首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The NST (New Solar Telescope), a 1.6 m clear aperture, off‐axis telescope, is in its commissioning phase at Big Bear Solar Observatory (BBSO). It will be the most capable, largest aperture solar telescope in the US until the 4 m ATST (Advanced Technology Solar Telescope) comes on‐line late in the next decade. The NST will be outfitted with state‐of‐the‐art scientific instruments at the Nasmyth focus on the telescope floor and in the Coudé Lab beneath the telescope. At the Nasmyth focus, several filtergraphs already in routine operation have offered high spatial resolution photometry in TiO 706 nm, Hα 656 nm, G‐band 430 nm and the near infrared (NIR), with the aid of a correlation tracker and image reconstruction system. Also, a Cryogenic Infrared Spectrograph (CYRA) is being developed to supply high signal‐to‐noise‐ratio spectrometry and polarimetry spanning 1.0 to 5.0 μm. The Coudé Lab instrumentation will include Adaptive Optics (AO), InfraRed Imaging Magnetograph (IRIM), Visible Imaging Magnetograph (VIM), and Fast Imaging Solar Spectrograph (FISS). A 308 sub‐aperture (349‐actuator deformable mirror) AO system will enable nearly diffraction limited observations over the NST's principal operating wavelengths from 0.4 μm through 1.7 μm. IRIM and VIM are Fabry‐Pérot based narrow‐band tunable filters, which provide high resolution two‐dimensional spectroscopic and polarimetric imaging in the NIR and visible respectively. FISS is a collaboration between BBSO and Seoul National University focussing on chromosphere dynamics. This paper reports the up‐to‐date progress on these instruments including an overview of each instrument and details of the current state of design, integration, calibration and setup/testing on the NST (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The integration and verification phase of the GREGOR telescope reached an important milestone with the installation of the interim 1 m SolarLite primary mirror. This was the first time that the entire light path had seen sunlight. Since then extensive testing of the telescope and its subsystems has been carried out. The integration and verification phase will culminate with the delivery and installation of the final 1.5 m Zerodur primary mirror in the summer of 2010. Observatory level tests and science verification will commence in the second half of 2010 and in 2011. This phase includes testing of the main optics, adaptive optics, cooling and pointing systems. In addition, assuming the viewpoint of a typical user, various observational modes of the GREGOR Fabry‐Pérot Interferometer (GFPI), the Grating Infrared Spectrograph (GRIS), and high‐speed camera systems will be tested to evaluate if they match the expectations and science requirements. This ensures that GREGOR will provide high‐quality observations with its combination of (multi‐conjugate) adaptive optics and advanced post‐focus instruments. Routine observations are expected for 2012 (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The mechanical structure of the GREGOR telescope was installed at the Observatorio del Teide, Tenerife, in 2004. New concepts for mounting and cooling of the 1.5‐meter primary mirror were introduced. GREGOR is an open telescope, therefore the dome is completely open during observations to allow for air flushing through the open, but stiff telescope structure. Backside cooling system of the primary mirror keeps the mirror surface close to ambient temperature to prevent mirror seeing. The large collecting area of the primary mirror results in high energy density at the field stop at the prime focus of the primary which needs to be removed. The optical elements are supported by precision alignment systems and should provide a stable solar image at the optical lab. The coudé train can be evacuated and serves as a natural barrier between the outer environmental conditions and the air‐conditioned optical laboratory with its sensitive scientific instrumentation. The telescope was successfully commissioned and will start its nominal operation during 2013 (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In 2006 ESO Council authorized a Phase B study of a European AO‐telescope with a 42 m segmented primary with a 5‐mirror design, the E‐ELT. Several reports and working groups have already presented science cases for an E‐ELT, specifically exploiting the new capabilities of such a large telescope. One of the aims of the design has been to find a balance in the performances between an E‐ELT and the James Webb Space Telescope, JWST. Apart from the larger photon‐collecting area, the strengths of the former is the higher attainable spatial and spectral resolutions. The E‐ELT AO system will have an optimal performance in the near‐IR, which makes it specially advantageous. High‐resolution spectroscopy in the near‐infrared has, however, not been discussed much. This paper aims at filling that gap, by specifically discussing spectroscopy of stellar (mainly red giant), photospheric abundances. Based on studies in the literature of stellar abundances, at the needed medium to high spectral resolutions in the near‐infrared (0.8–2.4 μm), I will try to extrapolate published results to the performance of the E‐ELT and explore what could be done at the E‐ELT in this field. A discussion on what instrument characteristics that would be needed for stellar abundance analyses in the near‐IR will be given (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Led by the National Solar Observatory, plans have been made to design and to develop the Advanced Technology Solar Telescope (ATST). The ATST will be a 4‐m general‐purpose solar telescope equipped with adaptive optics and versatile post‐focus instrumentation. Its main aim will be to achieve an angular resolution of 0.03 arcsec (20 km on the solar surface). The project and the telescope design are briefly described.  相似文献   

6.
The 1.6 m clear aperture solar telescope in Big Bear is operational and with its adaptive optics (AO) system it provides diffraction limited solar imaging and polarimetry in the near-infrared (NIR). While the AO system is being upgraded to provide diffraction limited imaging at bluer wavelengths, the instrumentation and observations are concentrated in the NIR. The New Solar Telescope (NST) operates in campaigns, making it the ideal ground-based telescope to provide complementary/supplementary data to SDO and Hinode. The NST makes photometric observations in Hα (656.3 nm) and TiO (705.6 nm) among other lines. As well, the NST collects vector magnetograms in the 1565 nm lines and is beginning such observations in 1083.0 nm. Here we discuss the relevant NST instruments, including AO, and present some results that are germane to NASA solar missions.  相似文献   

7.
The Coudé feed of the vacuum telescope (aperture D = 65 cm) at the Big Bear Solar Observatory (BBSO) is currently completely remodelled to accommodate a correlation tracker and a high‐order Adaptive Optics (AO) system. The AO system serves two imaging magnetograph systems located at a new optical laboratory on the observatory's 2nd floor. The InfraRed Imaging Magnetograph (IRIM) is an innovative magnetograph system for near‐infrared (NIR) observations in the wavelength region from 1.0 μm to 1.6 μm. The Visible‐light Imaging Magnetograph (VIM) is basically a twin of IRIM for observations in the wavelength range from 550 nm to 700 nm. Both instruments were designed for high spatial and high temporal observations of the solar photosphere and chromosphere. Real‐time data processing is an integral part of the instruments and will enhance BBSO's capabilities in monitoring solar activity and predicting and forecasting space weather.  相似文献   

8.
A high‐order Adaptive Optical (AO) system for the 65 cm vacuum telescope of the Big Bear Solar Observatory (BBSO) is presented. The Coudé‐exit of the telescope has been modified to accommodate the AO system and two imaging magnetograph systems for visible‐light and near infrared (NIR) observations. A small elliptical tip/tilt mirror directs the light into an optical laboratory on the observatory's 2nd floor just below the observing floor. A deformable mirror (DM) with 77 mm diameter is located on an optical table where it serves two wave‐front sensors (WFS), a correlation tracker (CT) and Shack‐Hartman (SH) sensor for the high‐order AO system, and the scientific channels with the imaging magnetographs. The two‐axis tip/tilt platform has a resonance frequency around 3.3 kHz and tilt range of about 2 mrad, which corresponds to about 25″ in the sky. Based on 32 × 32 pixel images, the CT detects image displacements between a reference frame and real‐time frames at a rate of 2 kHz. High‐order wave‐front aberrations are detected in the SH WFS channel from slope measurements derived from 76 sub‐apertures, which are recorded with 1,280 × 1,024 pixel Complex Metal Oxide Semiconductor (CMOS) camera manufactured by Photobit camera. In the 4 × 4 pixel binning mode, the data acquisition rate of the CMOS device is more than 2 kHz. Both visible‐light and NIR imaging magnetographs use Fabry‐Pérot etalons in telecentric configurations for two‐dimensional spectro‐polarimetry. The optical design of the AO system allows using small aperture prefilters, such as interference or Lyot filters, and 70 mm diameter Fabry‐Pérot etalons covering a field‐of‐view (FOV) of about 180″ × 180″.  相似文献   

9.
The installation and operation of a telescope in Antarctica represent particular challenges, in particular the requirement to operate at extremely cold temperatures, to cope with rapid temperature fluctuations and to prevent frosting. Heating of electronic subsystems is a necessity, but solutions must be found to avoid the turbulence induced by temperature fluctuations on the optical paths. ASTEP 400 is a 40cm Newton telescope installed at the Concordia station, Dome C since 2010 for photometric observations of fields of stars and their exoplanets. While the telescope is designed to spread star light on several pixels to maximize photometric stability, we show that it is nonetheless sensitive to the extreme variations of the seeing at the ground level (between about 0′′.1 and 5′′) and to temperature fluctuations between –30°C and –80 °C. We analyze both day‐time and night‐time observations and obtain the magnitude of the seeing caused by the mirrors, dome and camera. The most important effect arises from the heating of the primary mirror which gives rise to a mirror seeing of 0′′.23 K–1. We propose solutions to mitigate these effects. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The Astrophysical Research Consortium 3.5 m telescope facility on Apache Point (2800 m above sea level) near the National Solar Observatory in southern New Mexico is nearing completion. The telescope mount has been installed and testing and fabrication of remaining subassemblies are underway. Thef/1.75 lightweight honeycomb primary mirror was cast April 1988 by the Steward Observatory Mirror Laboratory and is currently being figured.The 3.5 m optical telescope is an altitude over azimuth mechanical structure with Ritchey-Chrétien optics. The lightweight (1800 kg) mirror leads to a mount weighting only 41000 kg; readily available rolling element bearings are used to achieve the necessary performance at low cost and without the heat dissipation of externally pressurized types. Drive torques are applied by DC servo-driven capstans. These are coupled by friction to large diameter drive disks on each axis. No gears are used. Position feedback comes from low cost incremental encoders, also capstan coupled.We have recently completed a series of measurements of the telescope mount. These measurements show that the telescope is very stiff; the lowest natural frequencies are about 7.2 Hz. Initial tracking performance is good and the mount shows high resistance to wind-induced vibration. Our experience during acceptance testing suggests that routine power spectral analysis of drive motor torque and other parameters could be an important tool in the early detection of failures.Paper presented at the Symposium on the JNLT and Related Engineering Developments, Tokyo, November 29–December 2, 1988.  相似文献   

11.
This article describes the use of the telescope output Stokes vector measured during a polarization calibration to infer the properties of mirrors in the telescope itself. Polarization calibrations performed at the National Solar Observatory Dunn Solar Telescope are used to demonstrate this technique (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
This contribution to the series of GREGOR inauguration articles addresses the history of the GREGOR telescope. It was obvious since a long time that the study of the atmospheric dynamics on the Sun needs telescopes with a large aperture. So the first plans to replace the 40 years old Gregory‐Coudé Telescope, with its 45 cm primary mirror, by a large, 1.5‐meter telescope date back to 1997. After a positive review of the project by the Deutsche Forschungsgemeinschaft in 2000, the large financial support started in 2000. Unfortunately, the new technology of the Cesic mirrors was not yet ripe to produce the large primary mirror with this light‐weight material. So, the project was much delayed. After recollecting for the reader several dates, I also go through some properties of GREGOR. I recall the aims of the project and discuss difficulties and ways to realise the intentions (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The new Solar telescope GREGOR is designed to observe small‐scale dynamic magnetic structures below a size of 70 km on the Sun with high spectral resolution and polarimetric accuracy. For this purpose, the polarimetric concept of GREGOR is based on a combination of post‐focus polarimeters with pre‐focus equipment for high precision calibration. The Leibniz‐Institute for Astrophysics Potsdam developed the GREGOR calibration unit which is an integral part of the telescope. We give an overview of the function and design of the calibration unit and present the results of extensive testing series done in the Solar Observatory “Einsteinturm” and at GREGOR (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The 1.5 m telescope GREGOR opens a new window to the understanding of solar small‐scale magnetism. The first light instrumentation includes the Gregor Fabry Pérot Interferometer (GFPI), a filter spectro‐polarimeter for the visible wavelength range, the GRating Infrared Spectro‐polarimeter (GRIS) and the Broad‐Band Imager (BBI). The excellent performance of the first two instruments has already been demonstrated at the Vacuum Tower Telescope. GREGOR is Europe’s largest solar telescope and number 3 in the world. Its all‐reflective Gregory design provides a large wavelength coverage from the near UV up to at least 5 microns. The field of view has a diameter of 150″. GREGOR is equipped with a high‐order adaptive optics system, with a subaperture size of 10 cm, and a deformable mirror with 256 actuators. The science goals are focused on, but not limited to, solar magnetism. GREGOR allows us to measure the emergence and disappearance of magnetic flux at the solar surface at spatial scales well below 100 km. Thanks to its spectro‐polarimetric capabilities, GREGOR will measure the interaction between the plasma flows, different kinds of waves, and the magnetic field. This will foster our understanding of the processes that heat the chromosphere and the outer layers of the solar atmosphere. Observations of the surface magnetic field at very small spatial scales will shed light on the variability of the solar brightness (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
This article introduces the new Indian 2 m telescope which has been designed by MT Mechatronics in a detailed conceptual design study for the Indian Institute of Astrophysics, Bangalore. We describe the background of the project and the science goals which shall be addressed with this telescope. NLST is a solar telescope with high optical throughput and will be equipped with an integrated Adaptive Optics system. It is optimized for a site with the kind of seeing and wind conditions as they are expected at a lake site in the Himalayan mountains. The telescope can also be used for certain night time applications. We also give the scientific rationale for this class of telescope (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
In this paper, the present status of the development of the design of the European Solar Telescope is described. The telescope is devised to have the best possible angular resolution and polarimetric performance, maximizing the throughput of the whole system. To that aim, adaptive optics and multi‐conjugate adaptive optics are integrated in the optical path. The system will have the possibility to correct for the diurnal variation of the distance to the turbulence layers, by using several deformable mirrors, conjugated at different heights. The present optical design of the telescope distributes the optical elements along the optical path in such a way that the instrumental polarization induced by the telescope is minimized and independent of the solar elevation and azimuth. This property represents a large advantage for polarimetric measurements. The ensemble of instruments that are planned is also presented (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
This paper describes the Wide Field Spectrograph (WiFeS) under construction at the Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) for the ANU 2.3 m telescope at the Siding Spring Observatory. WiFeS is a powerful integral field, double-beam, concentric, image-slicing spectrograph designed to deliver excellent throughput, wavelength stability, spectrophotometric performance and superb image quality along with wide spectral coverage throughout the 320–950 nm wavelength region. It provides a 25×38 arcsec field with 0.5 arcsec sampling along each of twenty five 38×1 arcsec slitlets. The output format is optimized to match the 4096×4096 pixel CCD detectors in each of two cameras individually optimized for the blue and the red ends of the spectrum, respectively. A process of “interleaved nod-and-shuffle” will be applied to permit quantum noise-limited sky subtraction. Using VPH gratings, spectral resolutions of 3000 and 7000 are provided. The full spectral range is covered in a single exposure at R=3000, and in two exposures in the R=7000 mode. The use of transmissive coated optics, VPH gratings and optimized mirror coatings ensures a throughput (including telescope atmosphere and detector) >30% over a wide spectral range. The concentric image-slicer design ensures an excellent and uniform image quality across the full field. To maximize scientific return, the whole instrument is configured for remote observing, pipeline data reduction, and the accumulation of calibration image libraries.  相似文献   

18.
Magnetic fields control the inconstant Sun. The key to understanding solar variability and its direct impact on the Earth rests with understanding all aspects of these magnetic fields. The Advanced Technology Solar Telescope (ATST) has been design specifically for magnetic remote sensing. Its collecting area, spatial resolution, scattered light, polarization properties, and wavelength performance all insure ATST will be able to observe magnetic fields at all heights in the solar atmosphere from photosphere to corona. After several years of design efforts, ATST has been approved by the U.S. National Science Foundation to begin construction with a not to exceed cost cap of approximately $298M. Work packages for major telescope components will be released for bid over the next several months. An application for a building permit has been submitted (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We describe the future night‐time spectrograph for the GREGOR solar telescope and present its science core projects. The spectrograph provides a 3‐pixel resolution of up to R = 87 000 in 45 échelle orders covering the wavelength range 390‐900 nm with three grating settings. An iodine cell can be used for high‐precision radial velocity work in the 500‐630 nm range. The operation of the spectrograph and the telescope will be fully automated without the presence of humans during night‐time and will be based on the successful STELLA control system. Future upgrades include a second optical camera for even higher spectral resolution, a Stokes‐V polarimeter and a link to the laser‐frequency comb at the Vacuum Tower Telescope. The night‐time core projects are a study of the angular‐momentum evolution of “The Sun in Time” and a continuation of our long‐term Doppler imaging of active stars (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Solar System Research - Spektr-UF is a multipurpose space observatory equipped with a telescope with a primary mirror 170 cm in diameter. The main task of the observatory is obtaining...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号