首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
南秦岭地块紫阳地区广泛出露早古生代基性岩墙群,其研究具有重要的地球动力学意义。虽然如此,已有相关研究目前主要集中于志留纪基性岩墙群方面,而对早古生代(如,寒武纪、奥陶纪)基性岩墙群的研究仍相对薄弱。从而制约了对南秦岭早古生代岩石圈伸展过程相关问题(如,时空分布规律、地幔性质、动力学机制和相关成矿作用)的总体把握。鉴于尚存的科学问题,本研究选取康家坪、梨树梁、大竹坪、清明寨、苟家山、庙梁上、曾家山和毛坝村的基性岩墙群为研究对象,开展了矿物学、岩石学、锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素方面的研究,对其精细时代格局、成因及成岩动力学背景进行了系统探讨。研究结果显示,紫阳早古生代基性岩墙以辉绿岩和辉绿玢岩为主,形成时代为奥陶纪(478.8-486Ma),属碱性系列岩石(K_(2)O+Na_(2)O变化范围为4.10%-5.14%)。另外,基性岩墙群具有富集LREE、Rb、Ba、Sr、Nb、Ta、Zr、Hf和Eu(Eu/Eu*=1.13-1.35),亏损HREE、U、Pb和Ti的典型地球化学特征。(87Sr/86Sr)i=0.7044-0.7050、εNd(t)=3.1-3.6、εHf(t)=4.4-12.1,176Hf/177Hf=0.282634-0.282846,暗示基性岩墙为地幔柱作用过程亏损岩石圈或软流圈地幔部分熔融作用的产物。另外,在辉绿岩成岩过程经历了橄榄石和单斜辉石的分离结晶,但地壳混染的影响不明显。  相似文献   

2.
胡邦超  徐备  孟巍  邢凯 《岩石学报》2023,(5):1339-1352
俯冲和挤压过程将形成具有加厚地壳的岛弧带或造山带,而伸展过程则形成具有减薄地壳的伸展盆地,因此可以通过地壳厚度推测岩石组合形成时的大地构造背景,并揭示它代表的深部地球动力学过程。兴蒙造山带东部大石寨地区以著名的大石寨组火山岩为特征,其岩浆活动的性质、形成过程和构造背景一直备受争议,其中,该套岩石的构造背景的认识存在岛弧和陆内裂谷两种主要观点。本文根据岩性组合及年代学特征,将大石寨地区主要岩石组合从下到上分为晚石炭世火山岩、早二叠世寿山沟组和大石寨组、中二叠世哲斯组,并利用大石寨-霍林郭勒地区的火山岩和碎屑岩锆石的微量元素及火山岩的全岩微量元素数据,估算了晚石炭世-二叠纪地壳厚度的变化趋势。结果表明,360Ma到320Ma时期发生地壳加厚,320~300Ma地壳从加厚转为减薄;而在300~280Ma时期,地壳厚度减薄最明显且厚度最小。综合岩浆活动、沉积环境和地壳厚度变化曲线等特征,可将大石寨-霍林郭勒地区晚石炭世到二叠纪的构造演化分为4个阶段:第一阶段(360~320Ma),碰撞产生的挤压背景导致区域性隆升和早-中古生代造山带物质的堆叠,使地壳厚度增大,导致幔源岩浆上侵,引起部分熔融作用,形成以侵入岩为特征的地壳垂向增生;第二阶段(320~300Ma),由于碰撞后伸展使得地壳处于从加厚到减薄的转换过程,发育与伸展相关的岩浆活动;第三阶段为300~280Ma,软流圈上涌造成地壳发生强烈伸展,导致地壳厚度明显减薄和大规模岩浆活动,以大石寨组岩浆活动进入高峰期为标志。该时期大规模岩浆活动和裂谷沉积特征与地壳厚度减薄的地球动力学背景高度吻合,从而揭示大石寨-霍林郭勒地区早-中二叠世处于地壳伸展而非俯冲-碰撞过程。第四阶段为280~260Ma,由于蒙古-鄂霍茨克造山带和大别-秦岭中央造山带的远距离效应造成地壳加厚,形成陆内造山带。  相似文献   

3.
The Triassic to Cretaceous sediment succession of the Lechtal Nappe in the western part of the Northern Calcareous Alps (NCA) has been deformed into large-scale folds and crosscut by thrust and extensional faults during Late Cretaceous (Eoalpine) and Tertiary orogenic processes. The following sequence of deformation is developed from overprinting relations in the field: (D1) NW-vergent folds related to thrusting; (D2) N–S shortening leading to east–west-trending folds and to the formation of a steep belt (Arlberg Steep Zone) along the southern border of the NCA; (D3) E–W to NE–SW extension and vertical shortening, leading to low-angle normal faulting and recumbent “collapse folds” like the Wildberg Syncline. D1 and D2 are Cretaceous in age and predate the Eocene emplacement of the Austroalpine on the Penninic Nappes along the Austroalpine basal thrust; the same is probably true for D3. Finally, the basal thrust was deformed by folds related to out-of-sequence thrusting. These results suggest that the NCA were at least partly in a state of extension during the sedimentation of the Gosau Group in the Late Cretaceous.  相似文献   

4.
The Northern Snake Range is a classic example of a metamorphic core complex, Basin-and-Range province, United States. It is composed of a plastically deformed footwall and a brittlely deformed hanging wall, separated by the Northern Snake Range low-angle detachment (NSRD). Brittle deformation, however, is not confined to the hanging wall.This paper focuses on exposures in Cove Canyon, located on the SE flank of the Northern Snake Range, where penetrative, homogeneous faults are well exposed throughout the hanging wall, footwall and NSRD, and overprint early plastic deformation. These late-stage fault sets assisted Eocene-Miocene extension. Detailed analysis of the faults reveals the following: (1) The shortening direction defined by faults is similar to the shortening direction defined by the stretching lineation in the footwall mylonites, indicating that the extensional kinematic history remained unchanged as the rocks were uplifted into the elastico-frictional regime. (2) After ∼17 Ma, extension may have continued entirely within elastic-frictional regime via cataclastic flow. (3) This latest deformation phase may have been accommodated by a single, continuous event. (3) Faults within NSRD boudins indicate that deformation within the detachment zone was non-coaxial during the latest phase of extension.  相似文献   

5.
This paper describes late Cambrian dikes and Early Ordovician volcano-sedimentary successions of the Prague Basin, Bohemian Massif, to discuss the timing and kinematics of breakup of the northern margin of Gondwana. Andesitic dikes indicate minor E–W crustal extension in the late Cambrian, whereas the Tremadocian to Dapingian lithofacies distribution and linear array of depocenters suggest opening of this Rheic Ocean rift-related basin during NW–SE pure shear-dominated extension. This kinematic change was associated with the onset of basic submarine volcanism, presumably resulting from decompression mantle melting as the amount of extension increased. We conclude from these inferences and from a comparison with other Avalonian–Cadomian terranes that the rifting along the northern Gondwana margin was a two-stage process involving one major pulse of terrane detachment in the early Cambrian and one in the Early Ordovician. While the geodynamic cause for the former phase remains unclear, but still may include effects of Cadomian subduction (roll-back, slab break-off), isostatic rebound, or mantle plume, the incipient stage of the latter phase may have been triggered by the onset of subduction of the Iapetus Ocean at around 510 Ma, followed by advanced extension broadly coeval (Tremadocian to Darriwilian) in large portions of the Avalonian–Cadomian belt. Unequal amounts of extension resulted in the separation and drift of some terranes, while other portions of the belt remained adjacent to Gondwana.  相似文献   

6.
Fu  Jiangang  Li  Guangming  Wang  Genhou  Zhang  Linkui  Liang  Wei  Zhang  Zhi  Zhang  Xiaoqiong  Huang  Yong 《International Journal of Earth Sciences》2018,107(6):2023-2041
International Journal of Earth Sciences - The Tethys Himalaya sedimentary sequence (THS) is characterized by N–S trending extensional rifts (NSTR) and the North Himalayan gneiss domes (NHGD)....  相似文献   

7.
The tectonic evolution of SE China block since late Paleozoic remains debated.Here we present a new set of zircon U-Pb geochronological,Lu-Hf isotopic data and whole-rock geochemistry for two stages of basicintermediate dykes from the southwestern Fujian.The samples were collected from the NE-trending(mainly diabases) and NW-trending(mainly diabasic diorites) dykes and yielded zircon U-Pb ages of 315 and 141 Ma,with ε_(Hf)(t) values of-8.90 to 7.49 and-23.39 to-7.15(corresponding to T_(DM2) values of 850 to 1890 Ma and 737 to 2670 Ma),respectively.Geochemically these rocks are characterized by low TiO_2(0.91-1.73 wt.%)and MgO(3.04-7.96 wt.%),and high Al_2O_3(12.5-16.60 wt.%) and K_2O(0.60-3.63 wt.%).Further they are enriched in LREEs and ULEs(Rb,Ba,Th and K).but depleted in HFSEs(Nb,Ta and Zr).The tectonic discrimination analysis revealed that the dykes were formed in an intraplate extensional environment.However,the NW trending dykes show crust-mantle mixed composition,which indicate an extensional tectonic setting with evidence for crustal contamination.The SE China block experienced two main stages of extensional tectonics from late Carboniferous to early Cretaceous.The tectonic evolution of the SE China block from late Devonian to Cretaceous is also evaluated.  相似文献   

8.
Résumé

Le bassin pannonien s’est ouvert en position d’arrière-arc durant et après les derniers stades de l’orogenèse des Carpathes. La distension y a créé, du Badénien au Pannonien (16.5-8 Ma), un dispositif complexe de môles et fossés suivant les directions NE-SW et NW-SE. Les mécanismes d’ouverture des bassins intra-carpathiques correspondent à une évolution structurale en deux temps : (1) développement de décrochements conjugués et initiation de bassins losangiques le long ou à l’intersection de ces décrochements (compression N-S), (2) épisode de rifting (extension E-W).  相似文献   

9.
Granites were shown to be excellent geochronological, structural and geodynamic markers. Among several generations of granites described in the Neoproterozoic of Ethiopia, we studied the post-tectonic Konso pluton to characterise the post-Pan-African evolution of the Mozambique Belt (MB) of southern Ethiopia. The Konso pluton is a composite intrusion of slightly peraluminous and ferro-potassic, bt (biotite)–leucogranites, bt–hbl (hornblende)–granites and subordinate coeval metaluminous monzodiorites, intruded into high-grade gneiss–migmatite associations of the MB. The whole suite displays chemical features of A-type granites. It is LIL- and HFS-elements enriched with Y/Nb and Yb/Ta1.2. The granites and leucogranites show non-fractionated to fractionated REE patterns [(La/Yb)N=0.3–9.4] with strong negative Eu anomalies. The monzodiorites show fractionated REE patterns [(La/Yb)N=5.5–7.4] with negligible negative Eu anomaly. The low initial (87Sr/86Sr)450 ratios (0.70113–0.70441) and positive Nd(450) values (+1.8 to +3.3) suggest an isotopically primitive source. The Konso granites are likely to be derived from a basaltic parent, with minor contamination by crustal material with high Y/Nb and low Sr initial isotopic ratios. Age of pluton emplacement is constrained by a Rb–Sr isochron and zircon U–Pb data at 449±2 Ma. The Konso pluton is, therefore, the witness of an Ordovician A-type magmatic event, which marks a change from convergence, related to the Pan-African collision, to extension in the Mozambique Belt of southern Ethiopia.  相似文献   

10.
《Geodinamica Acta》2013,26(3-4):299-316
Western Anatolia (Turkey) is a region of widespread active N-S continental extension that forms the eastern part of the Aegean extensional province. The extension in the region is expressed by two distinct/different structural styles, separated by a short-term gap: (1) rapid exhumation of metamorphic core complexes along presently low-angle ductile-brittle normal faults commenced by the latest Oligocene-Early Miocene period, and; (2) late stretching of crust and, consequent graben evolution along Plio-Quaternary high-angle normal faults, cross-cutting the pre-existing low-angle normal faults. However, current understanding of the processes (tectonic quiescence vs N-S continental compression) operating during the short-time interval is incomplete. This paper therefore reports the results of recent field mapping and structural analysis from the NE of Küçük Menderes Graben—Kiraz Basin—that shed lights on the processes operating during this short-time interval. The data includes the thrusting of metamorphic rocks of the Menderes Massif over the Mio-Pliocene sediments along WNW-ESE-trending high-angle reverse fault and the development of compressional fabrics in the metamorphic rocks of the Menderes Massif. There, the metamorphic rocks display evidence for four distinct phases of deformation: (1) southfacing top-N ductile fabrics developed at relatively high-grade metamorphic conditions, possibly during the Eocene main Menderes metamorphism (amphibolite facies) associated with top-N thrust tectonics (D1); (2) top-S and top-N ductile gentle-moderatley south-dipping extensional fabrics formed at relatively lower-grade metamorphic (possibly greenschist facies) conditions associated with the exhumation of Menderes Massif along presently low-angle normal fault plane that accompanied the first phase of extension (D2); (3) moderately north-dipping top-S ductile-brittle fabrics, present configuration of which suggest a thrust-related compression (D3); and (4) south-facing approximately E-W-trending brittle high-angle normal faults (D4) that form the youngest structures in the region. It is interpreted that D4 faults are time equivalent of graben-bounding major high-angle normal faults and they correspond to the second phase of extension in western Anatolia. The presence of thrust-related D3 compressional fabrics suggests N-S compression during the time interval between the two phases of extension (D2 and D4). The results of the present study therefore support the episodic, two-stage extension model in western Anatolia and confirm that a short-time, intervening N-S compression separated the two distinct phases.  相似文献   

11.
The method of “p–y” curves has been extensively used, in conjunction with simplified numerical methods, for the design and response evaluation of single piles. However, a straightforward application of the method to assess the response of pile groups is questionable when the group effect is disregarded. For this reason, the notion of p-multipliers has been therefore introduced to modify the “py” curves and account for pile group effect. The values proposed for p-multipliers result from pile group tests and are limited to the commonly applied spacing of 3.0 D and layout less than 3 × 3, restricting the applicability of the method to specific cases. With the aim of extending the applicability of the “py” method to pile groups, the authors have already proposed a methodology for estimating the “p Gy G” curves of soil resistance around a pile in a group for clayey soils. A complementary research allowing for the estimation of the “p Gy G” curves for sandy soils is presented in this paper. The well-known curves of soil resistance around the single pile in sandy soils are appropriately transformed to allow for the interaction effect between the piles in a group. Comparative examples validate the applicability and the effectiveness of the proposed method. In addition, the method can be straightforwardly extended to account for varying soil resistance, according to the particular location of a pile in a group. It can therefore be used in a most accurate manner in estimating the distribution of forces and bending moments along the characteristic piles of a group and therefore to design a pile foundation more accurately.  相似文献   

12.
Although simplified numerical methods are reliable for evaluating the response of a single pile under horizontal load, their application is questionable for assessing the response of pile groups. The notion of “py” curves has been considered with the aim of establishing a transformation relationship able to provide the “pGyG” curves of soil resistance around a pile in a group from the well-known curves of soil resistance around the single pile.This transformation extends the applicability of the “py” method to pile groups, without the need for time consuming numerical computations, rendering the proposed method efficient and attractive. Comparative examples demonstrated the applicability and the effectiveness of the proposed method. In addition, the method can be straightforwardly extended to account for varying soil resistance, according to the particular location of a pile in a group. It can therefore be used to estimate accurately force and bending moment distributions along the characteristic piles of a group, which are required for the efficient design of foundations.  相似文献   

13.
The Werner deconvolution technique for automatic analysis of magnetic data is a powerful tool for the interpretation of magnetic profiles. In particular, the technique is a valuable aid to the interpretation of deep crustal structures beneath the continental margin which frequently lie below the penetration of all but the most high-powered seismic reflection tools. Inverse modelling of selected simple geological structures (buried scarp, graben, half-graben) confirms that the interface model is valuable in delineating the tops of magnetic bodies, while the thin sheet model gives an indication of the depth extent of the bodies. In the case of horizontal sheets in contact (simulating oceanic spreading anomalies), the thin sheet model delineates the boundary, while the interface model gives estimates which are too shallow.

As an illustration of the value of the Werner deconvolution method in regional marine studies, the magnetic basement in the Great Australian Bight (GAB) has been mapped using a set of magnetic profiles; seismic data in the GAB is of limited use in this mapping. Interpretation of the profiles confirms earlier assessments that there is a minimum of 10 km of sediment beneath the Ceduna Terrace (Great Australian Bight Basin), 3 km beneath the Eyre Terrace (Eyre Sub-basin), 6 km in the Duntroon Embayment, 3 km in the Polda Trough, and 4 km beneath the continental rise. The most prominent basement structure in the GAB is the east-west-trending scarp which delineates the northern flank of the Eyre Sub-basin, GAB Basin, and Polda Trough. The gross linearity of this escarpment for 1000 km and the fact that it appears to mark a northern boundary to the extensional basins of the margin suggests that continental extension in the pre-Middle Jurassic took place preferentially south of an old (Precambrian) lineament in the Gawler Block. Polda Trough sediments are probably included in fault-blocks underlying the northern part of the GAB Basin. The interpretation supports the concept of northwest-southeast extension prior to Late Cretaceous breakup.  相似文献   

14.
The Lachlan Fold Belt of southeastern Australia developed along the Panthalassan margin of East Gondwana. Major silicic igneous activity and active tectonics with extensional, strike-slip and contractional deformation have been related to a continental backarc setting with a convergent margin to the east. In the Early Silurian (Benambran Orogeny), tectonic development was controlled by one or more subduction zones involved in collision and accretion of the Ordovician Macquarie Arc. Thermal instability in the Late Silurian to Middle Devonian interval was promoted by the presence of one or more shallow subducted slabs in the upper mantle and resulted in widespread silicic igneous activity. Extension dominated the Late Silurian in New South Wales and parts of eastern Victoria and led to formation of several sedimentary basins. Alternating episodes of contraction and extension, along with dispersed strike-slip faulting particularly in eastern Victoria, occurred in the Early Devonian culminating in the Middle Devonian contractional Tabberabberan Orogeny. Contractional deformation in modern systems, such as the central Andes, is driven by advance of the overriding plate, with highest strain developed at locations distant from plate edges. In the Ordovician to Early Devonian, it is inferred that East Gondwana was advancing towards Panthalassa. Extensional activity in the Lachlan backarc, although minor in comparison with backarc basins in the western Pacific Ocean, was driven by limited but continuous rollback of the subduction hinge. Alternation of contraction and extension reflects the delicate balance between plate motions with rollback being overtaken by advance of the upper plate intermittently in the Early to Middle Devonian resulting in contractional deformation in an otherwise dominantly extensional regime. A modern system that shows comparable behaviour is East Asia where rollback is considered responsible for widespread sedimentary basin development and basin inversion reflects advance of blocks driven by compression related to the Indian collision.  相似文献   

15.
Recumbent folding in eastern Tasmania affected turbidites containing Lower to Middle Ordovician (Bendigonian Be1 to Darriwilian Da3) fossils, but not stratigraphically overlying turbidites containing Silurian (Ludlow) graptolites, and is of a timing consistent with Ordovician to Silurian Benambran orogenesis on the Australian mainland. Two subsequent phases of upright folding post‐date deposition of turbidites containing Devonian plant fossils but pre‐date intrusion of Middle Devonian granitoids, and are of Tabberabberan age. A closely spaced disjunctive cleavage (S2), associated with the first phase of Tabberabberan folding, everywhere cuts a slaty cleavage (S1) associated with the earlier formed recumbent folds. However, refolding associated with development of S2 is not always clear in outcrop and it is proposed that coincident tectonic vergence between the two events has resulted in reactivation of recumbent D1 structures during the D2 event. The transition to rocks not affected by recumbent folding coincides with a marked change in sedimentology from shale‐ to sand‐dominated successions. This contact does not outcrop but, from seismic data, appears to dip moderately to the east, and can only be explained as an unconformity. The current grouping of all pre‐Middle Devonian turbidites in eastern Tasmania into the one Mathinna Group is misleading in that the turbidite sequence can be subdivided into two distinct sedimentary packages separated by an orogenic event. It is proposed that the Mathinna Group be given supergroup status and existing formations placed into two new groups: an older Early to Middle Ordovician Tippogoree Group and a younger Silurian to Devonian Panama Group.  相似文献   

16.
17.
In the present study, Al Ji’lani layered intrusion was subjected to integrated field, petrographic, processing of ASTER data, and geophysical investigations to delineate its subsurface extension and to determine the chronological order of the exposed rocks. The intrusion is surrounded by foliated granodiorite and both were intruded by younger granite. Processing of ASTER data revealed that the intrusion incorporated foliated granodiorite masses along its NE corner indicating its younger age (postorogenic) setting contrary to what have been proposed by previous authors. Also, this is further confirmed by the presence of an offshoot from the intrusion in the South-East corner as well as freshness and undeformed nature of the gabbroic rocks. Petrographically, the gabbroic rocks are characterized by the presence of kelyphytic coronas around olivine in contact with plagioclase, magnetite-orthopyroxene symplectites after olivine, and symplectites between plagioclase and magnetite/ilmenite. These textures are explained in terms of interaction with late deuteric magmatic fluids and not to metamorphism as believed before. The extensive geophysical analyses of the Al Ji’lani prospect using aeromagnetic data suggest complicated combination of magnetic bodies composed mainly of gabbroic rocks intruding the foliated granodiorite with variable magnetic susceptibilities. Gradient analysis, tilt angle and edge detection techniques extracted the shallow subsurface magnetic boundaries and a probable multiple bodies in the subsurface are detected. The 3-dimensional constraint inversion using parametrized trust region algorithm revealed the deep subsurface distribution of magnetic susceptibilities of the bodies. Two resolved bodies are clear, a northern more shallow body, and a southern, deeper and laterally extend to the south and southwest. The calculated volume from the inverted model representing the Al Ji’lani layered intrusion is approximately 518.7 km3 as calculated to 6.0 km depth. The body could be extended to a deeper depth if a different proposed model geometry is adjusted. The surface area of the exposed body is only 42.39 km2. Several magnetic anomalies are defined within the intrusion and are considered potential sites of mineralization. The south east corner of the gabbroic intrusion is traversed by a shear zone trending ENE-WSW which hosts sulfide-bearing quartz veins with high silver content (Samrah Prospect) associated with an offshoot from the layered gabbro. The shear zone should be followed to the west where the intrusion extends for a distance of about 10 km in the subsurface to the southwest of the exposed part of the intrusion.  相似文献   

18.
The Thakkhola–Mustang graben is located at the northern side of the Dhaulagiri and Annapurna ranges in North Central Nepal. The structural pattern is mainly characterised by the N020–040° Thakkhola Fault system responsible for the development of the half-graben. A detailed study of the substrate and the sedimentary fill in several outcrops indicates polyphased faulting:-pre-sedimentation faulting (Miocene), with a mainly NNW–SSE to N–S compressional stress expressed in the substratum by N020–040° and N180–N010° sinistral and N130–140° dextral conjugate strike-slip faults;-syn-sedimentation faulting (Pliocene–Pleistocene), characterised by a W–E to WNW–ESE extensional stress and tectonic subsidence of the half-graben during the Tetang period (Pliocene probably), followed by a doming of the Tetang deposits and a short period of erosion (cf. Pliocene planation surface and unconformity between the Tetang and Thakkhola Formations); the Thakkhola period (Pleistocene) is characterized by a W–E to WNW–ESE extensional stress and a major subsidence of the half graben;-post-sedimentation recurrent extensional faulting and N–S and NE–SW normal faults in the late Quaternary terrace formations.Geodynamic interpretation of the faulting is discussed in relation to the following:
  • 1.the geographic situation of the Thakkhola–Mustang half-graben in the southern part of Tibet and its setting in the Tethyan series above the South Tibetan Detachment System (STDS);
  • 2.the geodynamic conditions of the convergence between India and Eurasia and the dextral east–west shearing between the High Himalayas and south Tibet;
  • 3.the possible relations between the sinistral Thakkhola and the dextral Karakorum strike-slip faults in a N–S compressional stress regime during the Miocene.
  相似文献   

19.
Syn-orogenic detachments in accretionary wedges make the exhumation of high-pressure and low-temperature metamorphic rocks possible with little erosion. The velocity of exhumation within the subduction channel or the accretionary complex, and thus the shape of PT paths, depend upon the kinematic boundary conditions. A component of slab retreat tends to open the channel and facilitates the exhumation. We document the effect of slab retreat on the shape of PT paths using the example of the Phyllite–Quartzite Nappe that has been exhumed below the Cretan syn-orogenic detachment during the Miocene in Crete and the Peloponnese. Data show a clear tendency toward colder conditions at peak pressure and during exhumation where the intensity of slab retreat is larger. This spatial evolution of PT gradient is accompanied with an evolution from a partly coaxial regime below the Peloponnese section of the detachment toward a clearly non-coaxial regime in Crete.  相似文献   

20.
《Geodinamica Acta》2013,26(5):327-351
A geological study carried out in the southern part of the Larderello geothermal area (Northern Apennines) provides new information on the development mechanism and timing of the earlier extensional structures that formed during the Miocene post-collisional tectonics which affected the orogen. Staircase low-angle normal faults (LANFs) affected a multilayered thickened upper crust after the collisional stage, producing the lateral segmentation of the Tuscan Nappe, the deeper non-metamorphic tectonic unit of the Northern Apennines in the Tuscan area. The tectonic history recorded in two Tuscan Nappe discontinuous bodies revealed that the LANFs took place during the Middle–Late Miocene, displacing collisional structures developed from the Late Oligocene. These Tuscan Nappe bodies are delimited by detachment faults located at the base, within the Tuscan evaporites, and at the top within the Ligurian Units. Their western and eastern margins coincide with east-dipping ramps. These structures and the Tuscan Nappe bodies were later dissected by Pliocene–Quaternary high-angle normal faults. The reconstructed deformation history implies that the Tuscan Nappe bodies are extensional horses developed through an earlier asymmetrical east-dipping extensional duplex system, involved in block faulting during the later, Pliocene-Quaternary, stage of extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号