首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although a minimum of four independent, single-phase fault data are required to solve for a unique reduced stress tensor, we prove in this paper that a smaller number of fault data are sufficient in some instances to solve for part of the reduced stress tensor. One of the principal stress directions is determinable from either two faults with a common null shear direction on the fault planes or three faults with a common intersection in a principal stress plane of the fault planes. This direction is combined with the fault data to determine the possible ranges of other principal stress directions. Determining whether the direction is for the maximum, intermediate or minimum principal stress depends upon constraints provided by slip tendency or more fault data. This approach can also be applied to a set of four or more fault data with low orientation diversity. This new method is finally applied to two different sets of fault data from along the active Chelungpu fault, western Taiwan. The stress orientations determined from the method lie in acceptable ranges for the maximum/minimum principal stresses using other existing and comparable methods, such as the right dihedra/trihedra methods. They differ moderately in the maximum/minimum principal stress directions when compared to the moment tensor method for fault kinematic analysis. The new method has advantages over the right dihedra/trihedra methods in the accuracy of stress estimate and the independence of stress estimate upon the small number of faults that are not parallel to the dominant fault set(s).  相似文献   

2.
The widely accepted faulting theory of Anderson fails to explain three more coeval sets of faults or faults developed in a three-dimensional strain field. Reches has developed a model which suggests that four sets of faults, arranged in orthorhombic symmetry about the principal strain axes, are necessary to accommodate general, three-dimensional strain. This paper presents the odd-axis model, which recognizes certain geometric and kinematic relationships inherent in orthorhombic fault systems and in the Reches model and presents a practical method for decoding the strain significance of fault systems developed in three-dimensional strain fields. Both the odd-axis model and the Reches model are applied to an array of orthorhombic faults in the northern San Rafael Swell of central Utah with excellent agreement between predicted and observed geometric and kinematic parameters.  相似文献   

3.
It is shown that in two-dimensional and three-dimensional deformation accommodated by fracture, the symmetry of the fault patterns is an intrinsic attribute because it reflects the symmetry of either stress or strain tensors. The deformation accommodated by sliding along pre-existing planes, when there is kinematic interaction between that planes, forms multiple fault pattern and multiple slickenline sets during a single deformation event. These fault patterns have no restrictions with respect to symmetry, number of fault sets or fault orientation.

The kinematic analysis developed here shows that an interacting system is formed by two cross cutting faults and three slickenlines. One slickenline must be parallel to the intersection line between the planes. Also, it is demonstrated that the slickenlines generally do not correspond to the shear stress solution on the planes. Thus, the interaction between planes does not satisfy the assumption of parallelism between shear stress and slip vector. We conclude that the inversion methods to calculate paleostress tensors can lead to erroneous interpretations in structurally complex zones with many pre-existing planes of weakness.

We propose four possibilities to form multiple fault patterns: (1) two or more events of faulting obeying Coulomb's law with a change of orientation of the principal stresses in each event; (2) reactivation of non-interacting planes according to the Bott (1959) model; (3) one three-dimensional strain event that obeys the “Slip Model”; this mechanism will form an orthorhombic four-fault pattern and two slickenline sets in a single strain event; and (4) one or more events obeying the interacting block model proposed here, with or without rotation of the principal stresses. We propose the last origin as the most common in continental regions.  相似文献   


4.
Large earthquakes in strike-slip regimes commonly rupture fault segments that are oblique to each other in both strike and dip. This was the case during the 1999 Izmit earthquake, which mainly ruptured E–W-striking right-lateral faults but also ruptured the N60°E-striking Karadere fault at the eastern end of the main rupture. It will also likely be so for any future large fault rupture in the adjacent Sea of Marmara. Our aim here is to characterize the effects of regional stress direction, stress triggering due to rupture, and mechanical slip interaction on the composite rupture process. We examine the failure tendency and slip mechanism on secondary faults that are oblique in strike and dip to a vertical strike-slip fault or “master” fault. For a regional stress field well-oriented for slip on a vertical right-lateral strike-slip fault, we determine that oblique normal faulting is most favored on dipping faults with two different strikes, both of which are oriented clockwise from the strike-slip fault. The orientation closer in strike to the master fault is predicted to slip with right-lateral oblique normal slip, the other one with left-lateral oblique normal slip. The most favored secondary fault orientations depend on the effective coefficient of friction on the faults and the ratio of the vertical stress to the maximum horizontal stress. If the regional stress instead causes left-lateral slip on the vertical master fault, the most favored secondary faults would be oriented counterclockwise from the master fault. For secondary faults striking ±30° oblique to the master fault, right-lateral slip on the master fault brings both these secondary fault orientations closer to the Coulomb condition for shear failure with oblique right-lateral slip. For a secondary fault striking 30° counterclockwise, the predicted stress change and the component of reverse slip both increase for shallower-angle dips of the secondary fault. For a secondary fault striking 30° clockwise, the predicted stress change decreases but the predicted component of normal slip increases for shallower-angle dips of the secondary fault. When both the vertical master fault and the dipping secondary fault are allowed to slip, mechanical interaction produces sharp gradients or discontinuities in slip across their intersection lines. This can effectively constrain rupture to limited portions of larger faults, depending on the locations of fault intersections. Across the fault intersection line, predicted rakes can vary by >40° and the sense of lateral slip can reverse. Application of these results provides a potential explanation for why only a limited portion of the Karadere fault ruptured during the Izmit earthquake. Our results also suggest that the geometries of fault intersection within the Sea of Marmara favor composite rupture of multiple oblique fault segments.  相似文献   

5.
In a previous paper, the strain field in the vicinity of the termination of an experimentally induced fault in clay was described. The present study deals with the strain field associated with the termination of a natural normal fault, and a comparison of the two is made.Samples were taken near the termination of a steeply dipping fault in the Green River Formation, Utah. The preferred orientation of basal planes of clay minerals was measured at 80 points in a three-dimensional array, using an X-ray pole-figure goniometer. From the preferred orientation data, strain was calculated according to the theory of March (1932). Strain remote from the fault, due to compaction alone, was determined bed by bed and subtracted from the strain observed near the fault. In this way the finite strain, presumably associated with faulting only, was determined.The displacement field was found by unstraining and superposing the unstrained and strained configurations. The displacement field, patterns of magnitudes of the second invariant of the strain tensor (being a measure of the shear strain), and those of the principal strains were found. They resemble analogous fields and patterns near strike-slip faults observed in experiments, deduced theoretically, and inferred from field observations on active natural faults, after coordinates are rotated so as to bring the fault planes and slip directions into coincidence.  相似文献   

6.
Cosserat extension of the Gauss stress-strain inversion method and multiple-slip method (MSM) are used to analyse 18 examples of natural wedge faulting observed in Slovenia. Based on additional numerical tests we show that kinematic incompatibility of slip along intersecting faults (wedges) has a significant effect on the state of stress in the Earth's crust. The slip direction along intersecting faults (wedges) can only be subparallel to the intersection direction between the faults. The normal stress on the wedges is then equal to the intermediate principal stress (eigenvalue) of the symmetric part of the stress tensor. This equality is very fundamental and could potentially be interpreted as a new law of faulting along tectonic wedges and non-planar faults. In the Cosserat theory of wedge faulting we also define two stress criteria, these are the weak and the strong stress conditions. The weak stress condition is related to the frictional reactivation of the wedges. It defines two limit values of the stress parameter and intermediate principal stress of the symmetric part of the stress tensor. The strong stress condition is related to the brittle faulting along tectonic wedges. It relates the angle of internal friction to the value of the stress parameter and the intermediate principal stress of the symmetric part of the stress tensor. For the value of the angle of internal friction larger than zero, the stress parameter is less than 0.5, which is in agreement with numerical and empirical observations described in this paper.  相似文献   

7.
《Journal of Structural Geology》2004,26(6-7):1231-1256
In the internationally significant Victorian goldfields a complex system of faults dismembers the 5 million ounce Magdala gold deposit. These faults represent a combination of neoformed faults and inherited faults that reflect deformation associated with stress tensors of variable orientation and stress shape ratio (φ). The fault geometry is strongly controlled by the pre-existing rheology. Faults have propagated around the flanks of an antiformal basalt dome, along earlier ductile cleavages and the margins of porphyry dykes. Many of the faults do not have Andersonian geometries and there is no correlation between the orientation of the faults and the palaeostress directions. Much of the faulting is associated with the emplacement of porphyry dykes, additional gold mineralisation related to plutonism and late-stage deformation post-dating the intrusion of the Stawell pluton. Systematic mapping of extension veins associated with faults, striations and conjugate joint sets allowed the construction of a revised and more robust history of brittle deformation. This successfully predicted the offset direction of the currently mined Magdala ore body beneath the studied system of faults. The use of extension veins was a critical aspect of the analysis. If striations on the fault surfaces had solely been used, the offset direction of the new Golden Gift orebody would not have been correctly ascertained. The palaeostress history was delineated via use of compression and tension dihedra, stress inversion of slip data and calculation of theoretical resolved shear stress for faults with orientations similar to those mapped. The calculation of theoretical resolved shear stress directions highlights the importance that the intermediate stress has on the slip direction for faults whose pole does not lie in the plane containing σ1 and σ3.  相似文献   

8.
The friction coefficient controls the brittle strength of the Earth’s crust for deformation recorded by faults. This study proposes a computerized method to determine the friction coefficient of meso-scale faults. The method is based on the analysis of orientation distribution of faults, and the principal stress axes and the stress ratio calculated by a stress tensor inversion technique. The method assumes that faults are activated according to the cohesionless Coulomb’s failure criterion, where the fluctuations of fluid pressure and the magnitude of differential stress are assumed to induce faulting. In this case, the orientation distribution of fault planes is described by a probability density function that is visualized as linear contours on a Mohr diagram. The parametric optimization of the function for an observed fault population yields the friction coefficient. A test using an artificial fault-slip dataset successfully determines the internal friction angle (the arctangent of the friction coefficient) with its confidence interval of several degrees estimated by the bootstrap resampling technique. An application to natural faults cutting a Pleistocene forearc basin fill yields a friction coefficient around 0.7 which is experimentally predicted by the Byerlee’s law.  相似文献   

9.
The results of a lithostratigraphic, tectonic and kinematic study of the Karoo deposits of northern Malawi are reported. The objective of the lithostratigraphic study is to correlate the deposits of the Karoo basins of northern Malawi with the well-known deposits of southern Tanzania, thus establishing a stratigraphic framework through which the timing of faulting can be constrained. The kinematic analysis of faulting constrains the opening direction for the Karoo graben in this area and provides basic data to discuss the Karoo graben development within the regional tectonic framework of south-eastern Africa. The studied adults are defined by moderately to steeply dipping cataclastic zones with a width of up to 15 m and are characterized by an array of slickensided fault surfaces with different orientations and slip directions. In this study, small faults (offset < 10 m) and meso-scale faults (offset > 10 m, but generally not exceeding 30–40 m) have been distinguished. Methods used to analyse the kinematic data include the ‘pressure tension’ (PT) method, which estimates the principal axes for the bulk brittle strain, and the internal rotation axis (IRA) method, which estimates the axis of bulk internal rotation and the overall sense of slip at the faults. A mass balance calculation reveals a volume increase of up to 16% during cataclastic deformation in the fault zones. The PT method shows an approximately east trending extension direction for faults that occur only in the latest Carboniferous (?) and Early Permian strata, whereas the fault kinematics from faults that cut middle Permian to Early Triassic rocks is characterized by a ESE to SE trending extension direction. The small faults yield essentially the same kinematic results as the meso-scale faults. In a transport-parallel cross-sectional view, the principal extension axes are at an acute angle of approximately 60° to the major fault planes. Given the moderate fault density, the relatively high angle between the orientation of the principal extension axis and the fault planes suggest only a moderate amount of horizontal extension across the Karoo graben of northern Malawi. Riedel structures in the fault zones formed within two conjugate sets of localized shear zones; slip on one set was top to the W/NW and, on the other, top to the E/SE. The two conjugate sets of Riedel structures have an acute angle about the regional shortening axes, implying that no pronounced rotation of the strain axes occurred. The internal rotation axes for the Riedel structures reveal a largely bimodal distribution and inferred weakly monoclinic to orthorhombic symmetry. Therefore the overall deformation during Karoo rifting in northern Malawi is interpreted to be close to a coaxial deformation with a limited amount of horizontal extension.[/p]  相似文献   

10.
We suggest that faults in high slip tendency orientations tend to develop larger displacements than other faults. Consequently, faults that accumulate larger displacements are more likely to be reliable indicators of the longer term stress field and should be weighted accordingly in paleostress estimation. Application of a stress inversion technique that uses slip tendency analyses and fault displacements to interpret populations of coherent normal faults within the Balcones Fault System of south-central Texas provides stress estimates that are consistent with established regional stress analyses. Although the method does not require measurement of slip directions, these data, where available, and sensitivity analyses of the angular mismatch between measured slip directions and those predicted by inverted stress states provide high confidence in the stress estimates generated using slip tendency analyses. Close inspection of the fault orientation and displacement data further indicates that subpopulations of faults with orientations different from the regional pattern have formed in response to stress perturbations generated by displacement gradients on an adjacent seismic scale fault.  相似文献   

11.
The complex representation of plane stress is used for an analytic model to describe the stress regime of the Snake River Plain (SRP) region of the western United States. The area is modeled as an infinite elastic sheet cut along a circular arc with tension applied at infinity. Modeling results include the following: (1) south of the Snake River Plain, the principal direction of tension rotates from the direction of the applied stress to a direction sub-parallel to the cut, consistent with the orientation of normal faulting and nodal planes given by fault plane solutions; (2) north of the Snake River Plain, calculated stress directions are consistent with the variable nature of faulting in that region; (3) a decrease in magnitude of predicted stresses is observed within the Snake River Plain consistent with relatively low levels of seismicity on the Plain.  相似文献   

12.
Analysis of faulting in three-dimensional strain field   总被引:2,自引:0,他引:2  
Multiple faults, composed of three, four or more sets of faults, have been observed at a wide range of scales, from clay experiments to rift valleys. Multiple faults usually are explained by multiple phases of deformation. However, in several cases the multiple faults develop simultaneously; therefore, they cannot be explained by the common theories of faulting. Furthermore, these theories were derived for plane strain, whereas, multiple faults are associated with three-dimensional strain.An elementary analysis of faulting in three-dimensional strain field is presented here. The analysis considers the deformation of an idealized model due to slip along sets of faults; the model is subjected to strain boundary conditions. The analysis shows that (1) three or four sets of faults are necessary to accommodate three-dimensional strain, (2) there is a combination of four fault sets which minimize the dissipation of the deformation; the orientation of these faults depend on the strain state, and (3) if the resistance to slip along these four sets of faults is cohesive, then the stresses which cause slippage along them are equal or larger than the yielding stresses of a Tresca rigid-plastic with the same cohesion.The analysis presented here is too elementary to be directly applied to field observations; however, it indicates that multiple faults and rhomboid patterns of faults probably form when a body is strained three-dimensionally.  相似文献   

13.
Although reverse drag, the down warping of hanging wall strata toward a normal fault, is widely accepted as an indicator of listric fault geometry, previous studies have shown that similar folding may form in response to slip on faults of finite vertical extent with listric or planar geometry. In this study we therefore seek more general criteria for inferring subsurface fault geometry from observations of near-surface deformation by directly comparing patterns of displacement, stress, and strain around planar and listric faults, as predicted by elastic boundary element models. In agreement with previous work, we find that models with finite planar, planar-detached, and listric-detached faults all develop hanging wall reverse-drag folds. All of these model geometries also predict a region of tension and elevated maximum Coulomb stress in the hanging wall suggesting that the distribution and orientation of near-surface joints and secondary faults may also be of limited utility in predicting subsurface fault geometry. The most notable difference between the three models, however, is the magnitude of footwall uplift. Footwall uplift decreases slightly with introduction of a detachment and more significantly with the addition of a listric fault shape. A parametric investigation of faults with constant slip ranging from nearly planar to strongly listric over depths from 1 to 15 km reveals that footwall fold width is sensitive to fault geometry while hanging wall fold width largely reflects fault depth. Application of a graphical approach based on these results as well as more complete inverse modeling illustrates how patterns of combined hanging wall and footwall deformation may be used to constrain subsurface fault geometry.  相似文献   

14.
Equations are derived for the critical stress difference on thrust, normal and strike-slip faults with finite cohesive strength, both in homogeneous, isotropic rock, and along pre-existing strength anisotropies with different cohesion and coefficient of friction, subject to the limitation that the plane of anisotropy contains the intermediate axis of stress. The range of orientations for which sliding occurs along pre-existing planes of weakness rather than along a new fault is given as a function of material parameters and critical stress difference for the intact rock. Given the principal stress directions, the equations allow the direct calculation of the stress and orientation conditions for the three faulting regimes.  相似文献   

15.
A few cases of occurrence of normal aftershocks after strike slip earthquakes in compressive regime have been reported in the literature. Occurrence of such aftershocks is intriguing as they occurred despite the apparent stabilizing influence of compressive plate tectonic stresses on the normal faults. To investigate the occurrence processes of such earthquakes, we calculate change in static stress on optimally oriented normal and reverse faults in the dilational and compressional step over zones, respectively, due to slip on a vertical strike slip fault under compressive regime. We find that change in static stress is much more pronounced on normal faults as compared to that on reverse faults, for all values of fault friction. Change in static stress on reverse fault is marginally positive only when the fault friction is low, whereas for normal faults it is positive for all values of fault friction, and is maximum for high fault friction. We suggest that strike slip faulting in compressive regime creates a localized tensile environment in the dilational step over zone, which causes normal faulting in that region. The aftershocks on such normal faults are considered to have occurred as an almost instantaneous response of stress transfer due to strike slip motion.  相似文献   

16.
A few cases of occurrence of normal aftershocks after strike slip earthquakes in compressive regime have been reported in the literature. Occurrence of such aftershocks is intriguing as they occurred despite the apparent stabilizing influence of compressive plate tectonic stresses on the normal faults. To investigate the occurrence processes of such earthquakes, we calculate change in static stress on optimally oriented normal and reverse faults in the dilational and compressional step over zones, respectively, due to slip on a vertical strike slip fault under compressive regime. We find that change in static stress is much more pronounced on normal faults as compared to that on reverse faults, for all values of fault friction. Change in static stress on reverse fault is marginally positive only when the fault friction is low, whereas for normal faults it is positive for all values of fault friction, and is maximum for high fault friction. We suggest that strike slip faulting in compressive regime creates a localized tensile environment in the dilational step over zone, which causes normal faulting in that region. The aftershocks on such normal faults are considered to have occurred as an almost instantaneous response of stress transfer due to strike slip motion.  相似文献   

17.
基于实验结果讨论断层破裂与强震物理过程的若干问题   总被引:9,自引:0,他引:9  
基于断层摩擦滑动实验、含凹凸体断层的变形破坏实验、断层撕裂扩展的实验、交叉断层的变形实验等多种实验结果并结合前人的工作 ,讨论了与断层破裂与强震物理过程相关的若干问题。研究表明 ,断层的整体滑动引起其两侧块体弹性应变的释放 ,是强震发生的原因 ,因此构造活动区具有较大尺度、结构连续且简单、介质均匀的断层 (或断层段 )是产生强震必备的构造条件 ,深部新生断层(盲断层 )向上撕裂扩展产生强震 ,尚需“弱层”提供“解耦”条件以便断层发生整体滑动。强震孕育过程中包含着凹凸体的破裂 ,断层面上凹凸体的尺度、强度及数量决定着前震活动的特征、强震动态破裂过程以及前兆现象。由断层分割的块体通过边界断层的交替滑动、以“框动”的方式运动 ,因此块体周边的断层上强震活动具有交替性。  相似文献   

18.
青藏高原北部发育一系列北西向大型左行走滑断裂带,目前普遍认为这些左行走滑断裂至今仍在活动,在左行走滑作用下,青藏高原东部向东挤出并伴随强烈的地块旋转运动。本文以介于东昆仑左行走滑断裂带与玉树左行走滑断裂带之间的巴颜喀拉山中央断裂(及其周缘的构造形迹)为主要研究对象,根据断层构造的直接解译标志——清晰的线性形迹和构造地貌标志如断层陡坎、断层谷地、挤压脊、地裂缝、断层走滑造成的水系错动、新老洪积扇的侧向叠加等,在高分辨率的SPOT5及中等分辨率ETM遥感影像上对研究区内北西向活动断层与北东向活动断层的空间分布、规模、活动性质、相对活动时代及活动幅度等进行了遥感分析和野外验证,并结合对断层周缘沿共轭张裂隙展布的水系与地裂缝的规模、展布方向等的统计分析,对晚第四纪应力场进行了恢复。研究表明:北西向活动断层具右行走滑兼有逆冲运动特征,北东向活动断层具左行走滑兼有正滑运动特征,二者为晚第四纪NNE向(2°)挤压应力条件下产生的北西向与北东向走滑作用的产物。北西向右行走滑作用的发现,预示着青藏高原北部第四纪以来普遍存在的北西向左行走滑作用可能在晚更新世就已终止。在此基础上,探讨了处于不同展布方向上的湖盆在同一应力条件下表现出的不同演化趋势:即在NNE向挤压应力作用下,呈北东向展布的错坎巴昂日东湖处于近东西向拉张状态,呈北西向展布的卡巴纽尔多湖变化不明显。  相似文献   

19.
F. Di Luccio  E. Fukuyama  N.A. Pino   《Tectonophysics》2005,405(1-4):141-154
On October 31, 2002 a ML = 5.4 earthquake occurred in southern Italy, at the margin between the Apenninic thrust belt (to the west) and the Adriatic plate (to the east). In this area, neither historical event nor seismogenic fault is reported in the literature. In spite of its moderate magnitude, the earthquake caused severe damage in cities close to the epicenter and 27 people, out of a total of 29 casualties, were killed by the collapse of a primary school in S. Giuliano di Puglia. By inverting broadband regional waveforms, we computed moment tensor solutions for 15 events, as small as ML = 3.5 (Mw = 3.7). The obtained focal mechanisms show pure strike-slip geometry, mainly with focal planes oriented to NS (sinistral) and EW (dextral). In several solutions focal planes are rotated counterclockwise, in particular for later events, occurring west of the mainshock. From the relocated aftershock distribution, we found that the mainshock ruptured along an EW plane, and the fault mechanisms of some aftershocks were not consistent with the mainshock fault plane. The observed stress field, resulting from the stress tensor inversion, shows a maximum principal stress axis with an east–west trend (N83°W), whereas the minimum stress direction is almost N–S. Considering both the aftershock distribution and moment tensor solutions, it appears that several pre-existing faults were activated rather than a single planar fault associated with the mainshock. The finite fault analysis shows a very simple slip distribution with a slow rupture velocity of 1.1 km/s, that could explain the occurrence of a second mainshock about 30 h after. Finally, we attempt to interpret how the Molise sequence is related to the normal faulting system to the west (along the Apennines) and the dextral strike-slip Mattinata fault to the east.  相似文献   

20.
为研究次级断裂发育状况,探讨了一种地震解释主断层与地质力学相结合的边界元模拟方法:首先在安德森断层分类体系下,依据断层与应力组合特征,完善次级断裂构造演化事件分类;然后应用应力张量降阶、线性叠加原理,简化应力与位移平衡方程,并在此基础上使用蒙特卡洛方法反演古应力场;最后求解应力、应变与不连续位移平衡方程,获取地层现今应力分布,分析次级断裂开度、相对密度等信息。运用该方法在杨柳矿区童亭背斜区域开展试验,结果表明区域内最小水平主应力以近北西向为主,主断层之间广泛发育交叉断裂带,次级断裂发育带连通性强,为杨柳矿区隐蔽灾害评估提供了参考资料。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号