首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
鲜水河断裂带区域第四纪构造应力场的分期研究   总被引:7,自引:2,他引:7  
利用断层滑动方向资料反演构造应力张量的分期计算方法,获得鲜水河断裂带区域第四纪以来两期主要构造应力作用:第1期为早~中更新世,构造应力作用以北东-南西向挤压为特征;第Ⅱ期自晚更新世至今,构造应力作用以近东西向挤压和近南北向拉张为特征  相似文献   

2.
长江口海域新生代地层与断裂活动性初探   总被引:7,自引:1,他引:7  
长江口海域通过浅层人工地震勘察查明,新生代地层可分为5个地震层。分别为第四系、上新统、中新统上段、中新统下段及始新统。第三纪地层自东北向西南依次超覆、减薄尖灭,上部被第四纪地层不整合覆盖。沉积基底主要由晚侏罗世火山岩系及燕山晚期酸性小岩体构成,未发现早第三纪及晚白垩世断陷盆地。断裂构造很发育,按展布方向大体可归为北东、北西及近东西向3组,皆为正断层。前两者数量多、延伸长、断距大,与同区的航磁异常构架吻合。北东向断裂分段明显,西南段为第四纪断裂,中段为晚第三纪断裂,东北段为早第三纪断裂;而北西向断裂分段不很清晰。两者的垂直位移速率平均在0.015mm/a。本文对该海域有关的几个地质问题进行了讨论。  相似文献   

3.
陈永成 《华南地震》1999,19(3):48-53
根据震旦-第三纪地震中构造变形的实际观测及卫星影象解译资料,计算了清江大龙潭水库区新生代以来区域应力场的主应力方向。结果表明:主压应力为北东东向,主张应力为北北西向;现代构造应力场与新生代以来应力场基本一致;晚第三纪以来,该区构造应力场相对稳定和统一。  相似文献   

4.
长江三峡地区新生代以来地壳应力场的基本特征   总被引:2,自引:0,他引:2  
根据白垩-第三纪红层中构造变形实际观测及水系统计资料,计算了三峡地区新生代和新构造期分区及区域应力场的主应力方向。结果表明:方压应力为北东东向,主张应力为北北西向,现代构造应力场与新生代以来应力场基本一致。  相似文献   

5.
为了研究三峡坝库区的地壳稳定性,根据奥陶-侏罗纪地层中构造变形的实际观测资料,计算了秭归龙会观5.1级震区及其邻区新生代以来区域应力场的主应力方向。结果表明:主压应力为北东东向,主张应力为北北西向;现代构造应力场与新生代以来应力场基本一致;晚第三纪以来,该区构造应力场相对稳定和统一。  相似文献   

6.
丹江口水库及其邻区地壳应力场的基本特征   总被引:3,自引:0,他引:3  
利用赤平极射投影等资料,计算了丹江水库及邻区的主应力方向,结果表明,主压应力为北东东向,主张应力为北北西向,现代构造应力场与新生代以来应力场基本一致;晚第三纪以来,该区地壳应力场相对稳定。  相似文献   

7.
根据震旦一二叠纪地层中构造变形的实际观测及卫星影象解译资料,计算了清江隔河岩水库区新生代以来区域应力场的主应力方向。结果表明:主压应力为北东东向,主张应力为北北西向,现代构造应力场与新生代以来应力场基本一致。晚第三纪以来,该区构造应力场相对稳定和统一。  相似文献   

8.
甘肃北山地区晚第四纪构造变形特征及演化趋势   总被引:1,自引:0,他引:1  
王峰  苏刚  晋佩东 《地震研究》2004,27(2):173-178
通过对甘肃北山地区ETM影像的细致分析和初步野外考察,对北山地区晚第四纪以来断裂活动时代和运动性质进行了研究。结合附近地区天山构造带、青藏高原北部边缘断裂的演化过程和区域构造应力场状态,对北山地区晚第四纪以来变形机制和演化趋势进行了研究。认为北山地区现今构造格局是在印度板块与欧亚板块相碰撞形成的北东向挤压构造应力场的作用下,重新激活东西向的晚古生代、中生代断裂,并产生北东向新生断裂而形成。晚第四纪以来,北山地区构造变形以南北向缩短为主,伴随有东西向伸展。随着印度板块的向北运移,北山地区的构造变形将进一步增强,即南北向缩短和东西向的扩展将进一步增强。  相似文献   

9.
燕山地区中生代盆地演化及构造体制   总被引:7,自引:0,他引:7  
燕山地区中生代盆地经历了重要的构造变革, 由前晚三叠世台缘克拉通盆地转变为晚三叠世至晚侏罗世挠曲盆地, 进而再次转变为晚侏罗世晚期至早白垩世裂谷盆地. 晚三叠世和晚侏罗世响应两次板内强变形作用, 分别沿逆冲带边缘沉积了杏石口组和土城子组粗碎屑冲积体系; 早白垩世受转换伸展断层控制, 盆地充填以扇三角洲-湖泊体系为主. 晚三叠世挠曲盆地的沉积碎屑成分反映了源区元古界和太古界地层的剥露过程; 而晚侏罗世挠曲盆地则反映了源区受早期沉积覆盖的火山碎屑岩的剥蚀及其基底岩石的剥露过程. 原型盆地再造结果显示, 早侏罗世至晚侏罗世早期盆地展布具有向近北东东向和近东西向迁移的趋势; 早白垩世盆地呈北北东向横跨于前期盆地之上. 两期盆地分别受控于不同的构造体制.  相似文献   

10.
东南沿海地震区的现代构造应力场   总被引:11,自引:3,他引:11  
根据断层面的最新错动方向,震源机制解和地壳形变等资料,研究了东南沿海地区的现代构造应力场,结果表明:本区构造应力场可大致划分为两个分区:长乐-诏安断裂带以东地区主压应力轴为近东西向;以西地区的主压应力轴近南北向。  相似文献   

11.
The craton is a long-lived stable geologic unit on the Earth's surface. However, since the Mesozoic, the North China Craton(NCC) experienced large-scale lithospheric removal, the fundamental change of physical and chemical characteristics of the lithospheric mantle, widely distributed crustal deformation, and extensive magmatism. This complex evolution contrary to other cratons is called the NCC destruction. Widespread magmatism in the eastern NCC is an important response to the lithospheric removal at depth and crustal deformation on the surface. The plutons emplace under a tectonic context and therefore record the information of the tectonics; especially, the anisotropy magnetic susceptibility(AMS) pattern of the pluton was acquired with the influence of regional stress. In the past fifteen years, about 22 plutons intruding during the different periods from the Late Triassic to the late stage of the Early Cretaceous have been studied with AMS. The emplacement mechanisms of plutons and the contemporary tectonic setting were discussed to constrain their relationship with the NCC destruction in different stages of magmatism. As a result, the Late Triassic, Early Jurassic, and Late Jurassic plutons exhibit consistent N(E)-S(W)trending magnetic lineations. The early stage of Early Cretaceous plutons display NW-SE trending magnetic lineations, while the late stage of Early Cretaceous plutons show magnetic lineations with various orientations. Combined with previous studies, it is concluded that the emplacements of the plutons intruding in these three stages were controlled by weak N(E)-S(W) trending extension, regional NW-SE trending extension, and weak extension in the shallow crustal level, respectively. The transformation of regional extension from the N(E)-S(W) to the NW-SE direction was accompanied by a strain-increasing tendency. The extensional tectonics in the eastern NCC was interpreted to represent the interaction between Mongol-Okhotsk belt, PaleoPacific plate, and eastern Eurasian continent.  相似文献   

12.
通过野外构造观测、岩石磁学与磁组构综合分析,本文研究了南大巴山前陆褶皱带荆竹坝—石窝剖面的叠加构造特征及其形成演化.从北东向南西,剖面构造变形总体呈减弱趋势,褶皱轴面总体倾向北东,大尺度褶皱枢纽均以小角度向北西倾伏.古应力分析显示最大主压应力为北东—南西向,反映以南大巴山的推覆为主.剖面J3之前的采样层位主要表现为变形组构,而J3-K1的采样层位则表现为初始弱变形组构.磁线理呈NW-SE向的优势方位,与剖面主构造线基本平行,主要反映来自南大巴山的推覆挤压.剖面发育特殊磁组构:①磁面理与地层面斜交,主要与褶皱作用中的平行层简单剪切相关;②磁线理均不同程度斜交于地层走向,指示构造叠加背景.沿剖面北东向南西区段Kmin的倾伏角随构造变形强度减弱而增大,据此相关性可将Kmin的倾伏角作为判别弱变形沉积岩变形强度的标志.本文认为,在晚侏罗世以南大巴山的推覆为主而米仓山短轴背斜与川东褶皱带挤压次之的联合作用使南大巴山前陆褶皱带具有构造叠加特征,之后的早白垩世仍主要表现为南大巴山的推覆,而其他两个方向的挤压较之前相对较弱.该结果也反映了秦岭J3-K1陆内造山作用及燕山期雪峰陆内构造变形的影响,为探索陆内构造与陆内造山的大陆动力学提供了佐证.  相似文献   

13.
By inversion of fault slip data for Quaternary tectonic stress field and the analysis of crustal deformation after late Teriary, we explained the evolution of crustal dynamic about the north and east margin of Qinghai-Xizang (Tibet) plateau since Miocene. From middle or late Miocene to early Pleistocene, the tectonic stress field was featured by a maximum principal compression which was coming from the collision of India Plate perpendicular to the boundary of the plateau, and was basically of reverse faulting type. Since the late period of early Pleistocene, India Plate continued to push northward and the compressional deformation of the plateau interior increased continuously, meanwhile, NW-SE extension appeared on the east side of the plateau. This formed a favorable condition for the interior block of the plateau to slide towards east and southeast, causing the faults surrounding the plateau to change from thrust to strike-slip. The contemporary tectonic stress field was formed from the late period of early Pleistocene and continued to present. The direction of maximum principal compressional stress rotated clockwise with respect to the previous tectonic stress field, the stress field was mainly of strike-slip type.  相似文献   

14.
利用断层滑动资料反演构造应力张量从而确定出海原、六盘山断裂带至银川断陷的第四纪两期构造应力场 :早更新世末期以前 ,为北东—南西挤压型构造应力场 ,由此造成该地区断裂活动主要以逆断为主 ;早更新世末期至中更新世以后 ,构造应力场发生了调整 ,主压应力方向由早期的北东—南西改变为北东东—南西西 ,应力结构由挤压型转变为走滑型 ,并导致断裂活动由早期的逆断为主变为走滑为主 ,这种应力场格局一直持续至今。研究区现代构造应力场可划分为 :海原断裂带走滑应力区、六盘山逆断 -走滑混合应力区和银川断陷拉张应力区  相似文献   

15.
Seong-Seung  Kang  Jun-Mo  Kim  Bo-An  Jang 《Island Arc》2005,14(2):137-149
Abstract   Paleostress fields of the Late Paleozoic to Early Mesozoic Pyeongan Supergroup that is distributed along the northeastern part of the Ogcheon Belt in South Korea were investigated using the calcite strain gauge (CSG) technique. Combining the results of this study with those of other studies investigating the relationship between twin strain, twin density and width, which are used as indicators of deformation conditions in the natural low-temperature deformation of limestone, it was estimated that calcite twins in the study area were probably formed at temperatures lower than 170°C. From two samples, two different principal paleostress directions were inferred from calcite twins, while only one direction was inferred from two other samples. This result suggests that deformation occurred during two or more different tectonic events in the Pyeongan Supergroup during the Mesozoic era. The maximum shortening axis was oriented in two directions, northeast–southwest and northwest–southeast, respectively, which coincide well with the paleostress directions inferred from the stress inversion for many fault sets. Combining the results of the paleostress analysis from this and other studies, we hypothesize that the directions of the maximum shortening axis in the Pyeongan Supergroup changed from northeast–southwest during the pre-Daebo orogeny period (Late Triassic period) to northwest–southeast during the syn-Daebo orogeny period (Early Jurassic to Early Cretaceous period) in the Mesozoic era.  相似文献   

16.
Mesozoic basin evolution and tectonic mechanism in Yanshan, China   总被引:5,自引:0,他引:5  
The Mesozoic basins in Yanshan, China underwent several important tectonic transformations, including changes from a pre-Late Triassic marginal cratonic basin to a Late Triassic-Late Jurassic flexural basin and then to a late Late Jurassic-Early Cretaceous rift basin. In response to two violent intraplate deformation at Late Triassic and Late Jurassic, coarse fluvial depositional systems in Xingshikou and Tuchengzi Formations were deposited in front of thrust belts. Controlled by transform and extension faulting, fan deltas and lacustrine systems were deposited in Early Cretaceous basins. The composition of clastic debris in Late Triassic and Late Jurassic flexural basins respectively represents unroofing processes from Proterozoic to Archean and from early deposited, overlying pyroclastic rocks to basement rocks in provenance areas. Restored protobasins were gradually migrated toward nearly NEE to EW-trending from Early Jurassic to early Late Jurassic. The Early Cretaceous basins with a NNE-trending crossed over early-formed basins. The Early-Late Jurassic and Early Cretaceous basins were respectively controlled by different tectonic mechanisms.  相似文献   

17.
Basin-fill sequences of Mesozoic typical basins in the Yanshan area, North China may be divided into four phases, reflecting lithosphere tectonic evolution from flexure (T3), flexure with weak rifting (J1+2), tectonic transition (J3), and rifting (K). Except the first phase, the other three phases all start with lava and volcaniclastic rocks, and end with thick coarse clastic rocks and/or conglomerates, showing cyclic basin development rather than simple cyclic rift mechanism and disciplinary basin-stress change from extension to compression in each phase. Prototype basin analysis, based on basin-fill sequences, paleocurrent distribution and depositional systems, shows that single basin-strike and structural-line direction controlling basin development had evidently changed from east-west to northeast in Late Jurassic in the Yanshan area, although basin group still occurred in east-west zonal distribution. Till Early Cretaceous, main structural-line strike controlling basins just turned to northeast by north in the studied area.  相似文献   

18.
Basin-fill sequences of Mesozoic typical basins in the Yanshan area, North China may be divided into four phases, reflecting lithosphere tectonic evolution from flexure (T3), flexure with weak rifting (J1+2), tectonic transition (J3), and rifting (K). Except the first phase, the other three phases all start with lava and volcaniclastic rocks, and end with thick coarse clastic rocks and/or conglomerates, showing cyclic basin development rather than simple cyclic rift mechanism and disciplinary basin-stress change from extension to compression in each phase. Prototype basin analysis, based on basin-fill sequences, paleocurrent distribution and depositional systems, shows that single basin-strike and structural-line direction controlling basin development had evidently changed from east-west to northeast in Late Jurassic in the Yanshan area, although basin group still occurred in east-west zonal distribution. Till Early Cretaceous, main structural-line strike controlling basins just turned to northeast by  相似文献   

19.
利用渭河盆地2001—2008年高精度GPS监测资料,结合区域构造特点建立了渭河盆地有限元动力学模型,基于此研究了区域现今地壳应力场特征,深入分析了构造应力场与盆地内地裂缝群发之间的内在关系,首次基于空间大地测量定量的揭示出了区域构造应力场与盆地内地裂缝群发的内在动力学联系,及盆地东、西部地裂缝分布不均衡的根本成因.研究结果表明:渭河盆地现今地壳应力场差异性显著,主要呈现出中、东部以NW-SE向拉张为主,西部则以NW-SE向压缩应力为主,整体具有相对左旋运动趋势,与区域以往长期构造变形具有较好的继承性;分析揭示出区域NW-SE向拉张构造应力正是盆地内中、东部地裂缝群发的力源机制,而盆地内差异性构造应力场也正是导致盆地东、西部地裂缝发育不均衡的根本原因所在,由此进一步证实了渭河盆地地裂缝的强构造属性,其是由活断层在上述力源机制作用下,以蠕滑形式错断地层使土层破裂而形成的.本文研究结果为盆地地裂缝灾害防治、城市安全建设提供了重要信息.  相似文献   

20.
Basin-fill sequences of Mesozoic typical basins in the Yanshan area, North China may be divided into four phases, reflecting lithosphere tectonic evolution from flexure (T3), flexure with weak rifting (J1+2), tectonic transition (J3), and rifting (K). Except the first phase, the other three phases all start with lava and volcaniclastic rocks, and end with thick coarse clastic rocks and/or conglomerates, showing cyclic basin development rather than simple cyclic rift mechanism and disciplinary basin-stress change from extension to compression in each phase. Prototype basin analysis, based on basin-fill sequences, paleocurrent distribution and depositional systems, shows that single basin-strike and structural-line direction controlling basin development had evidently changed from east-west to northeast in Late Jurassic in the Yanshan area, although basin group still occurred in east-west zonal distribution. Till Early Cretaceous, main structural-line strike controlling basins just turned to northeast by north in the studied area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号