首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the influence of the ionization of helium on the low-degree acoustic oscillation frequencies in model solar-type stars. The signature in the oscillation frequencies characterizing the ionization-induced depression of the first adiabatic exponent γ is a superposition of two decaying periodic functions of frequency ν, with 'frequencies' that are approximately twice the acoustic depths of the centres of the He  i and He  ii ionization regions. That variation is probably best exhibited in the second frequency difference  Δ2ν n ,  l ≡ν n −1,  l − 2ν n ,  l n +1,  l   . We show how an analytic approximation to the variation of γ leads to a simple representation of this oscillatory contribution to Δ2ν which can be used to characterize the γ variation, our intention being to use it as a seismic diagnostic of the helium abundance of the star. We emphasize that the objective is to characterize γ, not merely to find a formula for Δ2ν that reproduces the data.  相似文献   

2.
By using the sunspot time series as a proxy, we have made a detailed analysis of the mean solar magnetic field over the last two and half centuries, by means of a reconstruction of its phase space. We find evidence of a long-term trend variation of some of the solar physical processes (over a few decades) that might be responsible for the apparent erratic behaviour of the solar magnetic cycle. The analysis is done by means of a careful study of the axisymmetric dynamo model equations, where we show that the temporal counterpart of the magnetic field can be described by a self-regulated two-dimensional dynamic system, usually known as a Van der Pol–Duffing oscillator. Our results suggest that during the last two and half centuries, the velocity of the meridional flow, v p, and the efficiency of the α mechanism responsible for the conversion of toroidal magnetic field into poloidal magnetic field might have suffered variations that can explain the observed variability in the solar cycle.  相似文献   

3.
Hinode is an observatory‐style satellite, carrying three advanced instruments being designed and built to work together to explore the physical coupling between the photosphere and the upper layers for understanding the mechanism of dynam‐ ics and heating. The three instruments aboard are the Solar Optical Telescope (SOT), which can provide high‐precision photometric and polarimetric data of the lower atmosphere in the visible light (388–668 nm) with a spatial resolution of 0.2–0.3 arcseconds, the X‐Ray Telescope (XRT) which takes a wide field of full sun coverage X‐ray images being capable of diagnosing the physical condition of coronal plasmas, and the EUV Imaging Spectrometer (EIS) which observes the upper transition region and coronal emission lines in the wavelength ranges of 17–21 nm and 25–29 nm. Since first‐light observations in the end of October 2006, Hinode has been continuously providing unprecedented high‐quality solar data. We will present some new findings of the sun with Hinode, focusing on those from SOT (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
High-frequency p-mode intensity data, obtained from the South Pole in 1987, 1988, 1990 and 1994, show a sharp variation in the phase-shift function and in the frequency spacings near 5.5 mHz. Using a simple theoretical model, we demonstrate that this behaviour is caused by an acoustic resonance in the atmosphere between the excitation source and the upper reflection level. We discuss the diagnostic properties of this resonance, which is sensitive to the acoustic reflectivity of the solar atmosphere and to the location and parity of the excitation source. When applied to the solar data, our model indicates that the average acoustic reflectivity increases with increasing solar activity. The model also shows that the acoustic source has composite parity and is located within one pressure scaleheight of the base of the photosphere.  相似文献   

5.
In this study we discuss variations of the radio emission from the Quiet Sun Areas (QSA) at centimeter wavelength (1.76 cm). Data were obtained from Nobeyama Radioheliograph (NoRH). Oscillations of selected areas were studied carefully from data taken over one week. We try to find quasi‐periodic solar oscillations from the QSA. We used the traditional Fast Fourier Transform (FFT), Global Wavelet Spectrum (GWS) and Wavelet (Morlet) for studying signals in the frequency/time‐frequency domain. We used the Fisher randomization test to verify the significance of the observed signal. Instrumental and sky noises were studied using a cross‐correlation analysis. Additionally, a single pixel analysis were done. Wide ranges of solar oscillation periods were found from the Quiet Sun Area (QSA): 3–15, 35–70, and 90 minutes. Some physical explanations are suggested for these oscillations. However, it is not possible to give a conclusive statement about the origin of the long quasi‐periodic (>60 min) oscillations from the QSA (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Although systematic measurements of the Sun's polar magnetic field exist only from mid-1970s, other proxies can be used to infer the polar field at earlier times. The observational data indicate a strong correlation between the polar field at a sunspot minimum and the strength of the next cycle, although the strength of the cycle is not correlated well with the polar field produced at its end. This suggests that the Babcock–Leighton mechanism of poloidal field generation from decaying sunspots involves randomness, whereas the other aspects of the dynamo process must be reasonably ordered and deterministic. Only if the magnetic diffusivity within the convection zone is assumed to be high (of order  1012 cm2 s−1  ), we can explain the correlation between the polar field at a minimum and the next cycle. We give several independent arguments that the diffusivity must be of this order. In a dynamo model with diffusivity like this, the poloidal field generated at the mid-latitudes is advected toward the poles by the meridional circulation and simultaneously diffuses towards the tachocline, where the toroidal field for the next cycle is produced. To model actual solar cycles with a dynamo model having such high diffusivity, we have to feed the observational data of the poloidal field at the minimum into the theoretical model. We develop a method of doing this in a systematic way. Our model predicts that cycle 24 will be a very weak cycle. Hemispheric asymmetry of solar activity is also calculated with our model and compared with observational data.  相似文献   

7.
1 INTRODUCTIONThe maing-length theory (MLT) is the most commonly used approach to calculate convective energy transport in stars and other astrophysical situations. Based on the original idea ofPrandtl (1952) that turbulent parcels trallsfer heat in a similar way as molecules of gas do inthermal conduction, the MLT assumes that convection cells, drived by buoyancy, move thlougha ~ng length 1 and release the heat they carry when they merge with their environment. Themost widely adopted f…  相似文献   

8.
1 INTRODUCTION Gan, Li and Chang (2001a) proposed a quantitative method to obtain the lower energycutoff (Er) of power-law electrons from the observed broken-down double power-law hard Xray spectrum. Most recently Can et al. (2002) improved the method and let it be moreself-consistent. They applied their improved method to the 54 hard X-ray events observed withBATSE/CGRO and acquired more general results in comparison with those obtained by Canet al. (2001b). Despite the data is rel…  相似文献   

9.
We study the magnetic structure of five well-known active regions that produced great flares (X5 or larger). The six flares under investigation are the X12 flare on 1991 June 9 in AR 6659, the X5.7 flare on 2000 July 14 in AR 9077, the X5.6 flare on 2001 April 6 in AR 9415, the X5.3 flare on 2001 August 25 in AR 9591, the X17 flare on 2003 October 28 and the X10 flare on 2003 October 29, both in AR 10486. The last five events had corresponding LASCO observations and were all associated with Halo CMEs. We analyzed vector magne-tograms from Big Bear Solar Observatory, Huairou Solar Observing Station, Marshall Space Right Center and Mees Solar Observatory. In particular, we studied the magnetic gradient derived from line-of-sight magnetograms and magnetic shear derived from vector magne-tograms, and found an apparent correlation between these two parameters at a level of about 90%. We found that the magnetic gradient could be a better proxy than the shear for predicting where a major flare might occur: all six flares occurred in neutral lines with maximum gradient. The mean gradient of the flaring neutral lines ranges from 0.14 to 0.50 G km-1, 2.3 to 8 times the average value for all the neutral lines in the active regions. If we use magnetic shear as the proxy, the flaring neutral line in at least one, possibly two, of the six events would be mis-identified.  相似文献   

10.
We consider the processes that might suppress the time variations in the solar neutrino flux produced by the radial motion of the Earth through the neutrino interference pattern. We calculate these time variations and the extent to which they are suppressed by Coulomb collisions of the neutrino-emitting nuclei. This is done for both the 0.862-MeV 7Be neutrino line and the continuous neutrino spectrum, assuming a Gaussian energy response function of the neutrino detector. We find that the collisional decoherence averages out the time variations for neutrino masses A simple and clear physical picture of the time-dependent solar neutrino problem is presented and qualitative coherence criteria are discussed.  相似文献   

11.
Using the Michelson Doppler Imager (MDI) data from Solar and Heliospheric Observatory (SOHO), the rotation rate of the unipolar magnetic regions in North high-latitude regions of the Sun is estimated by tracking individual magnetic elements. The analysis reveals a strong spin down near the pole, which is greater than the Doppler and magnetic rotation rates estimated by Snodgrass & Ulrich (1990), and rotation rate inferred from helioseismology (Birch & Kosovichev 1998), and is probably related to variation of velocity gradient in the subsurface shear layer. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Magnetic bright points (MBPs) in the internetwork are among the smallest objects in the solar photosphere and appear bright against the ambient environment. An algorithm is presented that can be used for the automated detection of the MBPs in the spatial and temporal domains. The algorithm works by mapping the lanes through intensity thresholding. A compass search, combined with a study of the intensity gradient across the detected objects, allows the disentanglement of MBPs from bright pixels within the granules. Object growing is implemented to account for any pixels that might have been removed when mapping the lanes. The images are stabilized by locating long-lived objects that may have been missed due to variable light levels and seeing quality. Tests of the algorithm, employing data taken with the Swedish Solar Telescope, reveal that ≈90 per cent of MBPs within a  75 × 75  arcsec2 field of view are detected.  相似文献   

13.
Turbulent convection models (TCMs) based on hydrodynamic moment equations are compared with the classical mixing-length theory (MLT) in solar models. The aim is to test the effects of some physical processes on the structure of the solar convection zone, such as the dissipation, diffusion and anisotropy of turbulence that have been ignored in the MLT. Free parameters introduced by the TCMs are also tested in order to find appropriate values for astrophysical applications. It is found that the TCMs usually give larger convective heat fluxes than the MLT does, and the heat transport efficiency is sensitively related to the dissipation parameters used in the TCMs. As a result of calibrating to the present solar values, our solar models usually have rather smaller values of the mixing length to local pressure scaleheight ratio than the standard solar model. The turbulent diffusion is found to have important effects on the structure of the solar convection zone. It leads to significantly lowered and expanded profiles for the Reynolds correlations, and a larger temperature gradient in the central part of the superadiabatic convection region but a smaller one near the boundaries of the convection zone. It is interesting to note that, due to a careful treatment of turbulence developing towards isotropic state, our non-local TCM results in radially dominated motion in the central part and horizontally dominated motion near the boundaries of the convection zone, just as what has been observed in many 3D numerical simulations. Our solar models with the TCMs give small but meaningful differences in the temperature and sound speed profiles compared with the standard solar model using the MLT.  相似文献   

14.
In recent years there has been some progress towards detecting solar-like oscillations in stars. The goal of this challenging project is to analyse frequency spectra similar to that observed for the Sun in integrated light. In this context it is important to investigate what can be learned about the structure and evolution of the stars from such future observations. Here we concentrate on the structure of the upper layers, as reflected in the phase function. We show that it is possible to obtain this function from low-degree p modes, at least for stars on the main sequence. We analyse its dependence on several uncertainties in the structure of the uppermost layers. We also investigate a filtered phase function, which has properties that depend on the layers around the second helium ionization zone.  相似文献   

15.
We demonstrate that a simple solar dynamo model, in the form of a Parker migratory dynamo with random fluctuations of the dynamo governing parameters and algebraic saturation of dynamo action, can at least qualitatively reproduce all the basic features of solar Grand Minima as they are known from direct and indirect data. In particular, the model successfully reproduces such features as an abrupt transition into a Grand Minimum and the subsequent gradual recovery of solar activity, as well as mixed-parity butterfly diagrams during the epoch of the Grand Minimum. The model predicts that the cycle survives in some form during a Grand Minimum, as well as the relative stability of the cycle inside and outside of a Grand Minimum. The long-term statistics of simulated Grand Minima appears compatible with the phenomenology of the Grand Minima inferred from the cosmogenic isotope data. We demonstrate that such ability to reproduce the Grand Minima phenomenology is not a general feature of the dynamo models but requires some specific assumption, such as random fluctuations in dynamo governing parameters. In general, we conclude that a relatively simple and straightforward model is able to reproduce the Grand Minima phenomenology remarkably well, in principle providing us with a possibility of studying the physical nature of Grand Minima.  相似文献   

16.
Forecasting space weather more accurately from solar observations requires an understanding of the variations in physical properties of interplanetary (IP) shocks as solar activity changes. We examined the characteristics (occurrence rate, physical parameters, and types of shock driver) of IP shocks. During the period of 1995 – 2001, a total of 249 forward IP shocks were observed. In calculating the shock parameters, we used the solar wind data from Wind at the solar minimum period (1995 – 1997) and from ACE since 1998 including the solar maximum period (1999 – 2001). Most of IP shocks (68%) are concentrated in the solar maximum period. The values of physical quantities of IP shocks, such as the shock speed, the sonic Mach number, and the ratio of plasma density compression, are larger at solar maximum than at solar minimum. However, the ratio of IMF compression is larger at solar minimum. The IP shock drivers are classified into four groups: magnetic clouds (MCs), ejecta, high speed streams (HSSs), and unidentified drivers. The MC is the most dominant and strong shock driver and 150 out of total 249 IP shocks are driven by MCs. The MC is a principal and very effective shock driver not only at solar maximum but also at solar minimum, in contrast to results from previous studies, where the HSS is considered as the dominant IP shock driver.  相似文献   

17.
Two different multiresolution analyses are used to decompose the structure of active-region magnetic flux into concentrations of different size scales. Lines separating these opposite polarity regions of flux at each size scale are found. These lines are used as a mask on a map of the magnetic field gradient to sample the local gradient between opposite polarity regions of given scale sizes. It is shown that the maximum, average, and standard deviation of the magnetic flux gradient for α,β,β γ, and β γ δ active-regions increase in the order listed, and that the order is maintained over all length scales. Since magnetic flux gradient is strongly linked to active-region activity, such as flares, this study demonstrates that, on average, the Mt. Wilson classification encodes the notion of activity over all length scales in the active-region, and not just those length scales at which the strongest flux gradients are found. Further, it is also shown that the average gradients in the field, and the average length-scale at which they occur, also increase in the same order. Finally, there are significant differences in the gradient distribution, between flaring and non-flaring active regions, which are maintained over all length scales. It is also shown that the average gradient content of active-regions that have large flares (GOES class “M” and above) is larger than that for active regions containing flares of all flare sizes; this difference is also maintained at all length scales. All of the reported results are independent of the multiresolution transform used. The implications for the Mt. Wilson classification of active-regions in relation to the multiresolution gradient content and flaring activity are discussed.  相似文献   

18.
Temporal variations of the structure and the rotation rate of the solar tachocline region are studied using helioseismic data from the Global Oscillation Network Group (GONG) and the Michelson Doppler Imager (MDI) obtained during the period 1995–2000. We do not find any significant temporal variation in the depth of the convection zone, the position of the tachocline or the extent of overshoot below the convection zone. No systematic variation in any other properties of the tachocline, like width, etc., is found either. The possibility of periodic variations in these properties is also investigated. Time-averaged results show that the tachocline is prolate with a variation of about 0.02 R in its position. Neither the depth of the convection zone nor the extent of overshoot shows any significant variation with latitude.  相似文献   

19.
Various methods (or recipes) have been proposed to predict future solar activity levels – with mixed success. Among these, some precursor methods based upon quantities determined around or a few years before solar minimum have provided rather high correlations with the strength of the following cycles. Recently, data assimilation with an advection-dominated (flux-transport) dynamo model has been proposed as a predictive tool, yielding remarkably high correlation coefficients. After discussing the potential implications of these results and the criticism that has been raised, we study the possible physical origin(s) of the predictive skill provided by precursor and other methods. It is found that the combination of the overlap of solar cycles and their amplitude-dependent rise time (Waldmeier's rule) introduces correlations in the sunspot number (or area) record, which account for the predictive skill of many precursor methods. This explanation requires no direct physical relation between the precursor quantity and the dynamo mechanism (in the sense of the Babcock-Leighton scheme or otherwise). (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We believe the Babcock-Leighton process of poloidal field generation to be the main source of irregularity in the solar cycle. The random nature of this process may make the poloidal field in one hemisphere stronger than that in the other hemisphere at the end of a cycle. We expect this to induce an asymmetry in the next sunspot cycle. We look for evidence of this in the observational data and then model it theoretically with our dynamo code. Since actual polar field measurements exist only from the 1970s, we use the polar faculae number data recorded by Sheeley (1991, 2008) as a proxy of the polar field and estimate the hemispheric asymmetry of the polar field in different solar minima during the major part of the twentieth century. This asymmetry is found to have a reasonable correlation with the asymmetry of the next cycle. We then run our dynamo code by feeding information about this asymmetry at the successive minima and compare the results with observational data. We find that the theoretically computed asymmetries of different cycles compare favorably with the observational data, with the correlation co-efficient being 0.73. Due to the coupling between the two hemispheres, any hemispheric asymmetry tends to get attenuated with time. The hemispheric asymmetry of a cycle ei-ther from observational data or from theoretical calculations statistically tends to be less than the asymmetry in the polar field (as inferred from the faculae data) in the preceding minimum. This reduction factor turns out to be 0.43 and 0.51 respectively in observational data and theoretical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号