首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using mean-field models with a dynamical quenching formalism, we show that in finite domains magnetic helicity fluxes associated with small-scale magnetic fields are able to alleviate catastrophic quenching. We consider fluxes that result from advection by a mean flow, the turbulent mixing down the gradient of mean small-scale magnetic helicity density or the explicit removal which may be associated with the effects of coronal mass ejections in the Sun. In the absence of shear, all the small-scale magnetic helicity fluxes are found to be equally strong for both large- and small-scale fields. In the presence of shear, there is also an additional magnetic helicity flux associated with the mean field, but this flux does not alleviate catastrophic quenching. Outside the dynamo-active region, there are neither sources nor sinks of magnetic helicity, so in a steady state this flux must be constant. It is shown that unphysical behaviour emerges if the small-scale magnetic helicity flux is forced to vanish within the computational domain.  相似文献   

2.
Several one and two dimensional mean field models are analyzed where the effects of current helicity fluxes and boundaries are included within the framework of the dynamical quenching model. In contrast to the case with periodic boundary conditions, the final saturation energy of the mean field decreases inversely proportional to the magnetic Reynolds number. If a nondimensional scaling factor in the current helicity flux exceeds a certain critical value, the dynamo can operate even without kinetic helicity, i.e. it is based only on shear and current helicity fluxes, as first suggested by Vishniac & Cho (2001, ApJ 550, 752). Only above this threshold is the current helicity flux also able to alleviate catastrophic quenching. The fact that certain turbulence simulations have now shown apparently non‐resistively limited mean field saturation amplitudes may be suggestive of the current helicity flux having exceeded this critical value. Even below this critical value the field still reaches appreciable strength at the end of the kinematic phase, which is in qualitative agreement with dynamos in periodic domains. However, for large magnetic Reynolds numbers the field undergoes subsequent variations on a resistive time scale when, for long periods, the field can be extremely weak. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We derive the magnetic helicity for configurations formed by flux tubes contained fully or only partially in the spatial domain considered (called closed and open configurations, respectively). In both cases, magnetic helicity is computed as the sum of mutual helicity over all possible pairs of magnetic flux tubes weighted by their magnetic fluxes. We emphasize that these mutual helicities have properties which are not those of mutual inductances in classical circuit theory. For closed configurations, the mutual helicity of two closed flux tubes is their relative winding around each other (known as the Gauss linkage number). For open configurations, the magnetic helicity is derived directly from the geometry of the interlaced flux tubes so it can be computed without reference to a ground state (such as a potential field). We derive the explicit expression in the case of a planar and spherical boundary. The magnetic helicity has two parts. The first one is given only by the relative positions of the flux tubes on the boundary. It is the only part if all flux tubes are arch-shaped. The second part counts the integer number of turns each pair of flux tubes wind about each other. This provides a general method to compute the magnetic helicity with discrete or continuous distributions of magnetic field. The method sets closed and open configurations on an equal level within the same theoretical framework.  相似文献   

4.
Mechanisms of nonhelical large‐scale dynamos (shear‐current dynamo and effect of homogeneous kinetic helicity fluctuations with zero mean) in a homogeneous turbulence with large‐scale shear are discussed. We have found that the shearcurrent dynamo can act even in random flows with small Reynolds numbers. However, in this case mean‐field dynamo requires small magnetic Prandtl numbers (i.e., when Pm < Pmcr < 1). The threshold in the magnetic Prandtl number, Pmcr = 0.24, is determined using second order correlation approximation (or first‐order smoothing approximation) for a background random flow with a scale‐dependent viscous correlation time τc = (νk 2)–1 (where ν is the kinematic viscosity of the fluid and k is the wave number). For turbulent flows with large Reynolds numbers shear‐current dynamo occurs for arbitrary magnetic Prandtl numbers. This dynamo effect represents a very generic mechanism for generating large‐scale magnetic fields in a broad class of astrophysical turbulent systems with large‐scale shear. On the other hand, mean‐field dynamo due to homogeneous kinetic helicity fluctuations alone in a sheared turbulence is not realistic for a broad class of astrophysical systems because it requires a very specific random forcing of kinetic helicity fluctuations that contains, e.g., low‐frequency oscillations. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Magnetic helicity quantifies the degree to which the magnetic field in a volume is globally sheared and/or twisted. This quantity is believed to play a key role in solar activity due to its conservation property. Helicity is continuously injected into the corona during the evolution of active regions (ARs). To better understand and quantify the role of magnetic helicity in solar activity, the distribution of magnetic helicity flux in ARs needs to be studied. The helicity distribution can be computed from the temporal evolution of photospheric magnetograms of ARs such as the ones provided by SDO/HMI and Hinode/SOT. Most recent analyses of photospheric helicity flux derived a proxy to the helicity-flux density based on the relative rotation rate of photospheric magnetic footpoints. Although this proxy allows a good estimate of the photospheric helicity flux, it is still not a true helicity flux density because it does not take into account the connectivity of the magnetic field lines. For the first time, we implement a helicity density that takes this connectivity into account. To use it for future observational studies, we tested the method and its precision on several types of models involving different patterns of helicity injection. We also tested it on more complex configurations – from magnetohydrodynamics (MHD) simulations – containing quasi-separatrix layers. We demonstrate that this connectivity-based proxy is best-suited to map the true distribution of photospheric helicity injection.  相似文献   

6.
The decay of kinetic helicity is studied in numerical models of forced turbulence using either an externally imposed forcing function as an inhomogeneous term in the equations or, alternatively, a term linear in the velocity giving rise to a linear instability. The externally imposed forcing function injects energy at the largest scales, giving rise to a turbulent inertial range with nearly constant energy flux while for linearly forced turbulence the spectral energy is maximum near the dissipation wavenumber. Kinetic helicity is injected once a statistically steady state is reached, but it is found to decay on a turbulent time scale regardless of the nature of the forcing and the value of the Reynolds number (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The term 'dynamo' means different things to the laboratory fusion plasma and astrophysical plasma communities. To alleviate the resulting confusion and to facilitate interdisciplinary progress, we pinpoint conceptual differences and similarities between laboratory plasma dynamos and astrophysical dynamos. We can divide dynamos into three types: 1. magnetically dominated helical dynamos which sustain a large-scale magnetic field against resistive decay and drive the magnetic geometry towards the lowest energy state, 2. flow-driven helical dynamos which amplify or sustain large-scale magnetic fields in an otherwise turbulent flow and 3. flow-driven non-helical dynamos which amplify fields on scales at or below the driving turbulence. We discuss how all three types occur in astrophysics whereas plasma confinement device dynamos are of the first type. Type 3 dynamos require no magnetic or kinetic helicity of any kind. Focusing on Types 1 and 2 dynamos, we show how different limits of a unified set of equations for magnetic helicity evolution reveal both types. We explicitly describe a steady-state example of a Type 1 dynamo, and three examples of Type 2 dynamos: (i) closed volume and time dependent; (ii) steady state with open boundaries; (iii) time dependent with open boundaries.  相似文献   

8.
EVOLUTION OF MAGNETIC HELICITY IN MAGNETIC RECONNECTION   总被引:1,自引:0,他引:1  
Hu  Y. Q.  Xia  L. D.  Li  X.  Wang  J. X.  Ai  G. X. 《Solar physics》1997,170(2):283-298
This paper presents a definition of magnetic helicity specifically for two-dimensional magnetic fields and derives the associated helicity equation. The newly defined helicity is closely related to its three-dimensional counterpart and serves as a measure of the shear of magnetic field. Based on this, a numerical simulation is carried out on magnetic reconnection occurring in the lower solar atmosphere. It is found that the helicity dissipation due to magnetic reconnection is very small. A large amount of helicity is transferred upward and escapes from the domain of the solution, and the total helicity is approximately conserved during the magnetic reconnection and helicity transfer. This is in support of the applicability of a postulate, which was proposed by Taylor (1974, 1986) concerning the approximate conservation of magnetic helicity in the presence of resistive dissipation and magnetic reconnection in a highly conductive laboratory plasma, to the solar atmosphere.  相似文献   

9.
We have analyzed the long-term evolution of two active regions (ARs) from their emergence through their decay using observations from several instruments on board SoHO (MDI, EIT and LASCO) and Yohkoh/SXT. We have computed the evolution of the relative coronal magnetic helicity combining data from MDI and SXT with a linear force-free model of the coronal magnetic field. Next, we have computed the injection of helicity by surface differential rotation using MDI magnetic maps. To estimate the depletion of helicity we have counted all the CMEs of which these ARs have been the source, and we have evaluated their magnetic helicity assuming a one to one correspondence with magnetic clouds with an average helicity contain. When these three values (variation of coronal magnetic helicity, injection by differential rotation and ejection via CMEs) are compared, we find that surface differential rotation is a minor contributor to the helicity budget since CMEs carry away at least 10 times more helicity than the one differential rotation can provide. Therefore, the magnetic helicity flux needed in the global balance should come from localized photospheric motions that, at least partially, reflect the emergence of twisted flux tubes. We estimate that the total helicity carried away in CMEs can be provided by the end-to-end helicity of the flux tubes forming these ARs. Therefore, we conclude that most of the helicity ejected in CMEs is generated below the photosphere and emerges with the magnetic flux.  相似文献   

10.
We have investigated the role of finite resistivity effects in the photosphere and chromosphere. We demonstrate that turbulence in the photospheric conductivity gives rise to a resistive instability, as does the gradient in resistivity between the chromospheric layer of the Sun and the photospheric layer, which latter unstable mode is the well known tearing mode of Furth, Killeen and Rosenbluth. In both cases the calculations indicate time scales of the order of seconds or minutes, and we therefore believe that solar flares and spicules can be produced by finite conductivity instabilities. We also demonstrate that the finite resistive diffusion makes it difficult to maintain an initially force-free flux tube in the chromosphere unless the Alfvén speed is sufficiently high and/or the flux tube is sufficiently thick. We also demonstrate that the magnetic fields in the turbulent photosphere becomes trapped by high conductivity regions and this leads to enhancement of the resistive instabilities.Our analysis does not explain the origin of the high-energy particles in solar flares—for this the problem of dynamical acceleration must be investigated.  相似文献   

11.
We present the evolution of magnetic field and its relationship with mag- netic(current)helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station,longitudinal magne- tograms by MDI of SOHO and white light images of TRACE.The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere,even if the mean current helicity density brings the general chiral property in a layer of solar active regions.As new magnetic flux emerges in active regions,changes of photospheric cur- rent helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected,including changes in sign caused by the injection of magnetic helicity of opposite sign.Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere, the injected magnetic helicity is probably not proportional to the current helicity den- sity remaining in the photosphere.The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions(such as,delta active regions).They represent different aspects of mag- netic chirality.A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere.  相似文献   

12.
In this study we provide the first numerical demonstration of the effects of turbulence on the mean Lorentz force and the resulting formation of large‐scale magnetic structures. Using three‐dimensional direct numerical simulations (DNS) of forced turbulence we show that an imposed mean magnetic field leads to a decrease of the turbulent hydromagnetic pressure and tension. This phenomenon is quantified by determining the relevant functions that relate the sum of the turbulent Reynolds and Maxwell stresses with the Maxwell stress of the mean magnetic field. Using such a parameterization, we show by means of two‐dimensional and three‐dimensional mean‐field numerical modelling that an isentropic density stratified layer becomes unstable in the presence of a uniform imposed magnetic field. This large‐scale instability results in the formation of loop‐like magnetic structures which are concentrated at the top of the stratified layer. In three dimensions these structures resemble the appearance of bipolar magnetic regions in the Sun. The results of DNS and mean‐field numerical modelling are in good agreement with theoretical predictions. We discuss our model in the context of a distributed solar dynamo where active regions and sunspots might be rather shallow phenomena (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
There are several astrophysical situations where one needs to study the dynamics of magnetic flux in partially ionized turbulent plasmas. In a partially ionized plasma, the magnetic induction is subjected to the ambipolar diffusion and the Hall effect in addition to the usual resistive dissipation. In this paper, we initiate the study of the kinematic dynamo in a partially ionized turbulent plasma. The Hall effect arises from the treatment of the electrons and the ions as two separate fluids and the ambipolar diffusion due to the inclusion of neutrals as the third fluid. It is shown that these non-ideal effects modify the so-called α effect and the turbulent diffusion coefficient β in a rather substantial way. The Hall effect may enhance or quench the dynamo action altogether. The ambipolar diffusion brings in an α which depends on the mean magnetic field. The new correlations embodying the coupling of the charged fluids and the neutral fluid appear in a decisive manner. The turbulence is necessarily magnetohydrodynamic with new spatial and time-scales. The nature of the new correlations is demonstrated by taking the Alfvénic turbulence as an example.  相似文献   

14.
We have studied the influence of the magnetic helicity on solar particle propagation using the IMF data observed by the HELIOS spacecraft in the range 0.31–0.95 AU, during eight solar proton events. For this, we have derived power and helicity spectra of the turbulence of the magnetic field during the time of the events. These are used to compute the particle pitch-angle scattering coefficients according to the quasi-linear theory (QLT) treatment of particle propagation in turbulent magnetic fields. The results show that in all the cases the helicity effects are negligible and the particle's mean free paths deduced from the pitch-angle diffusion coefficients are the same regardless of whether or not helicity effects are included in the calculations. The computed mean free paths are quite different in each case.Deceased 10 April, 1995.  相似文献   

15.
The detection of magnetic field variations as a signature of flaring activity is one of the main goals in solar physics. Past efforts gave apparently no unambiguous observations of systematic changes. In the present study, we discuss recent results from observations that scaling laws of turbulent current helicity inside a given flaring active region change in response to large flares in that active region. Such changes can be related to the evolution of current structures by a simple geometrical argument, which has been tested using high Reynolds number direct numerical simulations of the MHD equations. Interpretation of the observed data within this picture indicates that the change in scaling behavior of the current helicity seems to be associated with a topological reorganization of the footpoint of the magnetic field loops, namely with the dissipation of small scales structures in turbulent media.  相似文献   

16.
The theory of large scale dynamos is reviewed with particular emphasis on the magnetic helicity constraint in the presence of closed and open boundaries. In the presence of closed or periodic boundaries, helical dynamos respond to the helicity constraint by developing small scale separation in the kinematic regime, and by showing long time scales in the nonlinear regime where the scale separation has grown to the maximum possible value. A resistively limited evolution towards saturation is also found at intermediate scales before the largest scale of the system is reached. Larger aspect ratios can give rise to different structures of the mean field which are obtained at early times, but the final saturation field strength is still decreasing with decreasing resistivity. In the presence of shear, cyclic magnetic fields are found whose period is increasing with decreasing resistivity, but the saturation energy of the mean field is in strong super‐equipartition with the turbulent energy. It is shown that artificially induced losses of small scale field of opposite sign of magnetic helicity as the large scale field can, at least in principle, accelerate the production of large scale (poloidal) field. Based on mean field models with an outer potential field boundary condition in spherical geometry, we verify that the sign of the magnetic helicity flux from the large scale field agrees with the sign of α. For solar parameters, typical magnetic helicity fluxes lie around 1047 Mx2 per cycle.  相似文献   

17.
The geoeffective magnetic cloud (MC) of 20 November 2003 was associated with the 18 November 2003 solar active events in previous studies. In some of these, it was estimated that the magnetic helicity carried by the MC had a positive sign, as did its solar source, active region (AR) NOAA 10501. In this article we show that the large-scale magnetic field of AR 10501 has a negative helicity sign. Since coronal mass ejections (CMEs) are one of the means by which the Sun ejects magnetic helicity excess into interplanetary space, the signs of magnetic helicity in the AR and MC must agree. Therefore, this finding contradicts what is expected from magnetic helicity conservation. However, using, for the first time, correct helicity density maps to determine the spatial distribution of magnetic helicity injections, we show the existence of a localized flux of positive helicity in the southern part of AR 10501. We conclude that positive helicity was ejected from this portion of the AR leading to the observed positive helicity MC.  相似文献   

18.
For a better understanding of solar magnetic field evolution it is appropriate to evaluate the magnetic helicity based on observations and to compare it with numerical simulation results. We have developed a method for calculating the vector potential of a magnetic field given in a finite volume; the method requires the magnetic flux to be balanced on all the side boundaries of the considered volume. Our method uses a fast Laplace/Poisson solver to obtain the vector potentials for a given magnetic field and for the corresponding potential (current-free) field. This allows an efficient calculation of the relative magnetic helicity in a finite 3D volume. We tested our approach on a theoretical model (Low and Lou, Astrophys. J. 352, 343, 1990) and also applied our method to the magnetic field above active region NOAA 8210 obtained by a photospheric-data-driven MHD model. We found that the amount of accumulated relative magnetic helicity coincides well with the relative helicity inflow through the boundaries in the ideal and non-ideal cases. The temporal evolution of relative magnetic helicity is consistent with that of magnetic energy. The maximum value of normalized helicity, H m2=0.0298, is reached just before a drastic energy release by magnetic reconnection. This value is close to the corresponding value inferred from the formula that connects the magnetic flux and the accumulated magnetic helicity based on the observations of solar active regions.  相似文献   

19.
To investigate the relations between coronal mass ejection (CME) speed and magnetic field properties measured in the photospheric surface of CME source regions, we selected 22 disk CMEs in the rising and early maximum phases of the current Solar Cycle 24. For the CME speed, we used two-dimensional (2D) projected speed observed by the Large Angle and Spectroscopic Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO), as well as a 3D speed calculated from the triangulation method using multi-point observations. Two magnetic parameters of CME source regions were considered: the average of magnetic helicity injection rate and the total unsigned magnetic flux. We then classified the selected CMEs into two groups, showing: i) a monotonically increasing pattern with one sign of helicity (group A: 16 CMEs) and ii) a pattern of significant helicity injection followed by its sign reversal (group B: 6 CMEs). We found that: 1) 3D speed generally shows better correlations with the magnetic parameters than the 2D speed for 22 CME events in Solar Cycle 24; 2) 2D speed and the magnetic parameters of 22 CME events in this solar cycle have lower values than those of 47 CME events in Solar Cycle 23; 3) all events of group B in Solar Cycle 24 occur only after the beginning of the maximum phase, a trend well consistent with that shown in Solar Cycle 23; 4) the 2D speed and the helicity parameter of group B events continue to increase in the declining phase of Solar Cycle 23, while those of group A events abruptly decrease in the same period. Our results indicate that the two CME groups have a different tendency in the solar cycle variations of CME speed and the helicity parameters. Active regions that show a complex helicity evolution pattern tend to appear in the maximum and declining phases, while active regions with a relatively simple helicity evolution pattern appear throughout the whole solar cycle.  相似文献   

20.
In a density-stratified turbulent medium, the cross helicity 〈u′⋅B′〉 is considered as a result of the interaction of the velocity fluctuations and a large-scale magnetic field. By means of a quasilinear theory and by numerical simulations, we find the cross helicity and the mean vertical magnetic field to be anti-correlated. In the high-conductivity limit the ratio of the helicity and the mean magnetic field equals the ratio of the magnetic eddy diffusivity and the (known) density scale height. The result can be used to predict that the cross helicity at the solar surface will exceed the value of 1 gauss km s−1. Its sign is anti-correlated to that of the radial mean magnetic field. Alternatively, we can use our result to determine the value of the turbulent magnetic diffusivity from observations of the cross helicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号