首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
地震往往受控于滑动面的摩擦性质,这种摩擦性质可以由速率状态摩擦定律较好地描述.速率状态摩擦定律中的本构参数a和b与动态摩擦系数相关,从而影响着同震位移与剪切应力的时空演化.本文在前人工作的基础上,采用三维边界积分方程法模拟速率状态摩擦定律控制下均匀全空间中平面断层的自发破裂传播过程,并详细讨论了a和b对滑动速率、剪切应力和破裂传播速度的影响.数值结果表明a和b的不同取值将导致不同的破裂行为,b-a的值越大,断层越不稳定,这种不稳定性有利于裂纹的产生与扩展.但滑动速率的时空分布不只依赖b-a,而且还与a和b的具体取值有关,断层面上滑动速率峰值与剪切破裂强度均随着a的减小而增大,随着b的增大而增大.相关结果有助于加深对断层自发破裂传播的认识.  相似文献   

2.
Plate tectonics only allows small deformations in the lithospheric plates. The laboratory experiments with the rock specimens show that the creep is transient when the creep strain is at most 1%. Hence, if we assume that the creep strain in the lithospheric plates is below this threshold, the creep is transient. The present paper addresses the role of the elastic, brittle (pseudo-plastic), and creep rheology of the lithosphere during the accumulation of elastic shear strains on the locked faults in the Earth’s crust, i.e., during the process of preparation of the earthquakes. The effective viscosity characterizing the transient creep is lower than that under the steady-state creep and it depends on the characteristic time of a given process. The characteristic duration of the stress and strain accumulation process in the vicinity of the locked faults is a few dozen years. On these time intervals, the thin upper crustal layer behaves as brittle; the underlying layer behaves as elastic (it is just this layer which accommodates stress accumulation leading to the earthquake), whereas the transient creep is predominant in the lower crust and mantle lithosphere. Transient creep entails nonlinear time dependence of the strains arising in the vicinity of the locked fault in the elastic crust. The perturbations in the magnetic field induced by these strains can be treated as the magnetic precursor of the earthquake.  相似文献   

3.
丽江—小金河断裂带现今断层运动特征   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用GPS观测对丽江—小金河断裂带的现今断层运动和变形状态进行了分析和探讨.丽江—小金河断裂带两侧地块地壳变形差异显著,GPS速度剖面结果显示断裂带两侧存在地壳变形不连续现象;进一步以GPS速度场为约束,基于负位错模型反演的丽江—小金河断裂带的断层闭锁空间分布结果显示,以木里为界,北东段断层强闭锁从地表向深部延伸至15km左右,西南段断层闭锁程度较高的区域位于5~15km范围内,浅层表现为弱闭锁的状态;滑动亏损速率结果显示,两闭锁段的滑动亏损速率相差近4mm·a~(-1),说明丽江—小金河断裂带西南段的背景滑动速率明显高于北东段.基于数值模拟分析了西南段浅层蠕滑运动对周边断层的影响,结果表明西南段的浅层左旋滑动对北东段闭锁区和西南段深部强闭锁区均为正影响.  相似文献   

4.
The nucleation process of stick-slip instability was analyzed based on the experimental measurements of strain and fault slip on homogeneous and non-homogeneous faults. The results show that the nucleation process of stick-slip on the homogeneous fault is of weak slip-weakening behavior under constant loading point velocity. The existence of a short “weak segment” on the fault makes slip-weakening phenomenon in nucleation process more obvious, while the existence of a long “weak segment” on the fault makes the nucleation process changed. The nucleation is characterized by accelerating slip in a local region and rapid increase of shear stress along the fault in this case, which is more coincident with the rate and state friction law. During the period when fault is locked, increasing of shear stress causes lateral elastic dilation near the fault, and the rebound of the dilation at the time of instability causes an instantaneous increase of normal stress in the fault plane, which is an important factor making fault be rapidly locked and its strength recovered.  相似文献   

5.
The nucleation process of stick-slip instability was analyzed based on the experimental measurements of strain and fault slip on homogeneous and non-homogeneous faults. The results show that the nucleation process of stick-slip on the homogeneous fault is of weak slip-weakening behavior under constant loading point velocity. The existence of a short "weak segment" on the fault makes slip-weakening phenomenon in nucleation process more obvious, while the existence of a long "weak segment" on the fault makes the nucleation process changed. The nucleation is characterized by accelerating slip in a local region and rapid increase of shear stress along the fault in this case, which is more coincident with the rate and state friction law. During the period when fault is locked, increasing of shear stress causes lateral elastic dilation near the fault, and the rebound of the dilation at the time of instability causes an instantaneous increase of normal stress in the fault plane, which is an important factor making fault be rapidly locked and its strength recovered.  相似文献   

6.
Stress interactions and sliding characteristics of faults with random fractal waviness in a purely elastic medium differ both qualitatively and quantitatively from those of faults with planar surfaces. With nonplanar fault models, solutions for slip diverge as resolution of the fractal features increases, and the scaling of fault slip with fault rupture dimension becomes nonlinear. We show that the nonlinear scaling of slip and divergence of solutions arise because stresses from geometric interactions at irregularities along nonplanar faults grow with increasing slip and produce backstresses that progressively impede slip. However, in real materials with finite strength, yielding will halt the growth of the interaction stresses, which will profoundly affect slip of nonplanar faults. We infer that in the brittle seismogenic portion of the Earth’s crust, off-fault yielding occurs on pervasive secondary faults. Predicted rates of stress relaxation with distance from major faults with random fractal roughness follow a power-law relationship that is consistent with reported clustering of background seismicity up to 15 kilometers from faults.  相似文献   

7.
-- By integrating effects of microscopic interactions between statistically self-similar fault surfaces, we succeeded in deriving a slip- and time-dependent fault constitutive law that rationally unifies the slip-dependent law and the rate- and state-dependent law. In this constitutive law the slip-weakening results from the abrasion of surface asperities that proceeds irreversibly with fault slip. On the other hand, the restoration of shear strength after the arrest of faulting results from the adhesion of surface asperities that proceeds with contact time. At the limit of high slip-rate the unified constitutive law is reduced to the slip-weakening law. At the limit of low slip-rate it shows the well-known log t strengthening of faults over the wide range of contact time t. In the steady state with a constant slip-rate V the shear strength has the negative log V dependence, known as the velocity-weakening. Another important property expected from the unified constitutive law is the gradual increase of the critical weakening displacement Dc with stationary contact time. We numerically examined behavior of a single degree of freedom elastic system following the slip- and time-dependent constitutive law, and found that the periodic stick-slip motion is realized when the adhesion rate is high in comparison with the loading rate. If the adhesion rate is very low, behavior of the system gradually changes from stick-slip motion to steady sliding with time.  相似文献   

8.
基于震例探讨大地震的物理机制   总被引:3,自引:1,他引:2       下载免费PDF全文
查明大地震物理机制对地震预测和防震减灾具有重要意义.本文评述了当前主流地震机制假说,指出用于描述浅源地震机制的弹性回跳说和粘滑说存在诸多缺陷;前人提出的脱水致裂、相变失稳、剪切熔融和反裂隙断层作用等中-深源地震机制假说,均存在与观测事实不符的情况.本文简要介绍了近些年我们发展的孕震断层多锁固段脆性破裂理论,指出断层运动导致锁固段累进性破裂发生地震,称锁固段在体积膨胀点和峰值强度点发生的显著地震为标志性地震事件.震例分析表明,浅源、中源、深源及其混合型地震区标志性地震事件的孕育规律均遵循该理论.进一步的讨论指出,弹性回跳说和粘滑说均隐含着断层面上存在锁固段的假设;深源地震震源体具有发生脆性破裂的环境条件;该理论能合理解释地震应力降远小于室内岩石破裂应力降、热流佯谬和自组织临界性这些难点问题.这充分说明,大地震物理机制均可统一解释为锁固段脆性破裂.  相似文献   

9.
The geometry of the most recent deformation in Alpine Corsica is discussed in terms of reactivation of thrusts as normal faults and crustal extension, following crustal thickening in late Cretaceous and Eocene time. A cross section interpreted in terms of obduction in previous works is shown here to be a result of ductile and brittle extension in late Oligocene and Early Miocene time. This new interpretation is based on field observations of the brittle and ductile structures and their relations to the metamorphic history in the Tenda-col de Teghime and Centuri regions, as well as additional observations in other parts of Alpine Corsica. The following geological features are observed: (1) The recent deformation was partly achieved during a top-to-the-east ductile shear close to the brittle-ductile transition and was later superimposed by brittle shear indicating a transition in time from ductile to brittle regime. (2) Extensional brittle structures in the Early Miocene Saint Florent limestone and sense of tilt are compatible with the eastward sense of shear observed in the ductile rocks. (3) The movement along major “thrust” contacts is associated with retrograde metamorphism which overprinted the early high-P-low-T paragenesis at less severe P-T conditions. They also bring tectonic units with contrasted metamorphic evolutions into close contacts. (4) There is a regional correlation between retromorphosis and recent deformation since the high-P-low-T paragenesis are better preserved in southern of Alpine Corsica where the recent deformation is less pervasive. (5) Highly non-coaxial deformation is localized along east-dipping shear zones close to brittle normal faults which bounds tilted Miocene basins; in between the geometry is more symmetric and the finite strain therefore more coaxial. (6) Late extensional brittle structures are observed at many sites in the metamorphic rocks. In the present paper we discussed these first-order observations and describe the geometry of crustal extension in Alpine Corsica. We analyze the progressive formation of a crustal-scale tilted block in Cap Corse and propose that the normal faults are localized by asymmetric boudinage of the crust. The asymmetry of this crustal-scale boudinage is controlled by the position of early thrust planes.  相似文献   

10.
This paper selectively reviews physical models of earthquake instability. In these models, instability arises as a result of interaction of a fault constitutive relation with deformation of the surrounding material that occurs in response to remote tectonic loading. In contrast to kinematic models in which the fault slip is imposed, it is calculated in physical models and, consequently, these models are essential for understanding precursory processes. Some kind of weakening behavior for the fault constitutive relation is required to produce an instability analogous to an earthquake. Two commonly employed idealizations discussed here are rate-independent slip weakening and rate/state-dependent friction. When these constitutive models are employed on surfaces embedded in elastic half-spaces or layers, possibly coupled to a viscoelastic substrate, the results are capable of simulating realistically some aspects of earthquake occurrence. Common to all models is the prediction that earthquake instability is preceded by precursory slip which produces a departure of surface strain-rate from the background level. Near the epicenter of a moderate to large earthquake, the magnitude of this departure appears to be well within the range of current geodetic measurement accuracy, and its duration is of the order of months to years. However, details depend on a variety of factors, including the modelling of the constitutive relation near peak stress, coupling of elastic crust to the asthenosphere, and coupling of deformation with pore fluid diffusion.  相似文献   

11.
借助分布在北天山地区最新GPS点位的运动观测资料, 利用GAMIT/GLOBK数据处理软件获取了北天山地区现今地壳的运动位移场. 以该位移场为基础, 利用弹性半空间位错理论, 估算了研究区内博罗科努—阿其克库杜克断裂和准噶尔盆地南缘断裂两条具有代表性的主要断裂的现今活动速率. 结果表明: 博罗科努—阿其克库杜克右旋走滑断裂东、 西两段滑移速率的差异性不明显, 1944年3月10日乌苏南MS7.2强震发生后, 该断层现今表现为震后微蠕滑运动, 东、 西两段滑动速率均在1—2 mm/a之间; 准噶尔盆地南缘断裂现今滑动速率为(5.6±1.0) mm/a.   相似文献   

12.
地壳主要岩石流变参数及华北地壳流变性质研究   总被引:23,自引:3,他引:23       下载免费PDF全文
周永胜  何昌荣 《地震地质》2003,25(1):109-122
岩石流变参数和变形机制是根据断层摩擦和岩石幂次流动本构关系建立岩石圈强度剖面的基础。近 30年来 ,高温高压实验取得了很大进展 ,获得了大量地壳矿物和岩石流变资料。本文系统总结了这些流变实验资料 ,并应用流变数据结合地震震源深度分布 ,对华北地壳流变性质进行了研究。结果表明 ,以花岗岩和低级变质岩为代表的上地壳为脆性破裂 ,其强度受断层摩擦约束 ,以长英质片麻岩为主的中地壳和以中性麻粒岩为主的下地壳上层处于塑性流变状态 ,由干的基性麻粒岩组成的下地壳下层处于脆性向塑性流变的过渡状态。华北地壳的这种物质组成和流变为地壳不同层次的解耦和强震孕育提供了力学条件 ,也构成了不同尺度块体的底边界  相似文献   

13.
台湾地区地壳形变的弹性块体位错模型   总被引:3,自引:1,他引:2       下载免费PDF全文
在经典的非震形变位错模型中,地壳形变被认为是活动块体刚性运动和上部断层锁定影响的叠加,本文对此模型进行了改进: (1) 用活动块体整体运动和内部线性应变、旋转的贡献代替活动块体刚性运动的贡献;(2) 用分层介质地壳模型代替半无限介质模型计算断层锁定的影响. 利用改进后的非震形变位错模型,拟合了台湾地区1990~1995年间GPS观测资料. 结果显示,在东部海岸山脉区,约有30 mm·a-1的汇聚率被奇美断层消耗掉,运动速度从奇美断层向北迅速衰减. 在西部平原地区,南部断层是岛内锁定最为强烈的断层,该地区相应的也是史上灾害性地震多发的地区. 根据反演结果计算出的应变率与旋转率分布与前人结果在大部分地区一致,主应变率场显示台湾大部分地区存在近NW-SE方向的主压应变,主压应变方向呈扇形分布. 旋转率场显示台湾东部和南部地区存在着逆时针旋转率,而西部和北部地区则为顺时针旋转率.  相似文献   

14.
张媛媛  周永胜 《地震地质》2012,34(1):172-194
野外、实验和地震数据表明:浅部地壳的变形以脆性破裂为主,深部地壳的变形以晶体塑性流动为主.在这种认识的基础上,提出了地壳变形的2种机制模型,即发生脆性变形的上部地壳强度基于Byerlee摩擦定律以及发生塑性变形的下部地壳强度基于幂次蠕变定律.而位于其间的脆塑性转化带的深度与浅源地震深度的下限具有很好的一致性.然而,二元结构的流变模型局限性在于其力学模型过于简单,往往过高估计了脆塑性转化带的强度.问题的根源在于对脆塑性转化带的变形机制的研究已有很多,但没有定量的力学方程来描述脆塑性转化带强度;而且以往对断层脆塑性转化带的研究主要集中在温度引起的脆塑性转化方面,对因应变速率和流体对脆塑性转化的影响方面的研究也比较薄弱.对断层带内矿物变形机制研究表明,某些断层带脆塑性转化发生在相同深度(温度和压力)内,发生脆塑性转化的原因是应变速率的变化,而这种变化被认为与地震周期的同震、震后-间震期蠕变有关,这种变化得到了主震-余震深度分布变化的证实.对断层流体特征分析表明,断层带内可能存在高压流体,这种高压流体会随断裂带的破裂及愈合而周期性变化,在地震孕育及循环中起着关键性作用.高压流体的形成(裂隙愈合)有多种机理,其中,压溶是断层带裂隙愈合的主导机制之一.研究在水作用下的压溶,可以对传统的摩擦-流变二元地壳强度结构及其断层强度进行补充与修正.通过以上分析,认为有必要通过野外变形样品和高温高压实验,深入研究应变速率及流体压力对断层脆塑性转化的影响,同时,通过实验建立压溶蠕变的方程,近似地估计脆塑性转化带的强度.  相似文献   

15.
Slip-softening instability on a vertical strike-slip fault with asperities has been analysed. The fault strength is uniform in depth, but the strength is nonuniform in the strike direction, i.e., there are asperities on the fault. These asperities and other segments of the fault have the same type of constitutive law but different peak stresses. The material surrounding the fault is represented by elastic plates, of which the top and bottom surfaces are stress-free.We use a finite element method to study the evolution of theoretical displacement, stress and strain field with a growing displacement applied at the remote plate ends. The slip and frictional stress are obtained as part of the solution. We have compared the difference of theoretical displacement, strain field and the distribution of frictional stress on the fault between unstable and stable slip. In addition, we have studied the effect of size and strength of asperities on instability, and the softening behaviour of asperities before instability.We find that (1) the failure of the fault zone may be due to either dynamic instability or rapid quasistable slip. A general characteristic of unstable mode is that slippage, on some parts of asperities increases indefinitely for a small finite increase in remote imposed displacement until, immediately before the unstable slip; (2) the size and peak strength of asperities have a large effect on instability. Reducing the size and peak strength of asperities tends to replace inertially unstable deformation with stable deformation; (3) the location with maximum acceleration during unstable slip, as the plausible nucleating seismic source, is in asperities; (4) the shapes of the changes in theoretical stress and strain at a given location, caused by the nonlinear constitutive property of the fault, are all similar whether instability, happens or not. This fact suggests that the changes of peak type or bend type in crustal deformation are not required for earthquake instability.  相似文献   

16.
In this paper, we present a model for studying aftershock sequences that integrates Coulomb static stress change analysis, seismicity equations based on rate-state friction nucleation of earthquakes, slip of geometrically complex faults, and fractal-like, spatially heterogeneous models of crustal stress. In addition to modeling instantaneous aftershock seismicity rate patterns with initial clustering on the Coulomb stress increase areas and an approximately 1/t diffusion back to the pre-mainshock background seismicity, the simulations capture previously unmodeled effects. These include production of a significant number of aftershocks in the traditional Coulomb stress shadow zones and temporal changes in aftershock focal mechanism statistics. The occurrence of aftershock stress shadow zones arises from two sources. The first source is spatially heterogeneous initial crustal stress, and the second is slip on geometrically rough faults, which produces localized positive Coulomb stress changes within the traditional stress shadow zones. Temporal changes in simulated aftershock focal mechanisms result in inferred stress rotations that greatly exceed the true stress rotations due to the main shock, even for a moderately strong crust (mean stress 50 MPa) when stress is spatially heterogeneous. This arises from biased sampling of the crustal stress by the synthetic aftershocks due to the non-linear dependence of seismicity rates on stress changes. The model indicates that one cannot use focal mechanism inversion rotations to conclusively demonstrate low crustal strength (≤10 MPa); therefore, studies of crustal strength following a stress perturbation may significantly underestimate the mean crustal stress state for regions with spatially heterogeneous stress.  相似文献   

17.
Shear-crack model with a cohesive zone (or breakdown zone) is appropriate for the analysis of a fault surface in which slip distribution is strongly nonuniform. As the slipped portion advances, slip-weakening occurs over the so-called cohesive zone, a distance behind the fault tip. For a prescribed strength vs. displacement constitutive relation, however, the zone structure is difficult to determine by an analytical method except for some simple cases, thus it often requires a certain numerical procedure. This work proposes a numerical procedure to obtain approximated solutions of the problem by combining a series of elastic solutions derived bySmith (1974). The series is linearly combined and the unknown coefficients are determined by a nonlinear least square method. This method can fit a wide range of prescribed strength vs. displacement relations which may be simple algebraic relations or curves obtained by laboratory tests. By examining the residual errors and in comparison with a derived result in which linear stress is assumed within the zone, it could be concluded that the results provide good accuracy. Moreover, because the results are written in formulae, they can be easily referred to or used. By fitting constitutive curves in many different shapes, it is found that the stress distribution within the zone is more sensitive to the constitutive curve shape than the displacement. The most interesting fact is that the zone size is not sensitive to the curve shape, i.e., the zone size can be estimated by $$R = 3\mu \zeta \upsilon _c /\{ 2(1 - \upsilon )(\tau _c - \tau _f )\}$$ with ζ=1±0.11 for most cases.  相似文献   

18.
19.
利用1999—2007期GPS水平速度场数据,采用Defnode负位错反演程序估算了龙门山断裂在汶川地震前的闭锁程度和滑动亏损分布,结合龙门山断裂带附近地表水平应变率场结果,综合分析了震前地壳变形特征.反演结果表明,震前龙门山断裂中北段处于完全闭锁状态,闭锁深度达到21 km(闭锁比例0.99)左右,垂直断层方向的挤压滑动亏损速率约为2.2 mm/a,平行断层方向的右旋滑动亏损速率约为4.6 mm/a.龙门山断裂南段只有地表以下12 km闭锁程度较高(闭锁比例0.99),垂直断层方向滑动亏损速率约为1.4 mm/a,平行断层方向滑动亏损速率约为4.6 mm/a;在12~16 km处闭锁比例约为0.83,垂直断层方向滑动亏损速率约为1.2 mm/a,平行断层方向滑动亏损速率约为3.8 mm/a;在16~21 km处闭锁比例约为0.75,垂直断层方向滑动亏损速率约为1.1 mm/a,平行断层方向滑动亏损速率约为3.5 mm/a.在21~24 km处整条断裂均逐步转变为蠕滑.上述反演结果与区域应变计算获得的龙门山断裂带中北段整体应变积累速率较低、南段应变积累速率较高相一致,均表明中北段闭锁程度高、南段闭锁程度稍低,该特征可以较好地解释汶川地震时从震中向北东向单向破裂现象.  相似文献   

20.
Earthquake aftereffects and triggered seismic phenomena   总被引:5,自引:0,他引:5  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号