along the southern and western borders of the North China block led to formation of the Qinling–Dabie–Sulu–Hongseong–Hida–Yanji belt.  相似文献   

12.
The Hida marginal belt (HMB), which consists of various kinds of fault-bound blocks, is located between the continental massif of the Hida belt and the Mesozoic accretionary complex of the Mino belt in Central Japan. Detailed field investigation reveals that the HMB had grown through the two different movements, i.e., Jurassic dextral and Cretaceous sinistral movements. The Jurassic dextral ductile shear zones run in the southern marginal part of the Hida belt and the northern part of the HMB, whereas the Cretaceous sinistral cataclastic shear zones occur in the southern part of the HMB and the northern marginal part of the Mino belt. Geologic map and field evidence seem to suggest that the Jurassic dextral movement form the fault-bound blocks of the HMB to form the basic structure of the Hida marginal belt, i.e., formation of the ‘proto-HMB.’ Following the dextral movement, the sinistral one restructured the ‘proto-HMB’ to complete the present feature of the Hida marginal belt. The Cretaceous sinistral movement might result in the sinistral collision between the proto-HMB and the Mino belt.  相似文献   

13.
The Jinshajiang orogenic belt (JOB) of southwestern China, located along the eastern margin of the Himalayan–Tibetan orogen, includes a collage of continental blocks joined by Paleozoic ophiolitic sutures and Permian volcanic arcs. Three major tectonic stages are recognized based on the volcanic–sedimentary sequence and geochemistry of volcanic rocks in the belt. Westward subduction of the Paleozoic Jinshajiang oceanic plate at the end of Permian resulted in the formation of the Chubarong–Dongzhulin intra-oceanic arc and Jamda–Weixi volcanic arc on the eastern margin of the Changdu continental block. Collision between the volcanic arcs and the Yangtze continent block during Early–Middle Triassic caused the closing of the Jinshajiang oceanic basin and the eruption of high-Si and -Al potassic rhyolitic rocks along the Permian volcanic arc. Slab breakoff or mountain-root delamination under this orogenic belt led to post-collisional crustal extension at the end of the Triassic, forming a series of rift basins on this continental margin arc. Significant potential for VHMS deposits occurs in the submarine volcanic districts of the JOB. Mesozoic VHMS deposits occur in the post-collisional extension environment and cluster in the Late Triassic rift basins.  相似文献   

14.
The structural data and available geochronological constraints suggest that the Gonzha tectonic block located in the northeastern part of the Argun-Idermeg superterranes, Central Asian orogenic belt, is considered as an analogue of Cordilleran metamorphic core complexes of western Transbaikalia. These metamorphic core complexes, as well as the Gonzha block, may have resulted from collapse of a Late Mesozoic orogen after closure of the Mongolia-Okhotsk paleo-ocean basin.  相似文献   

15.
The point at issue: The Kurosegawa Terrane is composed of continental fragments transecting Mesozoic terranes of accretionary complex in Southwest Japan (Fig. 1). It is an attenuated tectonic sliver and considered to be allochthonous with respect to the main part of Southwest Japan. The problem of which continental block in the East Asian continental margin is the source of the Kurosegawa Terrane has puzzled Japanese geologists for many years. Firstly, we try to approach this issue based on the analysis of fusulinacean assemblage in accreted terranes composed of subduction complex in the Pacific Rim. Secondly, by applying the result of this analysis we try to locate the source of the continental fragments of the Kurosegawa Terrane. Thirdly, we try to prove its validity with a new paleomagnetic study.  相似文献   

16.
安徽沿江中新生代盆地位于大别山造山带南缘,为先挤压、后伸展形成的叠合盆地,是探讨扬子板块陆内深俯冲—大别山造山带隆起与中、下扬子盆地沉降的耦合关系的理想场所。在早中生代,大别山为华南和华北大陆碰撞造山带,华南地壳向深处俯冲并承受超高压变质作用,超高压变质岩不断向上折返,沿江坳陷具有前陆盆地性质,盆地充填有晚三叠世—中侏罗世磨拉石层序;在晚中生代,在中国东部整体的拉张背景下,大别山变质带完全折返上隆,处于变质核杂岩隆升状态,而沿江坳陷具有裂陷盆地性质,充填有晚侏罗世—早白垩世、晚白垩世—古近纪两个红色碎屑构造层序,起因于地壳拆沉而产生的均衡隆升和伸展断陷的构造耦合。  相似文献   

17.
东秦岭-大别山及邻区盆-山系统演化与动力学   总被引:9,自引:0,他引:9  
东秦岭-大别造山带受不同块体间的拼合碰撞及其之后的陆内变形控制,在造山带边缘和内部形成了不同的盆山系统。造山带北缘响应北秦岭与华北板块的弧陆碰撞及其之后陆内变形作用,形成了后陆逆冲与弧后前陆盆地系统。造山带南缘三叠纪至白垩纪随着扬子板块与秦岭-大别微板块沿勉略缝合带自东向西的斜向俯冲和之后的陆内旋转挤压,在扬子北缘形成了前陆逆冲与周缘前陆盆地系统。自晚侏罗世末至白垩纪造山带挤压与伸展并存,伸展自核部向边缘发展,形成造山带伸展塌陷与近东西向裂谷盆地系统。大致在中始新世之后,受中国东部环太平洋构造带东西向伸展作用和深部构造作用控制,横跨造山带形成近南北向的裂谷盆地。  相似文献   

18.
长江中下游转换构造结现象经典、结构复杂、过程清晰,是中国东部中生代以来有时空联系的多种构造的集中展现。该构造结的主要内涵包括:1) 3大构造类型:大陆造山带(大别造山带)、陆缘剪切带(郯庐断裂带)和陆内热点(下扬子热点);2) 3大应力方式:华南和华北两大板块近SN向的挤压,太平洋板块作用下东亚陆缘剪切和中国东部伸展背景下的下扬子热点;3) 3大转换机制:特提斯与太平洋两大构造域的构造体制转换,中生代从SW-NE向到近S-N 向再到SE-NW 向的挤压方向转换,区域性的挤压应力作用向伸展应力作用的应力方式转换。可见,长江中下游转换构造结的结构、属性和演化过程完整记录了中生代以来变化有序的构造演化和丰富多样的构造属性,展示了区内复杂连续的动力学系统背景下的深部过程与浅表响应,揭示了全球性特殊的岩石圈动力学过程。  相似文献   

19.
The Yanshan thrust belt (YTB) is located at the northern edge of the North China plate. Because of the intense thicking and subsequent delamination of the lithosphere in north China, geologists have been focused on the Late Mesozoic deformation in the Yanshan belt. The Yanshan belt has been regarded as part of a stable craton from the Proterozoic to the early Mesozoic. In this paper, the authors present that the Yanshan area was deformed during the early Mesozoic. This deformation could be related to ocean basin closure along the northern margin of North China, or related to the collision between the north China and Yangtze Plates along the Qinling-Dabie ultrahigh pressure belt. Three stages of early Mesozoic deformation are identified in the eastern Yanshan at Lingyuan County. The first stage is characterized by westward thrusting (D1), the second stage comprises a top-to-east thrust system (D2), and the third stage comprises extensional gravity-induced collapse and landsliding (D3). The timing of these evens is constrained by both the crosscutting relationships of faults and the isotopic dating of volcanic rocks and gravels. The D1 and D2 events took place in the Late Triassic and Early Jurassic, whereas D3 event occurred at the end of the Middle Jurassic. The Dengzhangzi formation was deposited during the D1–D2 period and recorded a rapid uplift, erosion, and deposition sequence. These early Mesozoic contractional deformations in the YTB were probably related to the closure of ancient Asian ocean and ancient Qinling ocean. The later crustal extension was caused by gravitational collapse of the eastern China plateau during early Mesozoic.  相似文献   

20.
The 218.4 ± 0.4, 228.8 ± 0.9 and 231.9 ± 0.7 Ma 40Ar/39Ar laser probe pseudo-plateau ages (2σ; 49–63% 39Ar-release) of very low-grade meta-pelitic whole-rocks from the Sakaigawa unit date high-P/T metamorphism. We argue that this event occurred in a subduction–accretion complex, not along the East Asian continental margin, but on the Pacific side of the proto-Japan superterrane. Proto-Japan was a Permian magmatic arc, presently dispersed in the Japanese islands, which also contained older subduction–accretion complexes. The arc system was fringing but not yet part of the Eurasian continent. The Middle to Late Triassic high-P/T tectono-metamorphic event was partly coeval with proto-Japan’s collision with proto-Eurasia along the southward extension of the Central Asian Orogenic Belt, causing the main metamorphism in the Hida-Oki terrane. It is possible that this system continued via the Cathaysia block (China) to Indochina. The Late Permian to Middle Triassic Indosinian event might stem from docking of Pacific-derived terranes with Southeast Asia’s continental margin. The concept of the proto-Japan superterrane implies that the Qinling-Dabie-Sulu suture zone joined the Central Asian Orogenic Belt to the east of the North China craton and did not continue to Japan, as commonly assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号