首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Anomalous movements were detected simultaneously in both the seismic and the GPS observations in the Tokai area, the central part of the Japanese islands from the late 1990s to 2000. The anomalies are of great concern since the pending risk of a large megathrust earthquake in this area has been predicted for more than 20 years. The GPS data revealed that a slow-slip on the plate interface had commenced beneath Lake Hamana, the center of which is positioned around the edge of the assumed focal zone. On the other hand, the seismic data indicated that a delicate but clear quiescence appeared over a wide area that spreads into the main focal zone. Analyses of the seismicity changes in space and time confirmed that the contrast in the seismicity rate is distinct inside the focal zone. While the integrated seismicity indicated quiescence, some locations were distinguished as activated zones, possibly indicating the appearance of asperities. The rise of the seismicity rate in a quasi-stationary manner suggests an increase in the stress rate at that location. The following hypothesis is proposed based on the simultaneously detected evidences. The slow-slip progressing beneath Lake Hamana will induce a stress shift that invades the interior of the main locked zone, which will increase the contrast of the seismicity rate, possibly reflecting inhomogeneity in the locking strength. Even in this stage, the activated zones still maintain a locked state to prevent overall breakage. Investigations of the b-value changes and of tidal dependence in seismicity that reveal the stress-concentrated state also support the hypothesis. If this is the case, the observed change in seismicity would indicate the process of stress redistribution in the locking state, which represents the preparatory process toward final breakage. Tracking such seismicity changes would yield valid information for predictions of the next Tokai earthquake.  相似文献   

2.
The Jiashian earthquake (ML 6.4) occurred on 4 March 2010. It was the largest inland event in southern Taiwan of 2010. The mainshock location was unexpected since it occurred in an area with relatively low background seismicity. In addition, reports of earthquake focal mechanisms do not fit with any known active fault geometry. In order to understand the origin of this earthquake, especially its rupture process, we perform a joint source inversion by using teleseismic body wave, GPS coseismic displacements and near field ground motion data. In this study, we considered a northwest–southeast trending fault with a northeast dip retrieved from GPS coseismic data and aftershocks distribution. To analyze the detailed slip distribution in space and time, we used near field 3D Green’s functions provided by spectral-element method and a full time–space inversion technique. We find a complex rupture process with several slip patches distributed inside two main asperities. The slip map reveals a mean slip of 12.9 cm for a maximum slip of 27.3 cm leading to a Mw 6.47 for this event. The rupture initiates in the deepest portion of the fault at 20 km depth, and propagated upward up to 2 km depth to form the two asperities. The source time function of this event revealed two pulses corresponding to the two asperities, for a total duration time of about 16 s. Most aftershocks occurred near the upper boundary of the deepest asperity while no aftershocks are located close to the shallowest one. We infer that the locations of these slip patches are related to the surrounding fault systems that may have restricted the rupture propagation during the earthquake.  相似文献   

3.
We found a characteristic space–time pattern of the tidal triggering effect on earthquake occurrence in the subducting Philippine Sea plate beneath the locked zone of the plate interface in the Tokai region, central Japan, where a large interplate earthquake may be impending. We measured the correlation between the Earth tide and earthquake occurrence using microearthquakes that took place in the Philippine Sea plate for about two decades. For each event, we assigned the tidal phase angle at the origin time by theoretically calculating the tidal shear stress on the fault plane. Based on the distribution of the tidal phase angles, we statistically tested whether they concentrate near some particular angle or not by using Schuster's test. In this test, the result is evaluated by p-value, which represents the significance level to reject the null hypothesis that earthquakes occur randomly irrespective of the tidal phase angle. As a result of analysis, no correlation was found for the data set including all the earthquakes. However, we found a systematic pattern in the temporal variation of the tidal effect; the p-value significantly decreased preceding the occurrence of M ≥ 4.5 earthquakes, and it recovered a high level afterwards. We note that those M ≥ 4.5 earthquakes were considerably larger than the normal background seismicity in the study area. The frequency distribution of tidal phase angles in the pre-event period exhibited a peak at the phase angle where the tidal shear stress is at its maximum to accelerate the fault slip. This indicates that the observed small p-value is a physical consequence of the tidal effect. We also found a distinctive feature in the spatial distribution of p-values. The small p-values appeared just beneath the strongly coupled portion of the plate interface, as inferred from the seismicity rate change in the past few years.  相似文献   

4.
为了探索GPS和跨断层地壳形变数据联合反演效果,本文以鲜水河断裂为研究对象,利用1999~2007期,2009~2013期和2013~2017期中国大陆GPS水平速度场数据,使用贝叶斯反演方法,以跨断层数据为先验条件,估算了川滇菱形块体东边界(主要为鲜水河断裂)的断层运动速率。发现增加跨断层数据后,反演图像的近场和远场速率区别更加显著,不同期次的断层活动速率表现出明显的差异。但是,本方法在震前效果并不明显,尤其是在汶川地震前部分跨断层场地的逆向走滑特征很难表现出来,对于地震预测预报也很难起到优势作用,但从反演效果上来看,可以更直观的反映断层在近场和远场上的速率差异以及地震后断层运动速率的分段特征。最终根据上述研究方法认为鲜水河断裂带在汶川地震后,经过多年的应力调整,目前左旋走滑速率已经基本恢复到震前状态,鲜水河断裂南段持续拉张趋势,川滇菱形块体的顺时针旋转作用持续加强,鲜水河断裂的道孚段和磨西段存均在一定的走滑速率亏损,应注意这两个地区的地震危险性,以及这两个地区地震危险的关联性。  相似文献   

5.
《Gondwana Research》2010,17(3-4):370-400
A dense nationwide seismic network recently constructed in Japan has been yielding large volumes of high-quality data that have made it possible to investigate the seismic structure in the Japanese subduction zone with unprecedented resolution. In this article, recent studies on the subduction of the Philippine Sea and Pacific plates beneath the Japanese Islands and the mechanism of earthquake and magma generation associated with plate subduction are reviewed. Seismic tomographic studies have shown that the Philippine Sea plate subducting beneath southwest Japan is continuous throughout the entire region, from Kanto to Kyushu, without disruption or splitting even beneath the Izu Peninsula as suggested in the past. The contact of the Philippine Sea plate with the Pacific plate subducting below has been found to cause anomalously deep interplate and intraslab earthquake activity in Kanto. Detailed waveform inversion studies have revealed that the asperity model is applicable to interplate earthquakes. Analyses of dense seismic and GPS network data have confirmed the existence of episodic slow slip accompanied in many instances by low-frequency tremors/earthquakes on the plate interface, which are inferred to play an important role in stress loading at asperities. High-resolution studies of the spatial variation of intraslab seismicity and the seismic velocity structure of the slab crust strongly support the dehydration embrittlement hypothesis for the generation of intraslab earthquakes. Seismic tomography studies have shown that water released by dehydration of the slab and secondary convection in the mantle wedge, mechanically induced by slab subduction, are responsible for magma generation in the Japanese islands. Water of slab origin is also inferred to be responsible for large anelastic local deformation of the arc crust leading to inland crustal earthquakes that return the arc crust to a state of spatially uniform deformation.  相似文献   

6.
S. Santini  M. Dragoni  G. Spada 《Tectonophysics》2003,367(3-4):219-233
The 1964 Alaska earthquake was the second largest seismic events in the 20th century. The aim of this work is the use of surface deformation data to determine asperity and slip distributions on the fault plane of the Alaska earthquake: these distributions are calculated by a Monte Carlo method. To this aim, we decompose the fault plane in a large number of small square asperity units with a side of 25 km; this allows us to obtain plane surfaces with an irregular shape. In the first stage, each asperity unit is allowed to slip a constant amount or not to slip at all, providing the geometry of the dislocation surface that best reproduces the observed displacements. To this purpose, a large number of slip distributions have been tried by the use of the Monte Carlo method. The slip amplitude is the same for all the asperities and is equal to the average fault slip inferred from the seismic moment. In the second stage, we evaluate the slip distribution in the dislocation area determined by the Monte Carlo inversion: in this case, we allow unit cells to undergo different values of slip in order to refine the initial dislocation model. The results confirm the previous finding that the slip distribution of the great Alaska earthquake was essentially made of two dislocation areas with a higher slip, the Prince William Sound and the Kodiak asperities. Analysis of the post-1964 seismicity in the rupture region shows a strong correlation between the larger earthquakes (Mw≥6) and the distribution of locked asperities following the 1964 event, which can be considered as an independent test of the validity of the model. We do not find slip values higher than 25 m for any of the patches, and we determine two separate high-slip zones: one correspondent to the Prince William Sound asperity, and one (18 m slip) to the Kodiak asperity. The slip distribution connected with the 1964 shock appears to be consistent with the following seismicity in the region.  相似文献   

7.
The Philippine Fault results from the oblique convergence between the Philippine Sea Plate and the Sunda Block/Eurasian Plate. The fault exhibits left-lateral slip and transects the Philippine archipelago from the northwest corner of Luzon to the southeast end of Mindanao for about 1200 km. To better understand fault slip behavior along the Philippine Fault, eight GPS surveys were conducted from 1996 to 2008 in the Luzon region. We combine the 12-yr survey-mode GPS data in the Luzon region and continuous GPS data in Taiwan, along with additional 15 International GNSS Service sites in the Asia-Pacific region, and use the GAMIT/GLOBK software to calculate site coordinates. We then estimate the site velocity from position time series by linear regression. Our results show that the horizontal velocities with respect to the Sunda Block gradually decrease from north to south along the western Luzon at rates of 85–49 mm/yr in the west–northwest direction. This feature also implies a southward decrease of convergence rate along the Manila Trench. Significant internal deformation is observed near the Philippine Fault. Using a two dimensional elastic dislocation model and GPS velocities, we invert for fault geometries and back-slip rates of the Philippine Fault. The results indicate that the back-slip rates on the Philippine Fault increase from north to south, with the rates of 22, 37 and 40 mm/yr, respectively, on the northern, central, and southern segments. The inferred long-term fault slip rates of 24–40 mm/yr are very close to back-slip rates on locked fault segments, suggesting the Philippine Fault is fully locked. The stress tensor inversions from earthquake focal mechanisms indicate a transpressional regime in the Luzon area. Directions of σ1 axes and maximum horizontal compressive axes are between 90° and 110°, consistent with major tectonic features in the Philippines. The high angle between σ1 axes and the Philippine Fault in central Luzon suggests a weak fault zone possibly associated with fluid pressure.  相似文献   

8.
ABSTRACT The precise nature of the transition between the present-day compressional tectonics in central Mongolia and extensional deformation in the central Baikal rift has still to be determined. For that purpose we have built a comprehensive earthquake focal mechanism data base for the Mongolia – southern Siberia area, from which we map the variations of the stress field. We focus our detailed investigations on the largest seismic event in the transition zone, the 1950 (Mw 6.9) Mondy earthquake, for which several discordant focal mechanisms have been proposed. Using a new approach in source inversion, we resolve the focal mechanism (left-lateral strike slip type on a steep south-dipping fault) and depth (14 ± 3 km) of the Mondy earthquake with a satisfactory accuracy. This seismological information, combined with the geological observations, allows us to decipher the connections between the 1950 mainshock, the local stress tensor and the active faults, which strongly suggest a partitioning of the deformation between two faults, namely the Mondy and Ikhe–Ukghun faults.  相似文献   

9.
Greek-Turkish boundary near the cities Kos and Bodrum has been shaken on July 20, 2017 by a Mw6.6 earthquake. The mainshock is located offshore and did not generate an on-land surface rupture. Analyzing pre- and post-earthquake continuous/survey-type static GPS observations, we investigated co-seismic surface displacements at 20 sites to characterize source parameters and slip-distribution of the mainshock. Fault plane solutions as well as co-seismic slip distribution have been acquired through the inversion of co-seismic GPS displacements modeling the event as elastic dislocations in a half space. Fault plane solution shows a southward dipping normal-type fault segment extending a depth down to ~12 km, which remains within the brittle upper crust. Results from the distributed slip inversion show that the mainshock activated a ~65 km fault section, which has three high slip patches, namely western, central and eastern patches, where the coseismic slips reach up to 13, 26, and 5 cm, respectively. This slip pattern indicates that the pre-earthquake coupling, which is storing the slip deficit, occurred on these three patches.  相似文献   

10.
汶川地震后龙门山断裂带活动特征   总被引:2,自引:0,他引:2       下载免费PDF全文
利用地震后2009 ~ 2011年GPS监测数据,获得了龙门山断裂带所在地区2009~2010年、2010~2011年以及2009~2011年GPS测站运动速度场,分析了区域地壳运动总体趋势及形变特征;通过分析龙门山断裂带北段、中段、南段横切剖面的测站运动速度变化,探讨了汶川地震后龙门山断裂带运动特征.分析表明:汶川地震前后,地壳运动总体趋势未变,作顺时旋转;断裂带西侧GPS测站运动速度变大,东侧运动速度变小;龙门山断裂带的断裂性质地震前后都为右旋走滑挤压,断裂带运动速率受汶川地震影响较大,震后运动速率较震前有显著的增加.龙门山断裂带震后各段次级断裂活动不同,中南段以前山断裂运动为主,其它各段以后山断裂运动为主.地震后龙门山断裂带表现出的运动特征主要与地震活动有关.受汶川地震的影响,区域动力学、运动学平衡被打破,龙门山断裂带东侧震后初期弹性回返,表现为低速反向运动.龙门山断裂带西侧震后松弛为拉张区,运动速度加大.地震对断裂带的影响不同,导致断裂带各段及次级断裂表现出不同的运动特征.  相似文献   

11.
We have conducted dynamic rupture propagation experiments to establish the relations between in-source stress drop, fracture energy and the resulting particle velocity during slip of an unconfined 2 m long laboratory fault at normal stresses between 4 and 8 MPa. To produce high fracture energy in the source we use a rough fault that has a large slip weakening distance. An artifact of the high fracture energy is that the nucleation zone is large such that precursory slip reduces fault strength over a large fraction of the total fault length prior to dynamic rupture, making the initial stress non-uniform. Shear stress, particle velocity, fault slip and acceleration were recorded coseismically at multiple locations along strike and at small fault-normal distances. Stress drop increases weakly with normal stress. Average slip rate depends linearly on the fault strength loss and on static stress drop, both with a nonzero intercept. A minimum fracture energy of 1.8 J/m2 and a linear slip weakening distance of 33 μm are inferred from the intercept. The large slip weakening distance also affects the average slip rate which is reduced by in-source energy dissipation from on-fault fracture energy.Because of the low normal stress and small per event slip (∼86 μm), no thermal weakening such as melting or pore fluid pressurization occurs in these experiments. Despite the relatively high fracture energy, and the very low heat production, energy partitioning during these laboratory earthquakes is very similar to typical earthquake source properties. The product of fracture energy and fault area is larger than the radiated energy. Seismic efficiency is low at ∼2%. The ratio of apparent stress to static stress drop is ∼27%, consistent with measured overshoot. The fracture efficiency is ∼33%. The static and dynamic stress drops when extrapolated to crustal stresses are 2–7.3 MPa and in the range of typical earthquake stress drops. As the relatively high fracture energy reduces the slip velocities in these experiments, the extrapolated average particle velocities for crustal stresses are 0.18–0.6 m/s. That these experiments are consistent with typical earthquake source properties suggests, albeit indirectly, that thermal weakening mechanisms such as thermal pressurization and melting which lead to near complete stress drops, dominate earthquake source properties only for exceptional events unless crustal stresses are low.  相似文献   

12.
花东纵谷断层是中国台湾动力作用和地壳运动变形最强烈的断层之一,其断层运动特征和强震危险程度一直备受学者的关注。文中分别以同震地表位移、1992-1999年震间形变数据为约束,反演2003年成功MW 6.8地震同震位错分布和花东纵谷断层震间运动特征。结果表明:花东纵谷断层北段处于强闭锁状态(闭锁率高达0.9),闭锁深度深(约27 km);南段闭锁程度较弱(闭锁率约0.5),闭锁深度较浅(约12 km);中段闭锁程度与闭锁深度介于南北段之间。另一方面,2003年成功MW 6.8地震微观震中位于震间无震滑移区与闭锁区的过渡带附近。依据同震位错、震间断层运动反演结果,以及历史强震破裂分布特征,分析认为,花东纵谷断层南北段运动方式存在差异性,北段主要以强震形式运动,南段以蠕滑和地震两种形式运动。自1951年花莲-台东ML 7.3地震序列后,花东纵谷断层南段、中段和北段至2016年所累积的矩能量分别等价MW 6.4、MW 7.0、MW 7.4地震;若发生级联破裂,整个断层至2016年所累积的矩能量等价MW 7.5地震。  相似文献   

13.
We analyzed small repeating earthquakes recorded over a 13-year period and GPS data recorded over an 8-month period to estimate interplate quasi-static slip associated with the 2003 Tokachi-oki earthquake (M8.0) and the 2004 off-Kushiro earthquake (M7.1). The repeating-earthquake analysis revealed that the slip rate near the source region of the Tokachi-oki earthquake was relatively low (< 5 cm/year) prior to the earthquake; however, in the last 3 years leading up to the event, a minor acceleration in slip occurred upon the deeper extension of the coseismic slip area of the earthquake. Repeating-earthquake and GPS data indicate that large amounts of afterslip occurred around the rupture area following the earthquake; the afterslip mainly propagated to the east of the coseismic slip area. We also infer that the occurrence of the 2004 off-Kushiro earthquake, located about 100 km northeast of the epicenter of the Tokachi-oki earthquake, was advanced by the afterslip associated with the Tokachi-oki earthquake.  相似文献   

14.
Data from an extensive routine network and a high-density temporary seismic observation using the ocean bottom seismometer in and around Suruga Bay, Japan, showed that a simultaneous increase of microearthquake seismicity occurred from mid-July 1984 (Ukawa et al., 1988). The area extended over a region of about 60 km (NS) × 80 km (EW), and is nearly included in the assumed fault zone of the presumed Tokai earthquake. The analyses of the bore-hole ground tilt and volumetric strain data revealed that an anomalous small ground tilt and volumetric strain change occurred at the time of the seismic activity with a duration of about a month. Data of geodetic measurements, groundwater, and radon content were examined with the result that many observational items showed small anomalies during that period. The observed crustal movement was compared with that of slip models of the Philippine Sea plate around Suruga Bay, suggesting that some type of episodic aseismic subducting motion occurred and, thus, caused a crustal movement in the overlying continental plate in the very region of the future fault zone.  相似文献   

15.
The seismic potential of creeping faults such as the Hayward fault (San Francisco Bay Area, CA) depends on the rate at which moment (slip deficit) accumulates on the fault plane. Thus, it is important to evaluate how the creep rate observed at the surface is related to the slip on the fault plane. The surface creep rate (SCR) depends on the geometry of locked and free portions of the fault and on the interaction between the fault zone and the surrounding lithosphere. Using a viscoelastic finite element model, we investigate how fault zone geometries and physical characteristics such as frictionless or locked patches affect the observed surface creep when the system is driven by far field plate motions. These results have been applied to creep observations of the Hayward fault. This analysis differs from most previous fault creeping models in that the fault in our model is loaded by a distributed viscous flow induced by far field velocity boundary conditions instead of imposed slip beneath the major faults of the region. The far field velocity boundary conditions simulate the relative motion of the stable Pacific plate respect to the Rigid Sierra Nevada block, leaving the rheology, fault geometry, and mechanics (locked or free to creep patches), to determinate the patterns of fault creep.Our model results show that the fault geometry (e.g. length and depth of creeping) and the local rheology influence the surface creep rate (SCR) and the slip on the fault plane. In particular, we show that the viscoelastic layer beneath the elastic seismogenic zone plays a fundamental role in loading the fault. Additionally, the coupling with the surrounding lithosphere results in a smooth transition from regions free to creep to locked patches.  相似文献   

16.
利用位错理论模型将遗传算法运用于断层三维滑动参数反演问题的求解,采用川西地区2004—2007年GPS观测数据对龙门山断裂带主要断层的三维滑动速率进行计算分析。结果表明:反演结果在量值上整体较小,与地质结果具有较好的一致性,走滑分量︱U1︱〈3.2 mm/a,倾滑分量︱U2︱〈1.54 mm/a,张开分量︱U3︱〈2.5mm/a,低滑动速率反映断层的闭锁及应力的积累及大地震发生的危险性;局部分量较地质结果偏大,反映实测GPS数据反演结果体现的是断层实时活动状态;遗传算法的全局收敛、不依赖初值等优点使结果更加稳定,而张开分量显示局部不规律性,表现出各子断层空间活动不均匀性。  相似文献   

17.
Eyidogan  Nalbant  Barka  & King 《地学学报》1999,11(1):38-44
The 1924 Pasinler & 1983 Horasan-Narman earthquakes which struck the Erzurum region occurred on the NE–SW-trending Horasan fault zone about 60 km east of Erzurum basin. The inversion of teleseismic seismograms, the aftershock pattern and the surface faulting of the 30 October 1983 ( M s = 6.8) Horasan-Narman earthquake indicate that it had dominantly left-lateral motion. One moderately sized aftershock occurred 8 h after the main event and two others a year later on the NE extension of the fault zone. The aftershock distribution dominantly overlapped with the Horasan fault zone, and the aftershocks also migrated from south-west to north-east within the year following the mainshock. The results obtained from modelling of static stress changes caused by the 1983 earthquake are consistent with the spatial distribution of aftershocks. Macroseismic observations of the 1924 earthquake ( M s = 6.8) indicated that this event occurred on the SW extension of the Horasan fault zone. Static stress modelling of the 1924 earthquake, by using the same input parameters of the 1983 event, has shown that its occurrence increased the stress in the region of the 1983 rupture zone. The static stress changes caused both by the 1924 and the 1983 earthquakes has increased the failure stress at the NE and SW extensions of the Horasan fault zone and in Narman area. Furthermore, the stress has decreased in the vicinity of the Erzurum fault zone, east of the city of Erzurum, the largest city in eastern Turkey, and in the populated Sarikamis area. This might delay the occurrence of a future probable damaging earthquake in these areas.  相似文献   

18.
郯庐断裂带是中国东部板内一条规模最大的强构造变形带与地震活动断裂带,其断裂结构与历史地震活动性具明显的分段活动性。文中通过沿郯庐断裂带中南段的历史地震活动性、精定位背景地震活动性与震源机制解分析,讨论了断裂带的深部几何结构与现今活动习性。现今地震活动在中段主要沿1668年郯城MS 8地震破裂带线性分布,线性条带在泗洪-诸城间延伸约340 km长,为1668年地震长期缓慢衰减的余震序列活动。大震地表破裂遗迹与精定位地震分布都揭示出郯庐断裂带中段的两条全新世活动断裂昌邑-大店断裂与安丘-莒县断裂以右阶斜列的形式共同参与了1668年郯城MS 8地震破裂。精定位震源剖面刻画出两条断裂结构面呈高角度相背而倾,其中昌邑-大店断裂倾向SE,安丘-莒县断裂倾向NW,两条断裂在深部没有合并汇聚。余震活动所代表的1668年地震震源破裂带是郯庐断裂带中现今尚未闭锁的安全段落,对应于高b值段。而未发生破裂的安丘以北段,小震活动不活跃,b值低,现今可能已成为应力积累的闭锁段。震源机制解揭示的断裂应力状态在中段以NE向主压应力为主,表现为右旋走滑活动性质,且存在少量正断分量,南段转为以NEE至近EW向为主,存在少量的逆冲分量。在中段与南段的转折处宿迁-嘉山段,主压应力方向垂直断裂带走向呈NWW向,反映出局部以挤压为主的应力特征,其中泗洪-嘉山段也是历史地震未破裂段,现今小震活动不活跃,因此该段可能更易于应力积累。精定位小震活动在郯庐断裂与北西向断裂相交汇处聚集,反映出北西向断裂的新活动性,以及郯庐断裂带现今的逆冲作用。在断裂带南端,精定位背景地震活动沿与其相交汇的襄樊-广济断裂带东段呈北西向线性分布,表明了该段的现今活动性。  相似文献   

19.
The 12 September 2007 great Bengkulu earthquake (M w 8.4) occurred on the west coast of Sumatra about 130 km SW of Bengkulu. The earthquake was followed by two strong aftershocks of M w 7.9 and 7.0. We estimate coseismic offsets due to the mainshock, derived from near-field Global Positioning System (GPS) measurements from nine continuous SuGAr sites operated by the California Institute of Technology (Caltech) group. Using a forward modelling approach, we estimated slip distribution on the causative rupture of the 2007 Bengkulu earthquake and found two patches of large slip, one located north of the mainshock epicenter and the other, under the Pagai Islands. Both patches of large slip on the rupture occurred under the island belt and shallow water. Thus, despite its great magnitude, this earthquake did not generate a major tsunami. Further, we suggest that the occurrence of great earthquakes in the subduction zone on either side of the Siberut Island region, might have led to the increase in static stress in the region, where the last great earthquake occurred in 1797 and where there is evidence of strain accumulation.  相似文献   

20.
Geometric and kinematic analyses of minor thrusts and folds, which record earthquakes between 1200 AD and 1700 AD, were performed for two trench sites (Rampur Ghanda and Ramnagar) located across the Himalayan Frontal Thrust (HFT) in the western Indian Himalaya. The present study aims to re-evaluate the slip estimate of these two trench sites by establishing a link between scarp geometry, displacements observed very close to the surface and slip at deeper levels. As geometry of the active thrust beneath the scarp is unknown, we develop a parametric study to understand the origin of the scarp surface and to estimate the influence of ramp dip. The shortening estimates of Rampur Ghanda trench by line length budget and distance–displacement (D–d) method show values of 23 and 10–15 %, respectively. The estimate inferred from the later method is less than the line length budget suggesting a small internal deformation. Ramnagar trench shows 12 % shortening by line length budget and 10–25 % by the D–d method suggesting a large internal deformation. A parametric study at the trenched fault zone of Rampur Ghanda shows a slip of 16 m beneath the trailing edge of the scarp, and it is sufficient to raise a 8-m-high scarp. This implies that the Rampur Ghanda scarp is balanced with a single event with 7.8-m-coseismic slip in the trenched fault zone at the toe of the scarp, 8–15 % mean deformation within the scarp and 16-m slip at depth along a 30° ramp for a pre-1400 earthquake event. A 16-m slip is the most robust estimate of the maximum slip for a single event reported previously by trench studies along the HFT in the western Indian Himalaya that occurred between 1200 AD and 1700 AD. However, the Ramnagar trenched fault zone shows a slip of 23 m, which is larger than both line length and D–d methods. It implies that a 13-m-high scarp and 23-m slip beneath the rigid block may be ascribed to multiple events. It is for the first time we report that in the south-eastern extent of the western Indian Himalaya, Ramnagar scarp consists of minimum two events (i) pre-1400 AD and (ii) unknown old events of different lateral extents with overlapping ruptures. If the more optimistic two seismic events scenario is followed, the rupture length would be at least 260 km and would lead to an earthquake greater than Mw 8.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号