首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
简要介绍了全球海洋Argo 网格资料集的制作过程,并着重探讨了该数据集与历史观测资料集(如WOA09 和TAO), 以及同类型的Argo 网格数据集等进行的比较与验证结果,发现利用逐步订正法构建的Argo 网格资料与其他数据集相比,除 了相互间吻合程度较高,能较客观地呈现出全球海洋中的一些大、中尺度海洋特征外,由Argo 资料揭示的一些重要物理海 洋特征的结构显得更细致,更能反映这些现象的演变过程和变化规律;加上Argo 资料严格的质量控制过程,确保了重构的 网格数据集的质量和可靠性。该资料集不仅可以作为研究全球海洋状况或揭示物理海洋现象的基础资料,还可为海洋数值模 式的开边界和初始场提供参考依据。  相似文献   

2.
利用改进的 Barnes 逐步订正法,结合一个混合层模型,构建完成了一个新版(2004-2017 年) 全球海洋(79. 5°S~79. 5°N,180°W~180°E)Argo 三维网格温、盐度资料集及衍生数据产品。 与旧版网格数据集相比,新版数据集采用一阶近似(表层温、盐度通过混合层内温、盐度线性拟合得出)的混合层模型,改善了资料集在表层的准确性;与 WOA13 资料集、同类 Argo 资料集和锚碇浮标观测资料的可靠性检验结果表明,新版全球海洋 Argo 网格数据集提供的资料是可信的,其质量也是有充分保证的。  相似文献   

3.
提出了海表温度(SST)和海表盐度(SSS)可统一由混合层深度内对应的平均温、盐度作零阶近似的理论假设,据此利用Chu等提出的最大角度法构建混合层模型,并考虑障碍层和补偿层的影响,得到合成的混合层深度,从而实现了基于混合层模型反推SST和SSS。以太平洋海域为例,分别利用WOA13气候态(1-12月)资料、TAO逐年逐月资料以及历史船载CTD资料检验了这一假设。不同资料检验结果均表明,反推得到的SST、SSS与实测值相关性较高,两者之间残差也较小。将此方法应用于Argo剖面,反推出对应的SST和SSS,并利用逐步订正法对散点资料进行客观分析,生成2004年1月-2014年12月逐年逐月的1°×1°的网格化SST和SSS。对网格资料进行检验,结果发现由Argo反推的SST和SSS气候态分布特征与WOA13资料非常相似,差异不大;与TAO实测资料相关性较好,甚至略高于同类型网格资料与TAO资料的相关系数;EOF分析表明,无论是空间还是时间的主要变化模态,与同类型的网格资料符合性较好。综合来看,构建的混合层模型可以用于Argo表层温、盐度的反推,获得较高质量的SST和SSS,能较好弥补Argo缺乏表层资料的不足。  相似文献   

4.
基于2005年1月~2009年12月中国Argo实时数据中心发布的Argo网格化产品,对台湾以东海域的表层和深层海温进行了分析,证实了日本南部海域存在北太平洋副热带模态水,提出暖水团概念,分析了其成因和垂直结构,并利用SODA(Simple Ocean Data Assimilation)数据和WOA09(World Ocean Atlas 2005)数据对暖水团进行验证。揭示出台湾以东海域各层次温度大面分布大体呈3个模态特征,并依此将台湾以东海域分为热带、副热带和温带三个海区;对各海域截取断面图,对其温跃层进行分析,归纳出永久性温跃层和季节性温跃层在垂直方向上的分布和季节性变化,并对其成因进行了讨论。  相似文献   

5.
王进  张杰  王晶 《海洋学报》2015,37(3):46-53
Aquarius是专门用于海洋盐度监测的L波段辐射计,于2011年6月发射入轨,目前已进入业务化运行阶段。本文以太平洋为研究区域,利用Argo盐度现场数据对星载微波辐射计Aquarius的2012年2级数据产品质量进行了分析与讨论,结果表明:与Argo数据比较,Aquarius数据盐度存在0.1的负偏差,标准差约为0.7,升轨和降轨数据差异不明显;受亮温陆地污染和无线电射频干扰的影响,近岸海域反演误差较大;海面温度较高的低纬海域反演结果优于中纬度海域;受亮温敏感性及粗糙海面发射率模型的影响,Aquarius在低温水域以及高风速条件下盐度反演误差较大,标准差可达1以上。  相似文献   

6.
参考数据集对Argo剖面浮标盐度观测资料校正的影响   总被引:4,自引:0,他引:4  
国际Argo计划采用新颖的Argo剖面浮标来监测全球大洋中上层的变化,对浮标盐度观测资料进行质量控制是非常重要的。本文采用历史水文观测资料集得到的温-盐度(-S)关系,并利用Wong等人开发的WJO延时模式盐度校正方法,对电导率传感器出现漂移、偏移等故障的Argo剖面浮标盐度资料进行校正。对影响校正结果的历史水文资料集(或参考数据集)的选取进行了初步研究,并在不同的海区进行试验。结果表明,选取合适的参考数据集可以提高盐度校正的精度。  相似文献   

7.
利用遥感SST反演上层海洋三维温度场   总被引:2,自引:0,他引:2  
张春玲 《海洋与湖沼》2014,45(1):114-125
通过统计相关分析验证了一个简单的温度参数模型在太平洋海域的较好适用性。基于Argo观测资料及WOA09气候态温度数据,采用最大角度法求得此模型的相关参数,并利用高分辨率卫星遥感海表温度反演了太平洋上层海域空间分辨率为1°×1°的气候态月平均三维温度场。与实测资料的比较分析表明反演结果是较为真实可靠的,并可作为海洋数值模式积分的初猜场,为实现现场观测(如:Argo)与卫星观测的优势互补,构建太平洋海域完整的三维温度分析场提供一种新途径。  相似文献   

8.
针对传统海表盐度遥感反演精度不高、影响因素较少等问题,本文基于SMAP(Soil Moisture Active Passive)卫星L2C(Level 2 C)数据、Argo(Array for Real-time Geostrophic Oceanography)数据和其他辅助数据,以太平洋部分海域(160°E~120°W,0°~30°N)为研究区域,综合考虑海面粗糙度以及白冠覆盖率等参量,利用径向基神经网络建立RBF亮温增量模型,并对平静海面亮温进行修正,然后基于Meissner-Wentz介电常数模型得到反演后的盐度值。验证结果表明:模型预测盐度和SMAP卫星盐度相对于Argo实测盐度的均方根误差分别为0.4和0.5,平均绝对误差分别为0.3和0.4。实验证明,利用RBF神经网络建立的亮温增量模型可以提高海表盐度反演的精度,对海表盐度反演具有实用意义。  相似文献   

9.
利用基于客观分析方法重构的Argo网格资料(未同化其他观测资料),分析探讨了2004年1月-2011年12月期间太平洋海域(60°S-60°N、120°E-80°W)盐度气候态分布特征与变化规律。结果表明,分别位于南、北亚热带海域的两个高盐(北部约为35.2,南部为36.4左右)中心,呈马鞍形的双峰分布,对称中心不在赤道,而是偏北12个纬度;在南、北纬40°附近海域,盐度等值线十分密集,形成“极锋”;在新西兰东南海域存在低盐水由南向北的入侵现象,且由表层至1000 m深层终年存在。盐度在亚极地海域每年大致呈一高一低的周期性变化,亚北极海域更明显,最高盐度值出现在每年的4月份,最低盐度值则出现在每年的9月份,高低盐度差在0.30~0.45之间。表层以下,盐度的周期性变化远不如表层明显,至500 m中层,整个太平洋海域的盐度最大变幅不超过0.10。赤道海域的表层盐度在2007年和2010年分别有明显的异常减小,最大振幅约为0.8,年际变化周期约为3年;北副热带和亚北极海域的表层,盐度表现出3-6个月的年际振荡,振幅约为0.2;中层盐度几乎没有明显的异常变化。  相似文献   

10.
采用梯度依赖相关尺度方法构建了1套2004—2017年间,月平均的全球海洋(0~1 500 m)1°×1°的Argo数据集,并在对该数据集进行对比检验的基础上,将其初步应用于中西太平洋黄鳍金枪鱼的渔场分析研究。结果表明,所构建的Argo数据集与WOA13数据集的温、盐偏差在上表层(150 m)稍大,最大值分别约为0.5 ℃和0.1,且偏差均随深度的增加而逐渐减小;其与TAO浮标时间序列的温度偏差,2004—2017年间均小于1 ℃,最大盐度偏差则小于0.5,且大部分海域接近0。中西太平洋海域,黄鳍金枪鱼中心渔场多集中在 28~29 ℃ 等温线范围内,在 22 ℃以下的海域单位捕捞努力量渔获量(catch per unit effort,CPUE)值极小;中心渔场区温跃层上界深度范围在20~120 m之间,且中心渔场在各个深度上形成的频数大体呈正态分布,温跃层上界深度为90 m时,形成中心渔场的可能性达到最大。研究表明所构建的数据集在水文环境分析及资源评估中有一定的应用价值。  相似文献   

11.
海表盐度(Sea Surface Salinity,SSS)是研究海洋对全球气候影响的重要参量,欧洲航天局(European Space Agency,ESA)设计研发的SMOS(Soil Moisture and Ocean Salinity)是专用于探测海水盐度的卫星之一。受射频干扰(Radio Frequency Interference, RFI)等因素的影响,SMOS卫星盐度产品的精度难以达到预期效果。为了提高SMOS卫星海表盐度产品精度,本文提出一种基于深度神经网络的海表盐度反演算法。以太平洋中部海域(150°E~180°,5°~30°N)为研究区域,利用Argo浮标实测盐度数据为参考真值,将SMOS卫星L1C、L2级产品与Argo盐度数据进行时空匹配。并根据海洋遥感和辐射传输理论,选取亮温(Brightness Temperature,TB)、海表温度(Sea Surface Temperature,SST)、降雨率(Rain Rate,RR)、波高(Significant Wave Height,SWH)、纬向风速(Zonal Wind Speed,ZWS)、经向风速(Meridional Wind Speed,MWS)和蒸发量(Evaporation,Eva)七个影响盐度的重要参数,利用K折交叉验证法,构建了深度神经网络(Deep Neural Network, DNN)模型,对SMOS卫星L2级数据进行反演。实验结果表明,利用本文算法计算得到的海表盐度数据平均绝对误差为0.159,均方根误差为0.195,均明显优于SMOS盐度产品精度,本文提出的算法能够提供更精准的海表盐度产品。  相似文献   

12.
应用Argo资料分析西北太平洋冬、夏季水团   总被引:1,自引:0,他引:1  
应用Argo剖面浮标观测的温、盐度资料,分析了西北太平洋海域冬、夏季的温、盐度分布、水团结构及其分布。首先采用T-S点聚图法分析了该海域水团分布的基本情况,由点聚分析结果可知,该海域至少存在6种以上水团;再用模糊聚类软化法对水团作进一步划分,分别计算了该海域6至11类水团的F和△F值,结果表明,冬、夏季的△F值都以划分为8类时为最大,这与大洋水团的稳定性是一致的,因此,该海域冬、夏季水团以划分为8类最佳,它们分别是北太平洋热带表层水、北太平洋次表层水、北太平洋中层水、北太平洋副热带模态水、北太平洋深层水和赤道表层水,以及南太平洋次表层水和南太平洋中层水。  相似文献   

13.
应用Argo资料分析西北太平洋冬、夏季水团   总被引:1,自引:0,他引:1  
应用Argo剖面浮标观测的温、盐度资料,分析了西北太平洋海域冬、夏季的温、盐度分布、水团结构及其分布。首先采用T-S点聚图法分析了该海域水团分布的基本情况,由点聚分析结果可知,该海域至少存在6种以上水团;再用模糊聚类软化法对水团作进一步划分,分别计算了该海域6至11类水团的F和△F值,结果表明,冬、夏季的△F值都以划分为8类时为最大,这与大洋水团的稳定性是一致的,因此,该海域冬、夏季水团以划分为8类最佳,它们分别是北太平洋热带表层水、北太平洋次表层水、北太平洋中层水、北太平洋副热带模态水、北太平洋深层水和赤道表层水,以及南太平洋次表层水和南太平洋中层水。  相似文献   

14.
用Argo温盐资料估计印度尼西亚贯穿流多年平均地转输送   总被引:1,自引:0,他引:1  
利用Argo浮标资料,估计了2003—2007年期间印度尼西亚贯穿流(ITF)出口处114.5οE断面上层(0—1000m)的地转流,并与WOA05资料进行对比。在114.5οE断面上9.5ο—18.5οS之间,依据Argo资料计算的上层(0—1000m)地转流年平均输送为4.2Sv(1 Sv = 106m3.s-1),比依据WOA05资料计算的流量大0.5Sv左右,与前人对IX1断面的估算接近。依据Argo资料计算的ITF的季节变化也与WOA05比较一致,最大输送都出现在7月份,可以达到10Sv,而冬季二者差异较大。比较了盐度资料的差异以及114.5οE断面南侧缺测对估计ITF地转流输送的影响,发现盐度资料的改善可以改进对ITF地转输送量的估计,而断面南侧的缺测对ITF年平均输送的影响较小。因此,Argo资料可以作为监测ITF输送量的一种有效手段,特别是用于年平均流量的研究。  相似文献   

15.
本文利用Argo海水盐度资料、海流同化数据和同期大气再分析数据,探讨热带太平洋盐度趋势变化和相关动力过程。Argo资料显示,2015?2017年热带太平洋出现显著的盐度异常(SAE),这是改变长期趋势的主要原因,表现为表层显著淡化和次表层咸化特征。这种盐度异常具有明显的区域性特征和垂直结构的差异,体现在热带太平洋北部海区(NTP)和南太平洋辐合区(SPCZ)表层淡化,盐度最大变幅为0.71~0.92,淡化可以达到混合层底;热带太平洋南部海区(STP)次表层咸化,最大变幅为0.46,主要发生在温跃层附近,期间盐度异常沿着等位密面从西向东扩展。平流和挟卷是与SAE密切相关的海洋动力过程,两者在NTP淡化海域有着持续而较为显著的影响,在SPCZ淡化、STP咸化海域后期贡献也较大,其中盐度平流对热带太平洋海区盐度变化起主要贡献。NTP淡化海区表层淡水通量和STP咸化海区密度补偿引起的混合也是SAE的重要影响因素。  相似文献   

16.
利用基于客观分析方法重构的Argo网格资料(未同化其他观测资料),分析探讨了2004年1月-2011年12月期间太平洋海域(60°S-60°N、120°E-80°W)盐度气候态分布特征与变化规律。结果表明,分别位于南、北亚热带海域的两个高盐(北部约为35.2,南部为36.4左右)中心,呈马鞍形的双峰分布,对称中心不在赤道,而是偏北12个纬度;在南、北纬40°附近海域,盐度等值线十分密集,形成"极锋";在新西兰东南海域存在低盐水由南向北的入侵现象,且由表层至1 000 m深层终年存在。盐度在亚极地海域每年大致呈一高一低的周期性变化,亚北极海域更明显,最高盐度值出现在每年的4月份,最低盐度值则出现在每年的9月份,高低盐度差在0.30~0.45之间。表层以下,盐度的周期性变化远不如表层明显,至500 m中层,整个太平洋海域的盐度最大变幅不超过0.10。赤道海域的表层盐度在2007年和2010年分别有明显的异常减小,最大振幅约为0.8,年际变化周期约为3年;北副热带和亚北极海域的表层,盐度表现出3-6个月的年际振荡,振幅约为0.2;中层盐度几乎没有明显的异常变化。  相似文献   

17.
海表面盐度(Sea Surface Salinity, SSS)是研究大洋环流和海洋对全球气候影响的关键参数之一。目前借助卫星遥感技术获取全天候和连续的SSS是最有效的方法,但是SSS的反演精度在大部分海域达不到预期目标。众所周知,海表面亮温是反演SSS的关键因素之一,海面粗糙度导致了亮温增量的产生,亮温正演模型的误差会影响盐度反演的精度。本文首次提出了依据6个风带划分全球海域,利用Argo实测盐度数据、SMOS卫星数据和相关辅助数据,通过LASSO统计方法在各风带覆盖的海域构建了一个全新的二次曲线亮温增量模型,再通过贝叶斯迭代反演算法计算出了各个海域的SSS产品。与Argo实测SSS对比,新模型下6部分海域反演SSS的绝对平均误差分别为0.76、0.88、0.93、0.92、1.28和1.21,均显著优于修正前(SMOS L2 SSS)产品的误差(0.98、1.61、2.82、1.50、2.35和3.13)。  相似文献   

18.
海表面盐度SSS(Sea Surface Salinity)是研究大洋环流和海洋对气候影响的重要参量、是决定海水基本性质的重要因素之一。卫星微波遥感可以满足盐度研究过程中大范围、连续观测的需要。目前,由欧洲空间局设计开发的SMOS(Soil Moisture and Ocean Salinity)卫星于2009年发射成功,并且根据它的观测数据和物理机制反演出了海表面盐度的相关产品。但结果显示,在某些近海岸区域(如中国南海海域)受陆地RFI等诸多因素的影响,基于卫星遥感物理机制反演得到的盐度产品的精度较低。本文的主要目的是利用中国海洋大学"东方红2"科学考察船的走航数据、SMOS卫星数据,针对中国南海海域提出了用BP神经网络预测海表面盐度的方法,并用实测Argo浮标、WOA13的盐度数据对模型进行适应性评估。结果表明,模型产品相对于"东方红2"实测盐度数据的均方根误差(RMSE)是0.21,而SMOS的SSS1产品、SSS2产品和SSS3产品的精度分别为1.90、1.93和1.91。同时,在验证数据集中,模型预测数据相对于Argo浮标实测盐度数据的均方根误差(RMSE)是0.50,而SMOS的SSS1产品、SSS2产品和SSS3产品的精度分别为1.83、1.83和1.84。此模型具有良好的适应性和泛化能力,为海表面盐度的反演和预测提供了一个不依赖于物理机制的新方法。  相似文献   

19.
基于Argo历史观测的南海海盆尺度中层流场研究   总被引:1,自引:0,他引:1  
针对南海海域海流环境复杂、中层实测数据量少的现状,本文基于2006-2016年布放在南海海域的114个Argo剖面浮标的卫星定位等信息,采用基于背景流和惯性流外推的最小二乘方法,获取南海海域1 200 m深中层流场信息,并采用Divand变分插值的方法形成网格化季节流场。结果表明:(1)针对南海中层(1 200 m)流场,单个Argo浮标可以刻画出具体的中尺度结构,如越南沿岸的反气旋涡,半径约为120 km,最大流速约为9.6 cm/s,平均流速为5.3 cm/s;(2) Argo网格化流场表明海盆尺度中层流场南海南部为反气旋环流结构,北部为气旋式环流,同时在吕宋海峡口存在从南海至太平洋的水体交换;(3)将该流场信息与HYCOM和YoMaHa'07两种资料对比,吻合度较高,与HYCOM再分析资料的偏差分布趋近于正态分布,海流的东西向分量的均方根误差为3.28 cm/s,南北向分量的均方根误差为3.26 cm/s。总体而言,利用Argo轨迹资料能够有效地反演出南海地区海盆尺度的中层环流特征。  相似文献   

20.
基于国际Argo资料中心提供的从2004年1月至2007年10月的浮标剖面资料,对西北太平洋模态水的时空变化特征进行分析.结合WOA01(the World Ocean Atlas 2001)资料,选定模态水主要形成区(30°~35°N,140°~155°E)作为研究区域,利用3月份的平均资料,给出西北太平洋模态水的空间结构为:北边界位于34.5°N附近,南边界可达30°N以南,东边界位于151.5°E,西边界可达140°E以西,深度为350 m以浅.通过对模态水核心区的逐月资料分析,揭示了其温度、盐度等的季节变化,并提出一种判别模态水范围的盐度判别法.结合海平面高度异常变化,初步分析了涡旋对模态水的影响,发现涡旋只能暂时改变核心区模态水的温盐结构,之后该区域模态水将基本恢复到正常状态.根据模态水2004-2007年的水文数据特点,发现在过去4 a中模态水性质基本稳定,变化很小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号