首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
During March 20, 1993, from 12:00 to 16:00 UT, repeated radio burst activity was observed in the 0.8–1.2 GHz frequency range. Periods in intervals 0.1–0.5, 0.7–1.0, 2.8–3.9, 75–170 s, and 15–25 min were recognized. This long-lasting narrowband activity consisted mainly of pulsations and continua. In some intervals it was accompanied not only by spikes, broadband pulsations, and fibers in the 1–2 GHz frequency range, but also by type III and U burst activity at lower frequencies as well as by hard X-ray bursts. From several radio bursts, two characterized by different fine structures were selected and compared. The observed differences are explained by different distribution functions of superthermal electrons. The position of the 0.8–1.2 GHz radio source above the photosphere and the magnetic field in the fiber burst source were estimated to be 66 000–75 000 km and 120–135 G, respectively.Presented at te CESRA-Workshop on Coronal Magnetic Energy Release at Caputh near Potsdam in May 1994.  相似文献   

2.
The gyro-synchrotron emission from a model source with a non-uniform magnetic field is computed taking into account the self absorption. This model seems adequate not only to interpret the radio spectrum and its time variation of microwave impulsive bursts but also to solve the discrepancy between the numbers of non-thermal electrons emitting radio burst and those emitting hard X-ray burst.The decrease of flux of radio burst with decreasing frequency at low microwave frequencies is due to the self absorption and/or the thermal gyro-absorption. In this frequency range, the radio source is optically thick even at weak microwave bursts. The weakness of the bursts may be rather due to the small size of the radio source and/or the weakness of the magnetic field than the small number density of the non-thermal electrons.The time variation of the flux of radio burst may be mainly attributed to the variation of source size in a horizontal direction ( direction) instead of the variation of the number density of non-thermal electrons itself, implying that the acceleration region progressively moves in the horizontal direction leaving the non-thermal electrons behind during the increasing phase of the radio burst.  相似文献   

3.
D. L. Croom 《Solar physics》1970,15(2):414-423
The results of 2 1/2 years (July 1967 – December 1969) monitoring of solar radio bursts at 71 GHz ( = 4.2 mm) at the Radio and Space Research Station, Slough are presented. During this period only seven events were positively identified as 71 GHz bursts. One of these events (6 July, 1968) is among the largest solar bursts ever recorded anywhere in the microwave-millimetre wave band (47000 × 10–22Wm–2Hz–1), and the associated magnetic field may possibly have exceeded 7200 G. Another event (27 March, 1969) has demonstrated that bursts at 71 GHz can be both intense (4700 × 10–22Wm–2Hz–1) and complex. On other occasions, the absence of any detectable event at 71 GHz helps to define the high frequency spectrum of the burst, this being an important factor in determining the initial energy distribution of the electrons ejected by the associated flare. On one such occasion (21 March, 1969) the derived energy distribution index is 8, in contrast with the more usual values of 2–4.1969–1970 NCR-OAR Senior Post-Doctoral Research Associate at Air Force Cambridge Research Laboratories, L. G. Hanscom Field, Bedford, Mass., U.S.A.  相似文献   

4.
The results of 21/2 yr (July 1967–December 1969) monitoring of solar radio bursts at 19 GHz ( = 1.58 cm) at the Radio and Space Research Station, Slough, are presented. Observations at this frequency are important in helping to define the form of the microwave spectrum of solar bursts since many of the more intense bursts have their spectral peak in the frequency region above 10 GHz. Fifteen bursts with peak flux increases exceeding 1000 × 10–22 Wm–2 Hz–1 were observed during this period.  相似文献   

5.
In previous attempts to show one-to-one correlation between type III bursts and X-ray spikes, there have been ambiguities as to which of several X-ray spikes are correlated with any given type III burst. Here, we present observations that show clear associations of X-ray bursts with RS type III bursts between 16:46 UT and 16:52 UT on July 9, 1985. The hard X-ray observations were made at energies above 25 keV with HXRBS on SMM and the radio observations were made at 1.63 GHz using the 13.7m Itapetinga antenna in R and L polarization with a time resolution of 3 ms. Detailed comparison between the hard X-ray and radio observations shows:
  1. In at least 13 cases we can identify the associated hard X-ray and decimetric RS bursts.
  2. On average, the X-ray peaks were delayed from the peak of the RS bursts at 1.6 GHz by ~ 400 ms although a delay as long as 1 s was observed in one case.
One possible explanation of the long delays between the RS bursts and the associated X-ray bursts is that the RS burst is produced at the leading edge of the electron beam, whereas the X-ray burst peaks at the time of arrival of the bulk of the electrons at the high density region at the lower corona and upper chromosphere. Thus, the time comparison must be made between the peak of the radio pulse and the start of the X-ray burst. In that case the delays are consistent with an electron travel time with velocity ~ 0.3 c from the 800 MHz plasma level to the lower corona assuming that the radio emission is at the second harmonic.  相似文献   

6.
Two distinct types of centimeter solar bursts, classified simple, have been identified and related to the position (with respect to a sunspot) of the related flare. Type S in which the flare occurs directly over the spot has a radio spectrum with a maximum beyond 10 GHz, type P which occurs away from the spot has its maximum occurring near 3 GHz. Considering the structure of the spot magnetic field and invoking the synchrotron effect, it is shown that the origin of the radio burst may be attributed to a burst of energetic electrons with an energy peak near 3 MeV.  相似文献   

7.
In this paper, the observed solar radio pulsations during the bursts at 9.375 GHz are considered to be excited by some plasma instability. Under the condition of the conservation of energy in the wave-particle interaction, the saturation time of plasma instabilities is inversely proportional to the initial radiation intensity, which may explain why the repetition rate of the pulsations is directly proportional to the radio burst flux at 9.375 GHz as well as 15 GHz and 22 GHz. It is also predicted that the energy released in an individual pulse increases with increasing the flux of radio bursts, the modularity of the pulsations decreases with increasing the flux of radio bursts, these predictions are consistent with the statistical results at 9.375 GHz in different events. The energy density of the non-thermal particles in these events is estimated from the properties of pulsation. For the typical values of the ambient plasma density (109 cm–3) and the ratio between the nonthermal and ambient electrons (10–4), the order of magnitude of the energy density and the average energy of the nonthermal electrons is 10–4 erg/cm3 and 10 kev, respectively. It is interesting that there are two branches in a statistical relation between the repetition rate and the radio burst flux in a special event on March 11–17, 1989, which just corresponds to two different orders of magnitude for the quasi-quantized energy released in these five bursts. This result may be explained by the different ratios between the thermal and the nonthermal radiations.  相似文献   

8.
Some properties of solar radio bursts observed at the Earth are mainly due to propagation effects in the corona. A radio echo of short-time narrow-band bursts is observed by a decameter radioheliograph on the basis of UTR-2 antenna. Propagation effects are manifested in the marked regular change of the burst intensity-time profile at 25 MHz during a half-rotation of the Sun. A displacement of limb diffuse bursts deep into the solar atmosphere of 1.5 - 2R has been also found during the burst lifetime.  相似文献   

9.
The active region McMath 10433 was the source of several flares and radio outbursts during the early part of July 1974. This region was tracked continuously, for several periods during the month at 22.2 GHz using a telescope with a 4 beam. Comparison with the results obtained simultaneously with a normal 7 GHz solar patrol instrument indicate that there is important burst activity occurring at levels below the detection limit of normal solar patrol instruments. The time-development morphology of these bursts is similar to those normally observed and has enabled the simple events to be re-interpreted. A completely new type of event - the fast absorption - has also been recognized. The correlation of the microwave events with SPA events observed on VLF propagation is also discussed.Spending a sabbatical year at CRAAM, São Paulo, Brazil.  相似文献   

10.
Klassen  A.  Karlický  M.  Aurass  H.  Jiřička  K. 《Solar physics》1999,188(1):141-154
Due to the emission of shock-accelerated electrons, broadband radio observations display propagating super Alfvénic shock waves in the low corona ('type II bursts'). We study the 9 July 1996 flare (AR NOAA 7978) focusing on the aspect of shock generation. This event's radio spectrogram shows two different type II bursts in sequence. Radio imaging data (Paris, Meudon Observatory) reveal that both bursts appear at different sites above the H flare. The driver of the first type II burst seems to propagate with twice the speed of the second one. The projected source site of the first type II burst (seen earlier and at higher frequencies) is spatially situated further away from the H flare site than the source of the second type II burst. We try to understand this by comparing with Yohkoh soft X-ray images. The first shock source occurs near the top of high soft X-ray loop structures. Its driver can be a guided fast mode magnetic disturbance. The second type II source appears in-between two high soft X-ray loop systems. This might be a piston-driven disturbance powered by an evaporation front. We get a consistent picture only by assuming a very inhomogeneous Alfvén speed in the active region's atmosphere.  相似文献   

11.
R. P. Lin 《Solar physics》1970,12(2):266-303
Observations of prompt 40 keV solar flare electron events by the IMP series of satellites in the period August, 1966 to December, 1967 are tabulated along with prompt energetic solar proton events in the period 1964–1967. The interrelationship of the various types of energetic particle emission by the sun, including relativistic energy electrons reported by Cline and McDonald (1968) are investigated. Relativistic energy electron emission is found to occur only during proton events. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. Evidence is presented for two separate particle acceleration and/or emission mechanisms, one of which produces 40 keV electrons and the other of which produces solar proton and possibly relativistic energy electrons. It is found that solar flares can be divided into three categories depending on their energetic particle emission: (1) small flares with no accompanying energetic phenomena either in particles, radio or X-ray emission; (2) small flares which produce low energy electrons and which are accompanied by type III and microwave radio bursts and energetic ( 20 keV) X-ray bursts; and (3) major solar flare eruptions characterized by energetic solar proton production and type II and IV radio bursts and accompanied by intense microwave and X-ray emission and relativistic energy electrons.  相似文献   

12.
Ning  Zongjun  Fu  Qijun  Lu  Quankang 《Solar physics》2000,194(1):137-145
We present a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0–2.0 GHz) of the Beijing Astronomical Observatory (BAO). Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. We call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is a nice interpretation of type III burst pair since the plasma beta 0.01 is much less than 1 and the beams have velocity of about 1.07×108 cm s–1 after leaving the reconnection region if we assume that the ambient magnetic field strength is about 100 G.  相似文献   

13.
Long-enduring quasi-periodic oscilations (1.5s) superimposed upon a solar burst have for the first time been observed simultaneously at two different mm-wavelengths (22 GHz and 44 GHz). The oscillations were present throughout the burst duration (about 10 min), and were delayed at 44 GHz with respect to 22 GHz by 0.3 s. The relative amplitude of the oscillation was of about 20% at 44 GHz and of about 5% at 22 GHz. Interferometer measurements at 10.6 GHz indicated the burst source position stable within 1 arc sec. An He i D3 line flare showed two persistent small spots separated by about 10 arc sec. The 22/44 GHz burst position corresponds well with the location of the He i D3 spots. The oscillations display features which distinguish them from ultrafast time structures found in other bursts. One possible interpretation is a modulation of the synchrotron emission of trapped electrons by a variable magnetic field on a double burst source, optically thin at 44 GHz and with optical thickness 0.3 at 22 GHz.  相似文献   

14.
Huang  G.L.  Wu  H.A.  Grechnev  V.V.  Sych  R.A.  Altyntsev  A.T. 《Solar physics》2003,213(2):341-358
A solar radio burst on 25 August 1999 with fine structures (FS) at 4.5–7.5 GHz is studied in this paper. The FS started about one minute prior to the main burst. The maximum emission took place at 4–5 GHz for the FS, and at 10–11 GHz for the main burst, respectively. The time profiles at 4.5–7.5 GHz coincide very well with those of hard X-rays (from 25 keV to >300 keV) in both the main burst and the FS, which shows that the same population of accelerated electrons is responsible for both the microwave and hard X-ray bursts. The source of FS is 20 arc sec away from the main source close to a compact dipolar magnetic field, which is confirmed by different time and polarization profiles in the FS and main sources. It is interesting that the FS at 4.5–7.5 GHz are associated with a series of twisted magnetic loops or ropes, which may be modulated by Alfvén waves with a period of 1 s and a spatial wavelength of 103 km in respect to the typical Alfvén velocity of 103 km s–1 in corona. These magnetic ropes may be rooted in the dipole site, which extended into the corona during the event and retracted after the event. Therefore, the FS in this event may show an important signature or precursor for energy release. The magnetic reconnection may be triggered by the interaction of the magnetic ropes at the height corresponding to 5–6 GHz, followed by cascaded energy release close to the foot-point of the magnetic ropes.  相似文献   

15.
Microwave observations with exceptionally high spectral resolution are described for a set of 49 solar flares observed between May and October 1981. Total power data were obtained at 40 frequencies between 1 and 18 GHz by the Owens Valley frequency-agile interferometer with 10 s time resolution. Statistical analysis of this sample of microwave bursts established the following significant characteristics of their microwave spectra: (i) Most ( 80%) of the microwave events displayed complex spectra consisting of more than one component during some or all of their lifetime. Single spectral component bursts are rare. It is shown that the presence of more than one component can lead to significant errors when data with low spectral resolution are used to determine the low-side spectral index. (ii) The high-resolution data show that many bursts have a low-side spectral index that is larger than the maximum value of about 3 that might be expected from theory. Possible explanations include the effect of the underlying active region on the perceived burst spectrum and/or the necessity for more accurate calculations for bursts with low effective temperatures, (iii) the peak frequencies of the bursts are remarkably constant during their lifetimes. This is contrary to expectations based on simple models in which the source size and ambient field remain constant during the evolution of a burst.Swiss National Science Foundation Fellow from the University of Bern.  相似文献   

16.
Previous sub-THz studies were derived from single-event observations. We here analyze for the first time spectral trends for a larger collection of sub-THz bursts. The collection consists of a set of 16 moderate to small impulsive solar radio bursts observed at 0.2 and 0.4 THz by the Solar Submillimeter-wave Telescope (SST) in 2012?–?2014 at El Leoncito, in the Argentinean Andes. The peak burst spectra included data from new solar patrol radio telescopes (45 and 90 GHz), and were completed with microwave data obtained by the Radio Solar Telescope Network, when available. We critically evaluate errors and uncertainties in sub-THz flux estimates caused by calibration techniques and the corrections for atmospheric transmission, and introduce a new method to obtain a uniform flux scale criterion for all events. The sub-THz bursts were searched during reported GOES soft X-ray events of class C or larger, for periods common to SST observations. Seven out of 16 events exhibit spectral maxima in the range 5?–?40 GHz with fluxes decaying at sub-THz frequencies (three of them associated to GOES class X, and four to class M). Nine out of 16 events exhibited the sub-THz spectral component. In five of these events, the sub-THz emission fluxes increased with a separate frequency from that of the microwave spectral component (two classified as X and three as M), and four events have only been detected at sub-THz frequencies (three classified as M and one as C). The results suggest that the THz component might be present throughout, with the minimum turnover frequency increasing as a function of the energy of the emitting electrons. The peculiar nature of many sub-THz burst events requires further investigations of bursts that are examined from SST observations alone to better understand these phenomena.  相似文献   

17.
Evidence for a delayed acceleration process in solar flares is presented in the form of an analysis of simultaneous observations in microwaves, decimetre and metrewaves, and hard X-rays of six delayed gradual bursts which appear 0.5–1 hr after the strong main bursts have faded. The observed characteristics of the delayed bursts are: (a) similarity of flux time profiles at all the wavelengths, (b) low turn-over frequency (4 GHz) of the microwave spectrum, (c) moderately strong circular polarization (30–40%) and low altitude of the microwave source (which is displaced toward the disk centre by a projected distance of 10–20 from that of the preceding main burst), and (d) low spectral index of the energy spectrum of hard X-rays.From these observations it is suggested that (i) electrons are accelerated up to MeV even some tens of minutes after the impulsive phase acceleration has almost ceased, (ii) the delayed acceleration occurs in a large magnetic structure extending to a height of at least 2 × 105 km, and (iii) the radio source has columnar structure with the microwave source predominantly near a leg or legs and the metrewave source near the top of the magnetic structure. The present observations of the delayed bursts do not seem to be consistent with the classical second-phase acceleration mechanism proposed in the past for normal hard X-ray gradual (extended) bursts.Minamimaki-mura, Minamisaku-gun, Nagano-ken 384-13, Japan.Greenbelt, MD 20771, U.S.A., NASA/NRC Research Associate, on leave from Tokyo Astronomical Observatory.P.O. Box 76, Epping, N.S.W. 2121, Australia.Berkeley, CA 94720, U.S.A.  相似文献   

18.
We present 4.9 GHz observations of an impulsive radio burst observed at the Very Large Array on 1981 May 16. The flare occurred in a complex active region containing several spots. The radio burst lay at the edge of an active-region microwave source, close to a neutral line. The compact burst showed morphological evidence for the presence of two loops in the rise phase, with the subsequent burst peak lying between these loops. This suggests that interaction between the loops played some role in the initiation of the flare. The flare spectrum is consistent with thermal gyrosynchrotron emission. The main microwave peak was displaced from the nearest H kernels by about 10, but there is strong evidence for post-flare loops coincident with the H kernels during the later stages of the event.  相似文献   

19.
Using data from a proportional counter spectrometer, sensitive in the wavelength range 1–20 Å, on OSO-4, X-ray bursts in the energy band 3.0 to 4.5 keV have been studied. 150 events have been identified between October 27, 1967 and May 8, 1968, mostly of an impulsive nature. Some gradual rise and fall bursts occur, but there is a selection bias against such long-enduring events. A study of the profiles of these events reveals no basis for identifying different types of impulsive event.Single frequency radio bursts and H flares of class > 1F are almost always accompanied by X-ray enhancements. For the sample of X-ray events, only 25% are correlated with radio bursts and 46% with flares. Only 11% of the sample events are associated with type III radio bursts. Microwave burst peaks occur an average of two minutes earlier than the X-ray burst peak, but the first observation of X-ray activity is usually before the start of the corresponding microwave burst.Impulsive bursts, although differing widely in fall time, are due to the heating of a volume of plasma from a temperature of 10.0 to 30.0 × 106 K. Differences infall time probably indicate different electron densities in the source. Observation of an iron line at 1.9 Å suggests that a non-thermal mechanism may be operating during some of these events since the temperatures are too low to permit thermal excitation of the 1s 2-1s 2p transition in Fe+24. It is also possible that, in spite of the low temperature, most of the iron ions have been stripped to the Fe+24 stage. Collisional excitation and dielectronic recombination processes would then be able to provide the observed flux in the resonance line of Fe+24. A gradual rise and fall event and event precursors have also been studied.  相似文献   

20.
We discuss a solar flare microwave burst complex, which included a major structure consisting of some 13 spikes of 60 ms FWHM each, observed 21 May, 1984 at 90 GHz (3 mm). It was associated with a simultaneous very hard X-ray burst complex. We suggest that the individual spikes of both bursts were caused by the same electron population: the X-bursts by their bremsstrahlung, and the microwave bursts by their gyrosynchrotron emission. This latter conclusion is based on the evidence that the radio turnover frequency was 150 GHz. It follows that the emission sources were characterized by an electron density of about 1011 cm–3, a temperature of 5 × 108 K and a magnetic field of about 1400–2000 G. They had a size of about 350 km; if the energy release is caused by reconnection the sources of primary instability could have been smaller and in the form of thin sheets with reconnection speed at a fraction of the Alfvén velocity and burst-like energy injections of 1027 erg during about 50 ms each. The energized plasma knots lost their injection energy by saturated convective flux (collisionless conduction) in about 30 ms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号