首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Quaternary Science Reviews》2007,26(17-18):2201-2218
Late Holocene vegetation and geomorphological history is reconstructed from a 800 cm long high-resolution palynological and sedimentological record sampled from Bereket, a 6.3 km2 semi-arid to sub-humid intramontane basin in the Western Taurus Mountains (southwest Turkey). The well-dated Bereket record provides from cal. 360 BC to cal. AD ∼400 a unique record of biennial-to-decadal landscape changes caused primarily by intensive human impacts against a background of global climate variations. During this period, land clearance with multiple fire episodes, intensive agricultural practices and grazing pressure profoundly altered the pre-existing warm mixed forest. Increasing moisture availability since cal. ∼280 BC has acted as a trigger to crop cultivation and mountain-adapted arboriculture starting with Juglans regia during the Beyşehir Occupation Phase. Pollen from olive groves have been recorded above 1400 m a.s.l. only at cal. ∼23 BC and have disappeared definitively at cal. AD ∼294. During this phase, the sediment accumulation rate was extremely high, reflecting landscape instability. From cal. AD 450 to recent times, the area has mainly recorded pasture and minor cultivation activities reflected in stable soils and thin colluvial depths.  相似文献   

2.
《Sedimentary Geology》2007,193(1-4):131-148
This paper characterises the sedimentary impact of a glacial outburst flood or ‘jökulhlaup’ on an ice-contact delta topset at Russell Glacier, Kangerlussuaq, west Greenland. Rapid drainage of an ice-dammed lake in July 1987 generated a jökulhlaup with a peak discharge of ∼ 1300 m3 s 1, which drained across a 500-m-wide, 200-m-long, delta top into a proglacial lake. The delta topset comprises boulder clusters, ice block obstacle marks with relief of up to 4 m, and is graded to lake levels up to 6 m higher than those during typical non-jökulhlaup conditions. The delta top was dissected by the 1987 jökulhlaup causing a fan-shaped extension of the delta front by 30 m. Surface grain size on the delta decreases rapidly away from the main flood flow direction, reflecting rapid downstream reduction in sediment transport capacity. The 1987 jökulhlaup was predominantly fluidal and turbulent and had peak stream powers of 2846 W m 2 proximally and < 400 W m 2 distally. Delta topset sedimentation can be characterised by four lithofacies associations in order of decreasing flow energy: (A) coarse-grained deposits related to a flow expansion; (B) finer-grained peripheral deposits located at the margins of the main flow; (C) lobate bars and delta fronts deposited within distal locations and (D) fine-grained deposits at distance from the delta front associated with slackwater conditions. Jökulhlaup-dominated delta topsets are controlled by the geometry of the channel expansion into the proglacial lake, jökulhlaup hydrograph form, the sediment availability and character, proglacial lake basin depth and surface area, lake outflow spillway erodibility and cross-sectional area, and history of previous jökulhlaups.  相似文献   

3.
《Quaternary Science Reviews》2007,26(22-24):2864-2882
In this paper, we report our latest observations concerning a Pliocene and Early Pleistocene record from Western Turkey. The sedimentary sequence described comprises the fluvial deposits of an Early Pleistocene palaeo-Gediz river system and its tributaries prior to the onset of volcanism around Kula and the subsequent lacustrine, volcaniclastic and fluvial deposits associated with the first phase of volcanism (∼1.2 Ma) in this area.Early development of an east–west drainage system in this area resulted from tectonic adjustments to north–south extension and the formation of east–west-oriented grabens. Headward erosion of drainage entering the main Alaşehir graben led to the progressive capture of pre-existing drainage systems as eastward (headward) erosion upstream tapped drainage networks previously formed in internally draining NNE–SSW-oriented basins. Within one of these, the Selendi Basin, part of this evolutionary sequence is preserved as a buried river terrace sequence. Eleven terraces are preserved beneath alluvial fan sediments that are, in turn, capped by basaltic lava flows. Using the available geochronology these terraces are considered to represent sedimentation–incision cycles which span the period ∼1.67–1.2 Ma. Although progressive valley incision is a fluvial system response to regional uplift, the frequency of terrace formation within this time period suggests that the terrace formation resulted from sediment/water supply changes, a consequence of obliquity-driven climate changes. The production of sub-parallel terraces suggests that during this period the river was able to attain a quasi-equilibrium longitudinal profile adjusted to the regional uplift rate. Thus, the incision rate of 0.16 mm a−1 during this period is believed to closely mirror the regional uplift rate.After the onset of volcanism at ∼1.2 Ma, there is a destruction of the dynamic link between fluvial system behaviour and climate change. The repeated damming of the trunk river and its tributaries led to the construction of complex stratigraphic relationships. During the first phase of volcanism the palaeo-Gediz river was dammed on numerous occasions leading to the formation of a series of lakes upstream of the dams in the palaeo-Gediz valley. Variations in lake level forced localised base-level changes that resulted in complex fluvial system response and considerable periods of disequilibrium in profile adjustment. Furthermore, response to these base-level changes most likely disrupted the timing of the incisional adjustment to the on-going regional uplift, thus making the use of this part of the archive for inferring regional uplift rates untenable.  相似文献   

4.
《Quaternary Science Reviews》2007,26(17-18):2229-2246
A sediment core recovered from Garba Guracha, a glacial lake at 3950 m altitude in the Bale Mountains of Ethiopia, at the boundary of the Ericaceous and Afroalpine vegetation belts, provides a 16,700-year pollen record of vegetation response to climatic change. The earliest vegetation recorded was sparse and composed mainly of grasses, Amaranthaceae–Chenopodiaceae and Artemisia, indicating an arid climate. At 13,400 cal BP, Amaranthaceae–Chenopodiaceae pollen declined sharply and Cyperaceae increased, suggesting a change to moister conditions. The Younger Dryas interval is represented by a small increase in Artemisia and reduced Cyperaceae, indicating aridity. Just after the start of the Holocene (11,200 cal BP), the upper altitudinal limit of the Ericaceous belt rose, and woody Ericaceous vegetation extended across the Sanetti plateau, in response to increased moisture and temperature. The marked change from clastic to organic lake sedimentation at this time reflects the increase in woody vegetation cover in the lake catchment, accompanied by soil stabilisation, and increased leaf litter and soil humus content. From about 6000 cal BP, and especially after 4500 cal BP, mid-altitude dry Afromontane Juniper–Podocarpus forests developed on the northern slopes of the mountains in response to reduced rainfall in a shortened wet season. Erica shrub and forest decreased in area and altitude, and the Afroalpine ecosystem expanded on the plateau. Podocarpus declined from about 2000 cal BP, as Juniperus increased to its present dominance at 2500–3300 m altitude. Human impact on the high-altitude Afroalpine and Ericaceous vegetation has been relatively minor, confirming that the endemic biodiversity of the Ethiopian mountains is a legacy of natural Holocene vegetation change, following repeated expansion and contraction of the upland ecosystems during the Quaternary.  相似文献   

5.
A large volcanic area (∼7600 km2), the Galatean Volcanic Province (GVP), developed in northwest Central Anatolia during the Miocene along the Neo-Tethys Ocean suture zone possibly by post-collisional processes. The GVP mainly comprises 20–14 My old acid to intermediate volcanites with a geochemical signature indicating a mantle source modified by earlier (Late Cretaceous) subduction-related events. 100 km south of the GVP, near Polatlı, Ankara, basaltic rocks that cover large areas are intercalated with the Miocene deposits of the Beypazarı basin, an intra-continental subsidence zone at the southwest of the GVP. Field observations, geochemistry and K–Ar age dating of the Polatlı volcanites show that they are Early (19.9 Ma) to mid (14.1 Ma) Miocene in age, covering an area as large as 215 km2. Variations in lava thickness and the thickness of the underlying silicified/baked zones suggest that the basaltic lavas erupted from a southern source, possibly from the Eskişehir fault zone, and flowed northwards. Most Polatlı samples have chemical compositions that indicate derivation from a mantle source with crustal contamination during ascent. They do not display any characteristic to suggest a subductional component. Although the GVP and Polatlı lavas formed close in time and space, they were derived from different mantle sources. Considering the positions of these two magmatic regions with regard to the Tethyan suture zone, we propose that the mantle beneath the GVP and near the suture zone memorised the earlier subduction while the mantle beneath Polatlı that is located about 100 km further from the suture zone remained apparently unchanged. After a significant volume of magma was consumed in the GVP, a later (∼10 My) and last activity (Güvem activity) has produced quantitatively much less basaltic rocks where this subductional signature seems to completely disappear. Considering that the western Anatolian crust is proposed to undergo extension since the Late Oligocene–Early Miocene times, the Early Miocene intra-plate Polatlı activity may have developed within this extensional tectonic regime. Combined with regional data, Polatlı data also provide broad estimations on how long a subductional event continues to modify the mantle after the subduction ceased (at least ∼20 My), how long the subductional signature is preserved during significant magmatism (between 6 and 10 My) and how far the subductional effect disappears laterally on the mantle with respect to the collision zone (<100 km).  相似文献   

6.
《Quaternary Science Reviews》1999,18(4-5):593-609
Well-developed coarse-grained palaeo-shoreline deposits are found along the rising margins of the Konya basin, marking the former extent of a now desiccated Late Pleistocene lake. This study evaluates the depositional environments and the sequential evolution of a shoreline system that developed at the northern margin of the Konya palaeolake near Göçü. Several laterally continuous quarry sections provided an excellent opportunity for studying spatial and temporal changes of depositional environments and related lake-level fluctuations. Eight principal sedimentary facies and six major lithostratigaphic units have been identified in these deposits representing progradational and retrogradational episodes of shoreline development. The lowest sequence is an aggradational unit formed by wind-driven currents and waves in a sand-dominant lake bottom above the wave base. It is overlain by a convoluted palaeosol 14C dated to ca 28,300 bp representing a major lowering of lake levels. Following an unconformity, the next sequence is characterised by large-scale gravelly clinoforms that progressively offlap/downlap onto the underlying sequence, and correspond to progradation of a foreshore resulting from storm-originated oscillating and unidirectional currents, avalanching processes and minor subaqueous debris flows. It is overlain by an areally extensive lensoid body of structureless clays comprising a thin organic layer, abundant rootlets and freshwater mollusc shells, formed from suspension fallout in a quiet, very shallow freshwater lagoonal environment. This phase, representing a more minor lake regression, has been 14C dated to ca. 21,960–20,730 bp. The final sequences include large-scale sand waves and bars, which developed by storm-originated wave surges and strong shoreline currents, and prograding delta foresets. These sequences indicate a renewed lake transgression to higher water levels, before a final regression after 17,500 bp. Lack of tectonic deformation and the overall sedimentary characteristics of the beach system at Göçü clearly suggest that the sedimentary evolution of the system is closely related to lake-level fluctuations resulting from long- and short-term hydro-climatic changes. Successive stages of lake-level rises and large amounts of supply of coarse grained material imply a positive hydrological balance and relatively high rates of sediment discharge from the adjacent hillslopes.  相似文献   

7.
Pollen, chironomid, and ostracode records from a lake located at alpine treeline provide regional paleoclimate reconstructions from the southwest Yukon Territory, Canada. The pollen spectra indicate herbaceous tundra existed on the landscape from 13.6–11 ka followed by birch shrub tundra until 10 ka. Although Picea pollen dominated the assemblages after 10 ka, low pollen accumulation rates and Picea percentages indicate minimal treeline movement through the Holocene. Chironomid accumulation rates provide evidence of millennial-scale climate variability, and the chironomid community responded to rapid climate changes. Ostracodes were found in the late glacial and early Holocene, but disappeared due to chemical changes of the lake associated with changes in vegetation on the landscape. Inferred mean July air temperature, total annual precipitation, and water depth indicate a long-term cooling with increasing moisture from the late glacial through the Holocene. During the Younger Dryas (12.9–11.2 ka), cold and dry conditions prevailed. The early and mid-Holocene were warm and dry, with cool, wet conditions after 4 ka, and warm, dry conditions since the end of the Little Ice Age.  相似文献   

8.
《Quaternary Science Reviews》2007,26(1-2):130-141
Analyses of sediment cores from Marcella Lake, a small, hydrologically closed lake in the semi-arid southwest Yukon, provides effective moisture information for the last ∼4500 years at century-scale resolution. Water chemistry and oxygen isotope analyses from lakes and precipitation in the region indicate that Marcella Lake is currently enriched in 18O by summer evaporation. Past lake water values are inferred from oxygen isotope analyses of sedimentary endogenic carbonate in the form of algal Charophyte stem encrustations. A record of the δ18O composition of mean annual precipitation at Jellybean Lake, a nearby evaporation-insensitive system, provides data of simultaneous δ18O variations related to decade-to-century scale shifts in Aleutian Low intensity/position. The difference between the two isotope records, Δδ, represents 18O-enrichment in Marcella Lake water caused by summer effective moisture conditions. Results indicate increased effective moisture between ∼3000 and 1200 cal BP and two marked shifts toward increased aridity at ∼1200 and between 300 and 200 cal BP. These prominent late Holocene changes in effective moisture occurred simultaneously with changes in Aleutian Low circulation patterns over the Gulf of Alaska indicated by Jellybean Lake. The reconstructed climate patterns are consistent with the topographically controlled climatic heterogeneity observed in the coastal mountains and interior valleys of the region today.  相似文献   

9.
Fossil pollen analyses from northern Lake Malawi, southeast Africa, provide a high-resolution record of vegetation change during the Pleistocene/Holocene transition (~ 18–9 ka). Recent studies of local vegetation from lowland sites have reported contrasting rainfall signals during the Younger Dryas (YD). The Lake Malawi record tracks regional vegetation changes and allows comparison with other tropical African records identifying vegetation opening and local forest maintenance during the YD. Our record shows a gradual decline of afromontane vegetation at 18 ka. Around 14.5 ka, tropical seasonal forest and Zambezian miombo woodland became established. At ~ 13 ka, drier, more open formations gradually became prevalent. Although tropical seasonal forest taxa were still present in the watershed during the YD, this drought-intolerant forest type was likely restricted to areas of favorable edaphic conditions along permanent waterways. The establishment of drought-tolerant vegetation followed the reinforcement of southeasterly tradewinds resulting in a more pronounced dry winter season after ~ 11.8 ka. The onset of the driest, most open vegetation type was coincident with a lake low stand at the beginning of the Holocene. This study demonstrates the importance of global climate forcing and local geomorphological conditions in controlling vegetation distribution.  相似文献   

10.
This study presents the results of the palynological and diatom analyses of the sediment core recovered in Hoton-Nur Lake (48°37′18″N, 88°20′45″E, 2083 m) in 2004. Quantitative reconstruction of the Holocene vegetation and climate dynamics in the semiarid Mongolian Altai suggests that boreal woodland replaced the primarily open landscape of northwestern Mongolia at about 10 kyr BP (1 kyr = 1000 cal yr) in response to a noticeable increase in precipitation from 200–250 mm/yr to 450–550 mm/yr. A decline of the forest vegetation and a return to a predominance of open vegetation types occurred after 5 kyr BP when precipitation sums decreased to 250–300 mm/yr. Prior to 11.5 kyr BP diatom concentrations are relatively low and the lake is dominated by planktonic Cyclotella and small Fragilariaceae, suggesting the existence of a relatively deep and oligotrophic/mesotrophic lake. The great abundance of Staurosirella pinnata from the beginning of the record until 10.7 kyr BP might imply intensified erosion processes in the catchment and this is fully consistent with the presence of scarce and dry vegetation and the generally arid climate during this period. From about 10.7 kyr BP, more planktonic diatom taxa appeared and increased in abundance, indicating that the lake became more productive as diatom concentration increased. This change correlates well with the development of boreal woodland in the catchment. Decrease in precipitation and changes in the vegetation towards steppe are reflected by the rapid increase in Aulacoseira distans from about 5 kyr BP. The Holocene pollen and diatom records do not indicate soil and vegetation cover disturbances by the anthropogenic activities, implying that the main transformations of the regional vegetation occurred as a result of the natural climate change. Our reconstruction is in agreement with the paleomonsoon records from China, demonstrating an abrupt strengthening of the summer monsoon at 12 kyr BP and an associated increase in precipitation and in lake levels between 11 and 8 kyr BP, followed by the stepwise attenuation of the monsoon circulation and climate aridization towards the modern level. The records from the neighboring areas of Kazakhstan and Russia, situated west and north of Hoton-Nur, demonstrate spatially and temporally different Holocene vegetation and climate histories, indicating that the Altai Mountains as a climate boundary are of pivotal importance for the Holocene environmental and, possibly, habitation history of Central Asia.  相似文献   

11.
《Quaternary Science Reviews》2007,26(13-14):1871-1883
Multi-proxy palaeoenvironmental studies of nine sediment sequences from four areas in north-western Russia reveal significant changes in climate, lake productivity and vegetation during the Lateglacial and early Holocene that show some degree of correlation with changes reconstructed from sites throughout the North Atlantic region. At Lake Nero in the Rostov-Jaroslavl’ area, which is outside the maximum limit of the Scandinavian Ice Sheet, sedimentation recommenced shortly after 15 cal ka BP in response to increases in temperature and humidity during Greenland Interstadial 1 (GI-1; Bølling-Allerød). However, climatic amelioration during GI-1 was slow to increase lake organic productivity or trigger large-scale changes in much of northwestern Russia. In general, this region was characterised by long-lasting lake-ice cover, low lake productivity, soil erosion, and dwarf shrub and herb tundra until the end of Greenland Stadial 1 (GS-1; Younger Dryas). At some sites, distinct increases in lake organic productivity, mean summer temperatures and humidity and the expansion of forest trees coincide with rapid warming at the beginning of the Holocene and the increasing influence of warm air masses from the North Atlantic. At other sites, particularly on the Karelian Isthmus, but also in Russian Karelia, the delayed response of limnic and terrestrial environments to early Holocene warming is likely related to the cold surface waters of the Baltic Ice Lake, the proximity of the Scandinavian Ice Sheet and associated strengthened easterlies, and/or extensive permafrost and stagnant ice. These multi-proxy studies underscore the importance of local conditions in modifying the response of individual lakes and their catchments.While Lateglacial vegetation was dominated by Betula nana and Salix shrubs and various herbs, pollen and plant macrofossils suggest that Betula pubescens trees became established as early as 14–13 cal ka BP in the Rostov-Jaroslavl’ area. In general, our data sets suggest that trees migrated from the southeast to the west and then spread later to the northeast and northwest, paralleling the direction of ice retreat, with Betula pubescens immigrating first, followed by Pinus sylvestris and Picea abies. However, palaeoecological records from Lake Terebenskoye in the Valdai Highlands suggest that the arrival of Picea abies preceded other trees in that area and that it colonised tundra communities as early as 12 cal ka BP. Since Lateglacial vegetation change in north-western Russia was time-transgressive, independent measures of palaeoclimate (e.g., chironomid-based palaeotemperature estimates) are needed for this region.  相似文献   

12.
In order to understand human response to Holocene ashfall events, tephra layers found in archaeological sites along the upper Limay River basin, Northern Patagonia, Argentina were bracketed with radiocarbon dates and correlated with tephra from a lacustrine sediment core and from outcrops and the archaeological evidence was analyzed.A dark tephra associated with seismic activity was identified in the El Trébol rockshelter filling interstices between fallen blocks together with remains of human activity and bones of extinct fauna, marking a seismo-volcanic event occurring between 11 758 and 12 866 cal yr BP. This same seismic event affected the Cuyín Manzano site, where the roof collapse made the site uninhabitable for a time. A white tephra, present in Epullán Grande, Epullán Chica and Traful I caves is correlated with Nahuel Huapi tephra (NHT), equivalent to Laya's Río Blanco and Río Pereyra members, (Río Pireco Formation). NHT is considered to have been derived from the same eruptive event, with dates ranging between ca. 1950–2500 cal yr BP. A dark tephra from Ortega's cave and several tephra from Puerto Tranquilo I rockshelter ranging between 521 and 2069 cal yr BP show how the mobile hunters–gatherers of Northern Patagonia were able to cope with the changing circumstances.  相似文献   

13.
《Quaternary Science Reviews》1999,18(4-5):573-591
In the endoreic, semi-arid Konya basin on the central Anatolian plateaux, long-term hydrological evolution has left various landforms and lacustrine deposits reflecting the regional climatic evolution, as well as human influence on the local environments. This paper presents results from a cooperative programme grouping several institutes from Turkey and France, on lacustrine, marshy and aeolian sediment sequences of Upper Pleistocene and Holocene age. The detailed study of environmental evolution is based on the reconstruction as well as on the characterization of the extension and contraction phases of wetlands occupying the lowest parts of the Konya plain. A soil and a marsh layer are 14C dated ca. 28,000–25,000 yr bp. Three phases of Pleniglacial (from ca. 22,000 to 17,000 yr bp) high lake levels are distinguished. Complementary OSL dates on aeolian dunes confirm the occurrence of two drought periods: the first occurs around the start of the Late Glacial, the second after the Mid-Holocene climatic optimum, the latter being ‘in phase’ with a similar drought in other Eastern Mediterranean regions. After 17,000 yr bp, no lacustrine phase reached as high a level as the Pleniglacial lake. During the Late Glacial, a shallow freshwater lacustrine phase is identified from >12,500 to 11,000 yr bp. The Late Glacial to Holocene transition corresponds to a general absence of deposits and dateable material, thus suggesting a period of drought, to which no aeolian features have so far been related. The Holocene environmental evolution shows a period of marsh and shallow lake extansion from 6000 to 5500 yr bp; this wetter period is interrupted by the second drought (ca. 5500 yrs bp) as indicated by aeolian dune activity. During the Late Holocene, a renewal of marshes, as well as soil development on slopes, can be interpreted either as climatic changes or as impacts of human use of water and soil resources during prehistoric and historic times.  相似文献   

14.
The Tarim Craton is one of three large cratons in China. Presently, there is only scant information concerning its crustal evolutionary history because most of the existing geochronological studies have lacked a combined isotopic analysis, especially an in situ Lu–Hf isotope analysis of zircon. In this study, Precambrian basement rocks from the Kuluketage and Dunhuang Blocks in the northeastern portion of the Tarim Craton have been analyzed for combined in situ laser ablation ICP-(MC)-MS zircon U–Pb and Lu–Hf isotopic analyses, as well as whole rock elements, to constrain their protoliths, forming ages and magma sources. Two magmatic events from the Kuluketage Block at ∼2.4 Ga and ∼1.85 Ga are revealed, and three stages of magmatic events are detected in the Dunhuang Block, i.e., ∼2.0 Ga, ∼1.85 Ga and ∼1.75 Ga. The ∼1.85 Ga magmatic rocks from both areas were derived from an isotopically similar crustal source under the same tectonic settings, suggesting that the Kuluketage and Dunhuang Blocks are part of the uniform Precambrian basement of the Tarim Craton. Zircon Hf model ages of the ∼2.4 Ga magmatism indicate that the crust of the Tarim Craton may have been formed as early as the Paleoarchean period. The ∼2.0 Ga mafic rock from the Dunhuang Block was formed in an active continental margin setting, representing an important crustal growth event of the Tarim Craton in the mid-Paleoproterozoic that coincides with the global episode of crust formation during the assembly of the Columbia supercontinent. The ∼1.85 Ga event in the Kuluketage and Dunhuang Blocks primarily involved the reworking of the old crust and most likely related to the collisional event associated with the assembly of the Columbia supercontinent, while the ∼1.75 Ga magmatism in the Dunhuang Block resulted from a mixture of the reworked Archean crust with juvenile magmas and was most likely related to a post-collisional episode.  相似文献   

15.
Easter Island (SE Pacific, 27°S) provides a unique opportunity to reconstruct past climate changes in the South Pacific region based on terrestrial archives. Although the general climate evolution of the south Pacific since the Last Glacial Maximum (LGM) is coherent with terrestrial records in southern South America and Polynesia, the details of the dynamics of the shifting Westerlies, the South Pacific Convergence Zone and the South Pacific Anticyclone during the glacial–interglacial transition and the Holocene, and the large scale controls on precipitation in tropical and extratropical regions remain elusive. Here we present a high-resolution reconstruction of lake dynamics, watershed processes and paleohydrology for the last 34 000 cal yrs BP based on a sedimentological and geochemical multiproxy study of 8 cores from the Raraku Lake sediments constrained by 22 AMS radiocarbon dates. This multicore strategy has reconstructed the sedimentary architecture of the lake infilling and provided a stratigraphic framework to integrate and correlate previous core and vegetation studies conducted in the lake. High lake levels and clastic input dominated sedimentation in Raraku Lake between 34 and 28 cal kyr BP. Sedimentological and geochemical evidences support previously reported pollen data showing a relatively open forest and a cold and relatively humid climate during the Glacial period. Between 28 and 17.3 cal kyr BP, including the LGM period, colder conditions contributed to a reduction of the tree coverage in the island. The coherent climate patterns in subtropical and mid latitudes of Chile and Eastern Island for the LGM (more humid conditions) suggest stronger influence of the Antarctic circumpolar current and an enhancement of the Westerlies. The end of Glacial Period occurred at 17.3 cal kyr BP and was characterized by a sharp decrease in lake level conducive to the development of major flood events and erosion of littoral sediments. Deglaciation (Termination 1) between 17.3 and 12.5 cal kyr BP was characterized by an increase in lake productivity, a decrease in the terrigenous input and a rapid lake level recovery, inaugurating a period of intermediate lake levels, dominance of organic deposition and algal lamination. The timing and duration of deglaciation events in Easter Island broadly agree with other mid- and low-latitude circum South Pacific terrestrial records. The transition to the Holocene was characterized by lower lake levels. The lake level dropped during the early Holocene (ca 9.5 cal kyr BP) and swamp and shallow lake conditions dominated till mid Holocene, partially favored by the infilling of the lacustrine basin. During the mid- to late-Holocene drought phases led to periods of persistent low water table, subaerial exposure and erosion, generating a sedimentary hiatus in the Raraku sequence, from 4.2 to 0.8 cal kyr BP. The presence of this dry mid Holocene phase, also identified in low Andean latitudes and in Patagonian mid latitudes, suggests that the shift of storm tracks caused by changes in the austral summer insolation or forced by “El Niño-like” dominant conditions have occurred at a regional scale. The palm deforestation of the Easter Island, attributed to the human impact could have started earlier, during the 4.2–0.8 cal kyr BP sedimentary gap. Our paleoclimatic data provides insights about the climate scenarios that could favor the arrival of the Polynesian people to the island. If it occurred at ca AD 800 it coincided with the warmer conditions of the Medieval Climate Anomaly, whereas if it took place at ca AD 1300 it was favored by enhanced westerlies at the onset of the Little Ice Age. Changes in land uses (farming, intensive cattle) during the last century had a large impact in the hydrology and limnology (eutrophication) of the lake.  相似文献   

16.
A distinctive white sediment in the caves of Mulu, Sarawak, Borneo is a well-preserved tephra, representing a fluvially transported surface air-fall deposit, re-deposited inside the caves. We show that the tephra is not the Younger Toba Tephra, formerly considered as most likely. The shards are rod-shaped with elongate tubular vesicles; the largest grains ~ 170 μm in length; of rhyolitic composition; and 87Sr/86Sr ratio of 0.70426 ± 0.00001. U–Th dating of associated calcites suggest that the tephra was deposited before 125 ± 4 ka, and probably before 156 ± 2 ka. Grain size and distance from closest potential source suggests an eruption of VEI 7. Prevailing winds, grain size, thickness of deposit, location of potential sources, and Sr isotopic ratio limit the source to the Philippines. Comparisons with the literature give the best match geochemically with layer 1822 from Ku et al. (2009a), dated by ocean core stratigraphy to 189 ka. This tephra represents a rare terrestrial repository indicating a very substantial Plinian/Ultra-Plinian eruption that covered the Mulu region of Borneo with ash, a region that rarely receives tephra from even the largest known eruptions in the vicinity. It likely will be a valuable chronostratigraphic marker for sedimentary, palaeontological and archaeological studies.  相似文献   

17.
The Jurassic–Lower Cretaceous aged carbonate sequence is widely exposed in the southern zone of Eastern Pontides. Aptian black bituminous limestone is found in the upper part of this sequence in the Kale area (Gümüşhane). This limestone contains faunal remains (e.g., gastropod, ostracod, characean stems and miliolid type benthic foraminifera) that indicate a freshwater, lacustrine depositional environment.The total organic carbon (TOC) values of the bituminous limestone samples range from 0.11–1.30% with an average TOC value of 0.54%. The hydrogen index (HI) varies from 119–448 mg HC/g TOC (average HI 298 mg HC/g TOC) indicating that the limestone contains gas prone as well as oil prone organic matter. Pyrolysis data prove that the organic matter content in the bituminous limestone consists of Type II kerogen. The average Tmax value for bituminous limestone samples is 438 °C (434–448 °C). Bitumen/TOC ratios for bituminous limestone are 0.05 and 0.04. The Tmax values and the ratios indicate that the bituminous limestone samples contain early mature to mature organic matter.Analysis of solvent extracts from the two richest bituminous limestones show a predominance of high carbon number (C26–C30) n-alkanes. The Pr/Ph ratio and CPI value are 1.34 and 0.96, respectively. C29 is the dominant sterane, with C29 > C27 > C28. The bituminous limestone samples have low C22/C21 ratios, high C24/C23 tricyclic terpane ratios and very low C31R/C30 hopane ratios (<0.25). These data are consistent with the bituminous limestones being deposited in a lacustrine environment.  相似文献   

18.
The Reed Bank Basin in the southern margin of the South China Sea is considered to be a Cenozoic rifted basin. Tectono-thermal history is widely thought to be important to understand tectonics as well as oil and gas potential of basin. In order to investigate the Cenozoic tectono-thermal history of the Reed Bank Basin, we carried out thermal modeling on one drill well and 22 pseudo-wells using the multi-stage finite stretching model. Two stages of rifting during the time periods of ∼65.5–40.4 Ma and ∼40.4–28.4 Ma can be recognized from the tectonic subsidence rates, and there are two phases of heating corresponding to the rifting. The reconstructed average basal paleo-heat flow values at the end of the rifting events are ∼60 and ∼66.3 mW/m2, respectively. Following the heating periods, this basin has undergone a persistent thermal attenuation phase since ∼28.4 Ma and the basal heat flow cooled down to ∼57.8–63.5 mW/m2 at present. In combination with the radiogenic heat production of the sedimentary sequences, the surface heat flow of the Reed Bank Basin ranges from ∼60.4 to ∼69.9 mW/m2.  相似文献   

19.
《Quaternary Science Reviews》2007,26(13-14):1695-1712
The impact of the 8.2 ka cooling event during the Early–Mid Holocene has not been widely observed in Southern Europe, which in contrast to Northern Europe, was already experiencing a cooler than present climate at this time. Multi-proxy analysis of sediment cores from two closed-basin saline lakes in the Central Ebro Desert (NE Spain) has allowed us to investigate the impact of climatic changes around the time of this event in more detail. Long-term changes in climate between the Early and Mid Holocene indicate a shift in winter to a more positive NAO, resulting in declining lake levels in one lake sensitive to winter groundwater recharge, and cooler winter temperatures reconstructed from pollen–climate analysis. Reconstructed summer temperatures also declined over this period while annual precipitation and forest cover increased, interpreted as a result of enhanced convection-driven summer precipitation association with a northward displacement of the sub-tropical high pressure. Around 8.2 ka, a marked increase in fire frequency is shown between ca 8.8 and 8.0 ka BP, along with an expansion of fire-tolerant evergreen oak and peak in water levels in a second storm run-off fed lake. A maximum in fire intensity occurred with the deposition of a charcoal layer at both lake sites dated to 8150±130 and 8285±135 cal BP, respectively. The increase in fire is largely attributed to a temporary return southward of the summer sub-tropical high pressure over the Mediterranean, which not only increased summer aridity, but also caused a contradictory regional warming before Hemispheric cooling set in.  相似文献   

20.
《Quaternary Science Reviews》1999,18(10-11):1185-1203
A 13 m long core from the lake-swamp at Pobochnoye (53°01′30″ N, 51°50′30″ E) in the Buzuluk pine forest in the middle part of the Volga River basin, Russia was studied for pollen, peat stratigraphy, mollusc, δ18O/δ16O and δ13C/δ12C analyses and radiocarbon dating. For the first time the environment history of the east European Russia has been reconstructed for the last 14,000 years; ca 14,000–13,000 BP cold dry steppes spread across the basin of the Samara River. Isotope data indicate that the main climate shift occurred ca 10,000 BP at the Lateglacial–Holocene transition when climate became warmer and forests expanded. Pinus sylvestris L. expanded 10,000 BP. Ca 9,000 BP Ulmus, Quercus and Corylus appeared in the Buzuluk forest followed at ca. 7,000 BP by Alnus, then Tilia and Acer at 6000 BP. Between 6000 and 4500 BP the climatic conditions were optimal for the forest growth in the Samara River basin. 5500–5000 BP the lake became shallower and was transformed into the eutrophic peat swamp. Between 4500–3500 BP climate became drier and hotter and forest less abundant. Between 3500–2400 BP the forest cover again increased. Between 2400–2000 BP the pine forest area has reduced, apparently due to increased dryness, and around 2000 BP the modern environment in the Buzuluk area has been in existence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号