首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 692 毫秒
1.
The present paper outlines a cosmological paradigm based upon Dirac’s large number hypothesis and continual creation of matter in a closed static (nonexpanding) universe. The cosmological redshift is caused by the tired-light phenomenon originally proposed by Zwicky. It is shown that the tired-light cosmology together with continual matter creation has a universal Hubble constant H 0=(512π 2/3)1/6(GC 0)1/3 fixed by the universal rate C 0 of matter creation, where G is Newton’s gravitational constant. It is also shown that a closed static universe has a finite age τ 0=(243π 5/8GC 0)1/3 also fixed by the universal rate of matter creation. The invariant relationship H 0 τ 0=3π 261/2 shows that a closed static universe is much older (≈one trillion years) than any expanding universe model based upon Big-Bang cosmology. It is this property of a static universe that resolves any cosmic age crisis provided that galaxy formation in the universe is a continual recurring process. Application of Dirac’s large number hypothesis gives a matter creation rate C 0=4.6×10?48 gm?cm?3?s?1 depending only on the fundamental constants of nature. Hence, the model shows that a closed static universe has a Hubble constant H 0=70 km?s?1?Mpc?1 in good agreement with recent astronomical determinations of H 0. By using the above numerical value for H 0 together with observational data for elongated cellular-wall structures containing superclusters of galaxies, it is shown that the elongated cellular-wall configurations observed in the real universe are at least one hundred billion years old. Application of the microscopic laws of physics to the large-scale macroscopic universe leads to a static eternal cosmos endowed with a matter-antimatter symmetry. It is proposed that the matter-antimatter asymmetry is continuously created by particle-antiparticle pair annihilation occurring in episodic cosmological gamma-ray bursts observed in the real universe.  相似文献   

2.
The use of standard candles for distance measurements is wide spread. Yet, we currently do not know a pure standard candle in astronomy. The concept of standard candles involves not only the secure establishment of a unique luminosity but also a clear observational distinction of the objects as a class. Even Type Ia supernovae, whose maximum luminosity shows amongst the smallest scatter known, need to be normalised to provide accurate distances. Without this normalisation the cosmological claims based on supernovae would not be possible. With a careful normalisation Type Ia supernovae are the best known distance indicators for cosmology to date. This is most easily shown by the small dispersion around the expansion line in the Hubble diagram. Problems with the empirical normalisation remain and a theoretical understanding of this normalisation is missing. This has direct ramifications on systematic uncertainties when deriving cosmological implications from Type Ia supernovae. Improving the understanding of supernova physics is now the prime task to sharpen this tool of observational cosmology. Once the explosion mechanism is revealed a serious discussion of possible evolutionary effects in Type Ia supernovae can start.  相似文献   

3.
Evidence for an accelerated expansion of the universe as it has been revealed 10 years ago by the Hubble diagram of distant type Ia supernovae represents one of the major modern revolutions for fundamental physics and cosmology. It is yet unclear whether the explanation of the fact that gravity becomes repulsive on large scales should be found within general relativity or within a new theory of gravitation. However, existing evidences for this acceleration all come from astrophysical observations. Before accepting a drastic revision of fundamental physics, it is interesting to critically examine the present situation of the astrophysical observations and the possible limitation in their interpretation. In this review, the main various observational probes are presented as well as the framework to interpret them with special attention to the complex astrophysics and theoretical hypotheses that may limit actual evidences for the acceleration of the expansion. Even when scrutinized with skeptical eyes, the evidence for an accelerating universe is robust. Investigation of its very origin appears as the most fascinating challenge of modern physics.  相似文献   

4.
5.
A new class of dark energy models in a Locally Rotationally Symmetric Bianchi type-II (LRS B-II) space-time with variable equation of state (EoS) parameter and constant deceleration parameter have been investigated in the present paper. The Einstein’s field equations have been solved by applying a variation law for generalized Hubble’s parameter given by Berman: Nuovo Cimento 74:182 (1983) which generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential-law form. Using these two forms, Einstein’s field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The dark energy EoS parameter ω is found to be time dependent and its existing range for both models is in good agreement with the three recent observations of (i) SNe Ia data (Knop et al.: Astrophys. J. 598:102 (2003)), (ii) SNe Ia data collaborated with CMBR anisotropy and galaxy clustering statistics (Tegmark et al.: Astrophys. J. 606:702 (2004)) and latest (iii) a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al.: Astrophys. J. Suppl. 180:225 (2009); Komatsu et al. Astrophys. J. Suppl. 180:330 (2009)). The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e. the present epoch) which is corroborated by results from recent supernovae Ia observations. The physical and geometric behaviour of the universe have also been discussed in detail.  相似文献   

6.
A proposal to study the original and new agegraphic dark energy in DGP braneworld cosmology is presented in this work. To verify our model with the observational data, the model is constrained by a variety of independent measurements such as Hubble parameter, cosmic microwave background anisotropies, and baryon acoustic oscillation peaks. The best fitting procedure shows the effectiveness of agegraphic parameter n in distinguishing between the original and new agegraphic dark energy scenarios and subsequent cosmological findings. In particular, the result shows that in both scenarios, our universe enters an agegraphic dark energy dominated phase.  相似文献   

7.
The present study deals with locally rotationally symmetric (LRS) Bianchi type II cosmological model representing massive string. The energy-momentum tensor for such string as formulated by Letelier (Phys. Rev. D 28:2414, 1983) is used to construct massive string cosmological model for which we assume that the expansion (θ) in the model is proportional to the shear (σ). This condition leads to A=B m , where A and B are the metric coefficients and m is proportionality constant. For suitable choice of constant m, it is observed that in early stage of the evolution of the universe string dominates over the particle whereas the universe is dominated by massive string at the late time. Our model is in accelerating phase which is consistent to the recent observations of type Is supernovae. Some physical and geometric behavior of the model is also discussed.  相似文献   

8.
The main goal of this work is investigation of NADE in the cyclic universe scenario. Since, cyclic universe is explained by a phantom phase (ω<−1), it is shown when there is no interaction between matter and dark energy, ADE and NADE do not produce a phantom phase, then can not describe cyclic universe. Therefore, we study interacting models of ADE and NADE in the modified Friedmann equation. We find out that, in the high energy regime, which it is a necessary part of cyclic universe evolution, only NADE can describe this phantom phase era for cyclic universe. Considering deceleration parameter tells us that the universe has a deceleration phase after an acceleration phase, and NADE is able to produce a cyclic universe. Also it is found valuable to study generalized second law of thermodynamics. Since the loop quantum correction is taken account in high energy regime, it may not be suitable to use standard treatment of thermodynamics, so we turn our attention to the result of Li et al. (Adv. High Energy Phys. 2009: 905705, 2009), which the authors have studied thermodynamics in loop quantum gravity, and we show that which condition can satisfy generalized second law of thermodynamics.  相似文献   

9.
This paper is aimed to investigate 5D holographic dark energy (HDE) in DGP-Brane cosmology by employing a combination of Sne Ia, BAO and CMB observational data and constraining cosmological parameters. The FRW dynamics for the normal branch (?=+1) solution of induced gravity brane-world model is taken with the assumption that matter in 5D bulk is HDE such that its holographic nature is reproduced effectively in 4D universe. In the HDE model, we used Hubble horizon as IR cutoff instead of future event horizon. This way, while the model predicts current universe acceleration, it also removes the problem of circular reasoning and causality observed in using future event horizon as IR cutoff.  相似文献   

10.
Due to the Hubble redshift, photon energy, chiefly in the form of CMBR photons, is currently disappearing from the universe at the rate of nearly 1055 erg s−1. An ongoing problem in cosmology concerns the fate of this energy. In one interpretation it is irretrievably lost, i.e., energy is not conserved on the cosmic scale. Here we consider a different possibility which retains universal energy conservation. Treating gravitational potential energy conventionally as ‘negative’, it has earlier been proposed that the Hubble shift flips positive energy (photons) to negative energy (gravitons) and vice versa. The lost photon energy would thus be directed towards gravitation, making gravitational energy wells more negative. Conversely, within astrophysical bodies, the flipping of gravitons to photons would give rise to a ‘Hubble luminosity’ of magnitude −UH 0, where U is the internal gravitational potential energy of the object. Preliminary evidence of such an energy release is presented in bodies ranging from planets, white dwarfs and neutron stars to supermassive black holes and the visible universe.  相似文献   

11.
The observational cosmology with distant Type Ia supernovae (SNe) as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this paper we investigate the SN Ia environment, studying the impact of the nature of their host galaxies on the Hubble diagram fitting. The supernovae (192 SNe) used in the analysis were extracted from Joint-Light-curves-Analysis (JLA) compilation of high-redshift and nearby supernovae which is the best one to date. The analysis is based on the empirical fact that SN Ia luminosities depend on their light curve shapes and colors. We confirm that the stretch parameter of Type Ia supernovae is correlated with the host galaxy type. The supernovae with lower stretch are hosted mainly in elliptical and lenticular galaxies. No significant correlation between SN Ia colour and host morphology was found. We also examine how the luminosities of SNe Ia change depending on host galaxy morphology after stretch and colour corrections. Our results show that in old stellar populations and low dust environments, the supernovae are slightly fainter. SNe Ia in elliptical and lenticular galaxies have a higher α (slope in luminosity-stretch) and β (slope in luminosity-colour) parameter than in spirals. However, the observed shift is at the 1-σ uncertainty level and, therefore, can not be considered as significant. We confirm that the supernova properties depend on their environment and that the incorporation of a host galaxy term into the Hubble diagram fit is expected to be crucial for future cosmological analyses.  相似文献   

12.
The paper deals with a spatially homogeneous and isotropic FRW space-time filled with perfect fluid and dark energy components. The two sources are assumed to interact minimally, and therefore their energy momentum tensors are conserved separately. A special law of variation for the Hubble parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) has been utilized to solve the field equations. The Berman’s law yields two explicit forms of the scale factor governing the FRW space-time and constant values of deceleration parameter. The role of dark energy with variable equation of state parameter has been studied in detail in the evolution of FRW universe. It has been found that dark energy dominates the universe at the present epoch, which is consistent with the observations. The physical behavior of the universe has been discussed in detail.  相似文献   

13.
The universe with adiabatic matter creation is considered. It is thought that the negative pressure caused by matter creation can play the role of a dark energy component, and drive the accelerating expansion of the universe. Using the Type Ia supernovae (SNe Ia) data, the observational Hubble parameter data, the Cosmic Microwave Background (CMB) data and the Baryonic Acoustic Oscillation (BAO) data, we make constraints on the cosmological parameters, assuming a spatially flat universe. Our results show that the model with matter creation is consistent with the SNe Ia data, while the joint constraints of all these observational data disfavor this model. If the cosmological constant is taken into account, a traditional model without matter creation is favored by the joint observations.  相似文献   

14.
The traditional astronomical literature accepts the linear redshift-distance law on the basis of its internal consistency with accepted models of the history of the universe more than on nontrivial clearly objective tests of the linear law for directly observed quantities. The reluctance to depend on such tests rested historically on the assumed large variation in the intrinsic luminosity of extragalactic objects and a distrust of curve-fitting and statistics. But such tests are eminently feasible on the basis of modern objectively specified samples and up-to-date statistical methodology. This paper compares red-shift distance relations of the form z=k r p, for real values of p. Data from the visible, infrared, radio, and X-ray bands are examined. The deviation of predicted and observed apparent magnitudes, (a), and the difference between observed and predicated slope of the magnitude-log (z) plots,(b), are used to compare values of p. In summary, the p=1 values (corresponding to standard linear law) are more deviant than any other value of p, 1<p<=4for test (a) and more deviant than any value of p, 1<p<=3for test (b) except for marginal features in the smallest(radio) sample and in the lowest redshift sample. Bright subsamples and a morphologically homogeneous subsample of elliptic galaxies are also tested with similar results. In contrast, the predications for p=2 are reasonably accurate and close to optimal among all values of p explored. The p=2 case is predicted by the chronometric cosmology and in agreement with the independent analysis of Troitskii. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The possibility that the cosmological constant is decaying as the observable universe grows is explored, and we define a cosmological parameter, depending of the vacuum energy and the universe radius, which should be presently ca. 122 orders of magnitude smaller than at the Planck epoch. From it, a new version of the Friedmann equation for a flat universe is obtained, which allows the estimation of the Hubble parameter at any epoch and the reconstruction of the expansion history. The main result is a quasi-linear expansion dynamics in concurrence with a number of previous works. This behavior is compatible with the main features of observational cosmology and avoids the horizon, flatness, cosmological constant, coincidence and age problems without the need of neither inflation nor initial fine-tuning.  相似文献   

16.
We study the dynamics of the Friedmann–Lemaitre–Robertson–Walker (FLRW) flat cosmological models in which the vacuum energy varies with time,  Λ( t )  . In this model, we find that the main cosmological functions such as the scale factor of the universe and the Hubble flow are defined in terms of exponential functions. Applying a joint likelihood analysis of the recent Type Ia supernovae data, the cosmic microwave background shift parameter and the baryonic acoustic oscillations traced by the Sloan Digital Sky Survey (SDSS) galaxies, we place tight constraints on the main cosmological parameters of the  Λ( t )  scenario. Also, we compare the  Λ( t )  model with the traditional Λ cosmology and we find that the former model provides a Hubble expansion which compares well with that of the Λ cosmology. However, the  Λ( t )  scenario predicts stronger small scale dynamics, which implies a faster growth rate of perturbations with respect to the usual Λ cosmology, despite the fact that they share the same equation of state parameter. In this framework, we find that galaxy clusters in the  Λ( t )  model appear to form earlier than in the Λ model.  相似文献   

17.
This work is to study the generalized second law (GSL) of thermodynamics in tachyon cosmology where the tachyon field is coupled to the matter Lagrangian while the boundary of universe is assumed to be a dynamical apparent horizon. The two logarithmic and power law corrected entropy on the apparent horizon is also discussed and the conditions for validity of GSL in both scenarios are investigated by using observational data of Sne Ia. In comparison to other research works, since the model is constrained by observational data, the conditions obtained for the dimensionless constant parameter, α in both logarithmic and power law entropy correction of GSL are (physically) meaningful and realistic. The model also predicts an accelerating universe with no phantom crossing in the past or future.  相似文献   

18.
超新星在宇宙学中的应用   总被引:2,自引:0,他引:2  
对Ia超新星在宇宙学中的应用作了述评。蓝Ia超新星具有相对均匀的光谱、光变曲线及峰值光度,是较好的相对距离指示器。利用峰值光度同光变曲线形状或其它与距离无关的可观测量的关系可进一步将Ia超新星校准成精确的距离指示器。一旦它们的绝对光度得到标定,就可以定出哈勃常数H0。基于对邻近星系Ia超新星的理解,高红移Ia超新星的数据可对宇宙密度参数ΩM、ΩV及减速因子q0作出限制,并对膨胀宇宙的最终命运作出判  相似文献   

19.
Recently an f(T) gravity based on the modification of teleparallel gravity was proposed to explain the accelerated expansion of the universe. We use observational data from type Ia supernovae, baryon acoustic oscillations, and cosmic microwave background to constrain this f(T) theory and reconstruct the effective equation of state and the deceleration parameter. We obtain the best-fit values of parameters and find an interesting result that the constrained f(T) theory allows for the accelerated Hubble expansion to be a transient effect.  相似文献   

20.
There is a growing interest among cosmologists for theories with negative energy scalar fields and creation, in order to model a repulsive gravity. The classical steady state cosmology proposed by Bondi, Gold & Hoyle in 1948, was the first such theory which used a negative kinetic energy creation field to invoke creation of matter. We emphasize that creation plays a very crucial role in cosmology and provides a natural explanation to the various explosive phenomena occurring in local (z < 0.1) and extra galactic universe. We exemplify this point of view by considering the resurrected version of this theory — the quasi-steady state theory, which tries to relate creation events directly to the large scale dynamics of the universe and supplies more natural explanations of the observed phenomena. Although the theory predicts a decelerating universe at the present era, it explains successfully the recent SNe Ia observations (which require an accelerating universe in the standard cosmology), as we show in this paper by performing a Bayesian analysis of the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号