首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
《Continental Shelf Research》2006,26(12-13):1375-1394
Lagrangian characterization of continental shelf circulation provides estimates of the retention and transport of particulate and dissolved substances. In this paper, we quantify the retentive characteristics of the Southeast US Continental Shelf by comparing observed and numerical (modeled) drifters released throughout 2000 and 2001. Agreement between the observed and computed drifter trajectories shows that retention on this shelf can be up to 2 months at any point during the year. These results have important implications for ecological and fisheries applications and indicate that the populations of marine organisms in this region might be relatively closed (i.e., with weak exchange) during some periods of the year.  相似文献   

2.
The seasonal variations of the Kuroshio intrusion pathways northeast of Taiwan were investigated using observational data from satellite-tracked sea surface drifters and a numerical particle-tracking experiment based on a high-resolution numerical ocean model. The results of sea surface drifter data observed from 1989 to 2013 indicate that the Kuroshio surface intrusion follows two distinct pathways: one is a northwestward intrusion along the northern coast of Taiwan Island, and the other is a direct intrusion near the turn of the shelf break. The former occurs primarily in the winter, while the latter exists year round. A particle-tracking experiment in the high-resolution numerical model reproduces the two observed intrusion paths by the sea surface drifters. The three-dimensional structure of the Kuroshio intrusion is revealed by the model results. The pathways, features and possible dynamic mechanisms of the subsurface intrusion are also discussed.  相似文献   

3.
The rapid expansion of urbanization along the world’s coastal areas requires a more comprehensive and accurate understanding of the coastal ocean. Over the past several decades, numerical ocean circulation models have tried to provide such insight, based on our developing understanding of physical ocean processes. The systematic establishment of coastal ocean observation systems adopting cutting-edge technology, such as high frequency (HF) radar, satellite sensing, and gliders, has put such ocean model predictions to the test, by providing comprehensive observational datasets for the validation of numerical model forecasts. The New York Harbor Observing and Prediction System (NYHOPS) is a comprehensive system for understanding coastal ocean processes on the continental shelf waters of New York and New Jersey. To increase confidence in the system’s ocean circulation predictions in that area, a detailed validation exercise was carried out using HF radar and Lagrangian drifter-derived surface currents from three drifters obtained between March and October 2010. During that period, the root mean square (RMS) differences of both the east–west and north–south currents between NYHOPS and HF radar were approximately 15 cm s?1. Harmonic analysis of NYHOPS and HF radar surface currents shows similar tidal ellipse parameters for the dominant M2 tide, with a mean difference of 2.4 cm s?1 in the semi-major axis and 1.4 cm s?1 in the semi-minor axis and 3° in orientation and 10° in phase. Surface currents derived independently from drifters along their trajectories showed that NYHOPS and HF radar yielded similarly accurate results. RMS errors when compared to currents derived along the trajectory of the three drifters were approximately 10 cm s?1. Overall, the analysis suggests that NYHOPS and HF radar had similar skill in estimating the currents over the continental shelf waters of the Middle Atlantic Bight during this time period. An ensemble-based set of particle tracking simulations using one drifter which was tracked for 11 days showed that the ensemble mean separation generally increases with time in a linear fashion. The separation distance is not dominated by high frequency or short spatial scale wavelengths suggesting that both the NYHOPS and HF radar currents are representing tidal and inertial time scales correctly and resolving some of the smaller scale eddies. The growing ensemble mean separation distance is dominated by errors in the mean flow causing the drifters to slowly diverge from their observed positions. The separation distance for both HF radar and NYHOPS stays below 30 km after 5 days, and the two technologies have similar tracking skill at the 95 % level. For comparison, the ensemble mean distance of a drifter from its initial release location (persistence assumption) is estimated to be greater than 70 km in 5 days.  相似文献   

4.
Numerical simulations with the Regional Ocean Modeling System (ROMS) are used to study the initial spin-up and the evolution of a mesoscale, topographically linked eddy under steady and variable wind conditions. The development of a pool of dense water on the southern Vancouver Island shelf allows cyclonic eddies formed by coastal upwelling off Cape Flattery to spread westward, ultimately contributing to the shelf-wide circulation known as the Juan de Fuca Eddy. This dense water arises through upwelling of water present in the underlying canyon system and tidal mixing over several shallow banks to the north. Tidal mixing is critical to the separation of the eddy from the coast. Although steady upwelling winds with a seasonal mean magnitude (combined with estuarine flow and tides) produce an eddy, only fluctuating winds with timescales and magnitudes typical of the region result in an eddy with a westward extent similar to seasonal observations. With each period of upwelling-favorable winds, newly upwelled water from the coast is entrained into the eddy which grows in size and moves westward. Wind events also significantly affect the baroclinic structure of the eddy. Specifically, during typical summer wind reversals, model surface drifters continue to move cyclonically within the eddy for several days after each downwelling wind event. Under upwelling-favorable wind conditions, model drifters exit the eddy to the southeast as the eddy and coastal upwelling fronts merge into a continuous southeastward shelf break jet.  相似文献   

5.
The Río de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28°S) during austral winter and 32°S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds.  相似文献   

6.
Analysis of year-long drifter trajectories and records of simulated surface Lagrangian Coherent Structures (LCSs) have suggested the presence of a resilient Cross-Shelf Transport Barrier (CSTB) on the West Florida Shelf (WFS). The CSTB was conjectured to provide a large degree of isolation, which is consequential for the fueling of red tides on the southern WFS by nutrients possibly released by rivers and canals directly on the region. Here this conjecture is thoroughly tested by identifying LCSs as well as performing tracer advection calculations based on seven-year-long records of surface and subsurface currents produced by a HYbrid-Coordinate Ocean Model (HYCOM) simulation of the Gulf of Mexico (GoM). The identified LCSs suggest that the CSTB extends downward in the water column. The tracer calculations suggest that, while the majority of the nutrients possibly released by rivers and canals directly on the southern WFS are retained within the region for long times, only a small fraction of the nutrients possibly released by rivers outside the WFS reach the southern WFS, mainly accompanying shoreward excursions of the CSTB. These results add importance to the role played by the CSTB in controlling red tide development on the WFS. Implications of the results for the dispersal of pollutants, such as oil, in the GoM are discussed.  相似文献   

7.
Maps of satellite-derived estimates of monthly averaged chlorophyll a concentration over the northern West Florida Shelf show interannual variations concentrated near the coastline, but also extending offshore over the shelf in a tongue-like pattern from the Apalachicola River during the late winter and early spring. These anomalies are significantly correlated with interannual variability in the flow rate of the Apalachicola River, which is linked to the precipitation anomalies over the watershed, over a region extending 150–200 km offshore out to roughly the 100 m isobath. This study examines the variability of the Apalachicola River and its impacts on the variability of water properties over the northern West Florida Shelf. A series of numerical model experiments show that episodic wind-driven offshore transport of the Apalachicola River plume is a likely physical mechanism for connecting the variability of the river discharge with oceanic variability over the middle and outer shelf.  相似文献   

8.
A three-dimensional model based on the Princeton Ocean Model (POM) has been implemented to study the circulation of the west coast of India. The model uses a curvilinear orthogonal horizontal grid with higher resolution near the coast (3–9 km) and a terrain following sigma coordinate in the vertical. The model is able to simulate Lakshadweep High and Lakshadweep Low (LL) during the winter and summer monsoons, respectively. During winter, the downwelling processes noticed along the coast help in the formation of temperature inversions. The inversions can be seen even up to the depths of ~50 m, which agrees with the available ARGO data in the region. Model simulations show that coastal upwelling off Kerala is at its peak in July. The intensity of upwelling reduces along the coast towards north. During the existence of LL, there is a cyclonic eddy in the sub-surface waters over the South-Eastern Arabian Sea, with vertical extent up to the depths of 100–150 m and it is strengthened due to the presence of northward counter current in the shelf region. The southerly coastal jet formed along the southern coast as a result of upwelling is noticed a westward shift along with LL. The location of the eddy off Kerala is tilted towards the open ocean with depth and our experiments suggest that this flow can be understood as a first baroclinic mode.  相似文献   

9.
《Continental Shelf Research》2005,25(9):1097-1114
South of the eastern end of Long Island (Montauk Point) along the Eastern U.S. coast, a coastal density front forms between the buoyant outflow plume of the Long Island Sound (LIS) and the denser shelf waters offshore. During a 2-day cruise in April 2002, measurements of the density and velocity structure of this front were obtained from high-resolution CTD and ADCP data. Transects show the front intersecting the bottom inshore of the 30 m isobath and shoaling offshore. Variability in the location of the front is small offshore of the 40 m isobath, yet tidal excursions of the front along the bottom are significant (5 km) inshore of this depth.The frontal structure of the LIS plume was similar to observations of bottom-trapped coastal density fronts and shelf break fronts. A coastal jet in the along front direction was the main feature of the mean velocity field and was found to be in thermal wind balance with the mean density field. Stronger than expected offshore velocities near the surface, most likely a result of wind forcing, were the only exception to these similarities. In addition, analysis of temperature and salinity gradients along isopycnals gives evidence of secondary cross-frontal circulation and detachment of the bottom boundary layer. Characteristics of the LIS plume are used to evaluate recent analytical models of bottom-trapped coastal density fronts and bottom-advected plume theory, finding good agreement.  相似文献   

10.
This paper examines the role of atmospheric forcing in modifying the pathways of riverine water on the Laptev Sea shelf, using summer-to-winter hydrographic surveys from 2007 to 2009. Over the two consecutive winter seasons of 2007–2008 and 2008–2009 in the area of the winter coastal polynya, our data clearly link winter surface salinity fields to the previous summer conditions, with substantially different winter salinity patterns preconditioned by summer atmospheric forcing. In the summer of 2007, dominant along-shore westerly winds in the cyclonic regime force the Lena River runoff to flow eastward. In contrast, in the summer of 2008, dominant along-shore easterly winds over the East Siberian Sea and on-shore northerly winds over the Laptev Sea in the anticyclonic regime lock the riverine water in the vicinity of the Lena Delta. Over the coastal polynya area in the southeastern Laptev Sea these patterns precondition a surface salinity difference of 8–16 psu between the winters of 2008 and 2009. Overall, this indicates a residence time of at least half a year for riverine water on the Laptev Sea shelf. Future climate change associated with an enhanced summer cyclonicity over the eastern Arctic may turn more riverine water eastward along the eastern Siberian coast, resulting in weaker vertical density stratification over the Laptev Sea shelf, with possible impact on the efficiency of vertical mixing and polynya dense water production.  相似文献   

11.
This paper examines the subtidal circulation and associated variability in the Gulf of St. Lawrence, the Scotian Shelf, and the Gulf of Maine (GSL-SS-GOM) in 1988–2004 based on results produced by a nested-grid shelf circulation model. The model has a fine-resolution child model (~ (1/12)°) embedded inside a coarse-resolution parent model (~ (1/4)°) of the northwest Atlantic. The combination of the semi-prognostic method and the spectral nudging method is used to reduce the model seasonal bias and drift. The child model reproduces the general features of the observed circulation and hydrography over the study region during the study period. The child model results demonstrate that the time-mean circulation in the GSL is affected by the time-mean atmospheric forcing and inflow through the Strait of Belle Isle. The temporal variability in atmospheric forcing affects the outflow through western Cabot Strait, which in turn affects the transport of the Nova Scotian Current and the gulf-wide cyclonic circulation in the GOM. The simulated seasonal variability of salinity in the top 30 m of the GSL-SS-GOM is mainly affected by the equatorward advection of low-salinity waters from the lower St. Lawrence Estuary to the GOM through the Scotian Shelf. The simulated intraseasonal variability of circulation in the GSL is affected by the variability in the estuarine circulation in response to the temporal variability in atmospheric forcing. On the Scotian Shelf, the intraseasonal variability is mainly driven by the variability of wind forcing and mesoscale and nonlinear dynamics over the shelf break and slope region. The interannual variability in the simulated temperature and salinity are spatially coherent in the intermediate waters in the GSL, which is caused partially by the local response to atmospheric variability and partially by variabilities over the southern Newfoundland Shelf that enter the GSL through the eastern Cabot Strait. By comparison, on the Scotian Shelf, the interannual variability of simulated circulation is affected by anomalies produced by the nonlinear dynamics which are advected equatorwards by the shelf break jet.  相似文献   

12.
13.
This article presents a suite of long-term numerical simulations that investigate the dynamical mechanisms controlling the circulation in the South Brazil Bight (SBB). The overarching goal of these simulations is to quantify the relative contributions of local wind forcing and the Brazil Current (BC) to the upwelling of nutrient-rich slope water onto the shelf. The model results indicate that the water mass structure of the SBB is controlled by the synergy between wind-driven, inner-shelf upwelling and geostrophic, shelf-break upwelling. The later extends yearlong but the former peaks during the austral summer and decreases towards the winter. The interaction between the poleward flow of the BC and the bottom topography greatly influences the shelf circulation, particularly in the bottom boundary layer. Changes of the SBB coastline direction and shelf width modulate the along-shore pressure gradient and the magnitude of the shelf-break upwelling and downwelling. Thus, although the summer upwelling winds extend over large part of the SBB surface temperatures are warmer in the south because of the cooling effect of the shelf-break upwelling in the northern region. At difference with previous studies of shelf-break dynamics the shelf-break upwelling in our model is not controlled by the uplifting associated with the presence of instabilities of the boundary current or nonlinear accelerations under a variable shelf width. The proposed mechanism is relatively simple. As the boundary current flows along the continental slope, changes in the coastline orientation and along-shore bottom topography modify the along-shore pressure gradient which through geostrophy leads to inshore bottom flow and hence shelf-break upwelling. Such a mechanism can provide insight into upwellings on other western boundary current regions where similar topographic variations exist.  相似文献   

14.
The western boundary current in the southern South China Sea (SCS) in summer does not always flow northward along the Indo-China Peninsula, it leaves the southeast coast of peninsula around 10–14°N, forming a strong eastward jet called “Vietnam Coastal Current” or “Southeast Vietnam Offshore Current” (SVOC). It is known that the wind stress curl is the major driving factor responsible for this current. In this paper, we carry on the study of the separation position, strength and forming time of this current. A connected single-layer/two-layer model is employed here to study these problems. According to the numerical experiments and analyses of the vorticity dynamics, it is found that, the local wind stress curl (including the northern cyclonic and the southern anticyclonic wind forcing curl), the nonlinear term, the topographic effect, the planetary vorticity advection and the water exchange between the SCS and Java Sea via the Sunda Shelf have an important effect on both the position where this current leaves the coast and its strength; when there is an inflow via the Sunda Shelf, the current is stronger and the separation position is more northward; whereas the water stratification, the coastline and the inflow of Kuroshio have little effect on its separation. In fact, two opposite flowing currents, the northward SVOC and the southward western branch of the cyclonic eddy to its north near the Indo-China Peninsula, collide with each other, and the strength of these two currents determine the separation position of the SVOC. Origin of the SVOC may be driven by the local negative wind stress curl in the middle SCS in mid-spring, this current flows along the coast of the Indo-China Peninsula and leaves the coast at high latitude, flowing northeastward; once the local positive wind stress curl near the northern Indo-China Peninsula or the negative one near the southern Indo-China Peninsula is large enough, this current will begin to leave the coast at low latitude.  相似文献   

15.
Experiments are described using a three-dimensional, shelf circulation model. The model geometry consists of a rectangle in latitude-longitude space with a shelf-slope region bordering the northern and western boundaries and a deep ocean region in the southeast. Relatively light water is flushed in through the northern boundary and allowed to exit through the southern boundary, a situation of relevance to the southward flowing Labrador Current. In an earlier paper, we showed the downstream development of a shelf break current. In that paper, bottom friction was parallel to bottom geostrophic velocity. In this paper, bottom friction is parallel to bottom velocity. This leads to a more diffuse downstream jet. We show that changing the density contrast across the front does not change its width. On the other hand, a sharper front is obtained when a small trough is introduced into the bottom topography. We also describe an experiment in which the density of the inflowing water is varied seasonally. This leads to a seasonal redistribution of the southward transport across the shelf, similar to a suggestion made by Myers et al. [(1989) Seasonal and interannual variability of the Labrador Current and West Greenland Current. Department of Fisheries and Oceans, Canada] for the Newfoundland Shelf. This redistribution results from the seasonal pulsing of fresh water down the shelf, which, in turn, influences transport through the Joint Effect of Baroclinicity And Relief (JEBAR), and is similar to the mechanism proposed by Lazier and Wright [(1993) Journal of Physical Oceanography, 23, 659–678].Other results concern the splitting of the shelf break jet. We show that in the previous paper, the splitting of the jet was influenced by the numerical formulation of the outflow condition at the southern boundary. We also show that the splitting can be suppressed by specifying the density of water flowing into the model domain through the southern boundary, rather than allowing this to be determined by the previous history of mixing and outflow on the boundary.  相似文献   

16.
Expression of intracellular ammonium assimilation enzymes were used to assess the response of nitrogen (N) metabolism in bacterioplankton to N-loading of sub-tropical coastal waters of Key West, Florida. Specific activities of glutamine synthetase (GS) and total glutamate dehydrogenase (GDHT) were measured on the bacterial size fraction (<0.8 μm) to assess N-deplete versus N-replete metabolic states, respectively. Enzyme results were compared to concentrations of dissolved organic matter and nutrients and to the biomass and production of phytoplankton and bacteria. Concentrations of dissolved inorganic N (DIN), dissolved organic N (DON), and dissolved organic carbon (DOC) positively correlated with specific activities of GDHT and negatively correlated with that of GS. Total dissolved N (TDN) concentration explained 81% of variance in bacterioplankton GDHT:GS activity ratio. The GDHT:GS ratio, TDN, DOC, and bacterial parameters decreased in magnitude along a tidally dynamic trophic gradient from north of Key West to south at the reef tract, which is consistent with the combined effects of localized coastal eutrophication and tidal exchange of seawater from the Southwest Florida Shelf and Florida Strait. The N-replete bacterioplankton north of Key West can regenerate ammonium which sustains primary production transported south to the reef. The range in GDHT:GS ratios was 5–30 times greater than that for commonly used indicators of planktonic eutrophication, which emphasizes the sensitivity of bacterioplankton N-metabolism to changes in N-bioavailability caused by nutrient pollution in sub-tropical coastal waters and utility of GDHT:GS ratio as an bioindicator of N-replete conditions.  相似文献   

17.
《Continental Shelf Research》2005,25(9):1003-1022
The coastal upwelled waters of the Guajira coast, the most northerly peninsula of South America, were studied on the basis of historical data bases, remotely sensed data, and three oceanographic cruises. The Guajira Peninsula is the locus of particularly strong upwelling because it protrudes into the Caribbean Low-Level Wind Jet and its west coast parallels the direction of the strongest winds. The year-round upwelling varies with the wind forcing: strongest in December–March and July, and weakest in the October–November rainy season. The east–west temperature, salinity and density front that delimits the upwelling lies over the shelf edge in the east of the peninsula but separates from the south-westward trending topography to the west. A coastal westward surface jet geostrophically adjusted to the upwelling flows along the front, and an eastward sub-surface counterflow is trapped against the Guajira continental slope. The undercurrent shoals toward the western limit of the upwelling, Santa Marta, beyond which point it extends to the surface. Some of the westward jet re-circulates inshore with the counterflow but part continues directly west to form an upwelling filament. Much of the mesoscale variation is associated with upwelling filaments, which expel cooler, chlorophyll-rich coastal upwelling waters westward and northward into the Caribbean Sea. Freshwater plumes from the Magdalena and Orinoco rivers influence the area strongly, and outflow from Lake Maracaibo interacts directly with upwelled waters off Guajira. Another important factor is the Aeolian input of dust from the Guajira desert by episodes of offshore winds.  相似文献   

18.
A three-dimensional shelf circulation model is used to examine the effect of seasonal changes in water-column stratification on the tidal circulation over the Scotian Shelf and Gulf of St. Lawrence. The model is driven by tidal forcing specified at the model’s lateral open boundaries in terms of tidal sea surface elevations and depth-averaged currents for five major tidal constituents (M2, N2, S2, K1, and O1). Three numerical experiments are conducted to determine the influence of baroclinic pressure gradients and changes in vertical mixing, both associated with stratification, on the seasonal variation of tidal circulation over the study region. The model is initialized with climatological hydrographic fields and integrated for 16 months in each experiment. Model results from the last 12 months are analyzed to determine the dominant semidiurnal and diurnal tidal components, M2 and K1. Model results suggest that the seasonal variation in the water-column stratification affects the M2 tidal circulation most strongly over the shelf break and over the deep waters off the Scotian Shelf (through the development of baroclinic pressure gradients) and along Northumberland Strait in the Gulf of St. Lawrence (through changes in vertical mixing and bottom stress). For the K1 constituent, the baroclinic pressure gradient and vertical mixing have opposing effects on the tidal circulation over several areas of the study region, while near the bottom, vertical mixing appears to play only a small role in the tidal circulation.  相似文献   

19.
We studied the circulation on the coastal domain of the Amazon Shelf by applying the hydrodynamic module of the estuarine and coastal ocean model and sediment transport. The first barotropic experiment aimed to explain the major bathymetric effects on tides and those generated by anisotropy in sediment distribution. We analyzed the continental shelf response of barotropic tides under realistic bottom stress parametrization (C d ), considering sediment granulometry obtained from a faciologic map, where river mud deposits and reworked sediments areas are well distinguished, among others classes of sediments. Very low C d values were set in the fluid mud regions off the Amapá coast (1.0 10???4), in contrast to values around 3.5 10???3 for coarser sediment regions off the Pará coast. Three-dimensional experiments represented the Amazon River discharge and trade winds, combined to barotropic tide influences and induced vertical mixing. The quasiresonant response of the Amazon Shelf to the M2 tide acts on the local hydrodynamics by increasing tidal admittance, along with tidal forcing at the shelf break and extensive fluid mud regions. Harmonic analysis of modeled currents agreed well with the analysis of the AMASSEDS observational data set. Tidal-induced vertical shear provided strong homogenization of threshold waters, which are subject to a kind of hydraulic control due to the topographic steepness. Ahead of the hydraulic jump, the low-salinity plume is disconnected from the bottom and acquires negative vorticity, turning southeastward. Tides act as a generator mechanism and topography, via hydraulic control, acts as a maintainer mechanism for the low-salinity frontal zone positioning. Tidally induced southeastward plume fate is overwhelmed by northwestward trade winds so that they, along with background circulation, probably play the most important role on the plume fate and variability over the Amazon Shelf.  相似文献   

20.
Satellite ocean color and surface salinity data are used to characterize the space–time variability of the Río de la Plata plume. River outflow and satellite wind data are also used to assess their combined effect on the plume spreading over the Southwestern South Atlantic continental shelf. Over the continental shelf satellite-derived surface chlorophyll-a (CSAT) estimated by the OC4v4 SeaWiFS retrieval algorithm is a good indicator of surface salinity. The log (CSAT) distribution over the shelf presents three distinct modes, each associated to: Subantarctic Shelf Water, Subtropical Shelf Water and Plata Plume water. The log (CSAT) 0.4–0.8 range is associated with a sharp surface salinity transition across the offshore edge of the Plata plume from 28.5 to 32.5. Waters of surface salinity <31, derived from mixtures of Plata waters with continental shelf waters, are associated to log (CSAT)>0.5. In austral winter CSAT maxima extend northeastward from the Plata estuary beyond 30°S. In summer the high CSAT waters along the southern Brazil shelf retreat to 32°S and extend south of the estuary to about 37.5°S, only exceeding this latitude during extraordinary events. The seasonal CSAT variations northeast of the estuary are primarily controlled by reversals of the along-shore wind stress and surface currents. Along-shore wind stress and CSAT variations in the inner and mid-shelves are in phase north of the estuary and 180° out of phase south of the estuary. At interannual time scales northernmost Plata plume penetrations in winter (∼1200 km from the estuary) are associated with more intense and persistent northeastward wind stress, which in the period 2000–2003, prevailed over the shelf south of 26°S. In contrast, in winter 1999, 2004 and 2005, characterized by weaker northeastward wind stress, the plume only reached between 650 and 900 km. Intense southwestward plume extensions beyond 38°S are dominated by interannual time scales and appear to be related to the magnitude of the river outflow. The plume response to large river outflow fluctuations observed at interannual time scales is moderate, except offshore from the estuary mouth, where outflow variations lead CSAT variations by about 2 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号