首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
青藏高原东南缘南段现今变形特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文以青藏高原东南缘南段1999—2017年的GPS速度场为主,结合小震分布、历史地震和活断层探测等资料,首先,基于Okada断层位错模型反演了研究区域主要活断层的滑动速率;其次,以断层滑动速率和GPS速度场观测资料作为约束,利用DEFNODE负位错方法反演了研究区域的块体内部变形及主要活断层的闭锁程度和滑动亏损;最后,计算研究区域现今应变率场,并结合Pms和XKS剪切波分裂结果,探讨分析了青藏高原东南缘的动力学特征.研究结果表明:(1)红河断裂带现今滑动速率明显低于南华—楚雄—建水断裂和无量山断裂;(2)红河断裂带的元江—元阳段、鹤庆—洱源段和小江断裂带北段处于强闭锁状态,南华—楚雄—建水断裂带和无量山断裂带中—北段的闭锁程度强于南段;(3)青藏高原东南缘南段现今地壳变形表现为近E-W向的拉张和近N-S向的挤压,最大剪切方向与Pms和XKS剪切波分裂的快波方向呈一定角度,表明地壳与地幔处于完全解耦状态,而中-下地壳低速层可能是壳幔解耦的主要原因之一;(4)青藏高原东南缘的整体变形受控于印度板块的推挤、印缅俯冲带的深源俯冲以及缅甸微板块与巽他板块的后撤/回退的共同作用.  相似文献   

2.
根据卫星影像解译和野外调查结果,本文重点分析研究楚雄-南华断裂的活动特征、最新活动时代、第四纪盆地的成因以及与1680年楚雄 6?级地震的关系。吕合、南华等多处第四纪断层剖面揭示了断错龙川江Ⅱ、Ⅲ级阶地晚更新世晚期堆积,表明该断裂是一条晚第四纪活动断裂,其最新时代为晚更新世晚期乃至全新世,运动性质以右旋走滑运动为主,水平走滑速率1.6~2.0mm/a。沿断裂发育有楚雄、南华、子午等多个第四纪拉分盆地。历史上,断裂附近曾发生1680年楚雄 6?级地震和多次中强地震,楚雄-南华断裂为这些地震的发震构造。从更大区域范围看,它与东部的曲江断裂、石屏-建水断裂一起,构成一组斜列的右旋走滑为主的活动断裂带。这种运动学特征类似于川滇菱形块体西南边界的红河断裂带,与川滇菱形块体SE向逃逸(运动)有关。  相似文献   

3.
根据卫星影像解译和野外调查结果,本文重点分析研究楚雄-南华断裂的活动特征、最新活动时代、第四纪盆地的成因以及与1680年楚雄6(3/4)级地震的关系。吕合、南华等多处第四纪断层剖面揭示了断错龙川江Ⅱ、Ⅲ级阶地晚更新世晚期堆积,表明该断裂是一条晚第四纪活动断裂,其最新时代为晚更新世晚期乃至全新世,运动性质以右旋走滑运动为主,水平走滑速率1.6~2.0mm/a。沿断裂发育有楚雄、南华、子午等多个第四纪拉分盆地。历史上,断裂附近曾发生1680年楚雄6(3/4)级地震和多次中强地震,楚雄-南华断裂为这些地震的发震构造。从更大区域范围看,它与东部的曲江断裂、石屏-建水断裂一起,构成一组斜列的右旋走滑为主的活动断裂带。这种运动学特征类似于川滇菱形块体西南边界的红河断裂带,与川滇菱形块体SE向逃逸(运动)有关。  相似文献   

4.
利用青藏高原东北缘及周缘地区1999—2007年和2009—2014年2个时段的GPS水平运动速度场做约束,反演获取了海原-六盘山断裂带的闭锁程度和滑动速率亏损的时空分布演化。结果表明,海原断裂带以左旋走滑亏损为主,六盘山断裂北段以逆冲倾滑速率亏损为主,南段则以正向倾滑为主。其中,毛毛山断裂和老虎断裂西段在2个时段的闭锁深度都达到25km,最大左旋滑动亏损为6mm/a。老虎山东段和海原断裂(狭义)闭锁程度低,主要处于蠕滑状态。六盘山断裂2个时段的闭锁深度可达35km,最大逆冲滑动速率亏损为2mm/a。汶川地震后,六盘山断裂上逆冲滑动速率亏损高值区由中段迁移至北段且范围减小,南段则变成正倾滑速率亏损。毛毛山、老虎山西段和六盘山断裂的地震危险性要明显高于海原-六盘山断裂带其他断层段。  相似文献   

5.
利用1999—2007期GPS水平速度场数据,采用Defnode负位错反演程序估算了龙门山断裂在汶川地震前的闭锁程度和滑动亏损分布,结合龙门山断裂带附近地表水平应变率场结果,综合分析了震前地壳变形特征.反演结果表明,震前龙门山断裂中北段处于完全闭锁状态,闭锁深度达到21 km(闭锁比例0.99)左右,垂直断层方向的挤压滑动亏损速率约为2.2 mm/a,平行断层方向的右旋滑动亏损速率约为4.6 mm/a.龙门山断裂南段只有地表以下12 km闭锁程度较高(闭锁比例0.99),垂直断层方向滑动亏损速率约为1.4 mm/a,平行断层方向滑动亏损速率约为4.6 mm/a;在12~16 km处闭锁比例约为0.83,垂直断层方向滑动亏损速率约为1.2 mm/a,平行断层方向滑动亏损速率约为3.8 mm/a;在16~21 km处闭锁比例约为0.75,垂直断层方向滑动亏损速率约为1.1 mm/a,平行断层方向滑动亏损速率约为3.5 mm/a.在21~24 km处整条断裂均逐步转变为蠕滑.上述反演结果与区域应变计算获得的龙门山断裂带中北段整体应变积累速率较低、南段应变积累速率较高相一致,均表明中北段闭锁程度高、南段闭锁程度稍低,该特征可以较好地解释汶川地震时从震中向北东向单向破裂现象.  相似文献   

6.
为研究依兰—伊通断裂带黑龙江段构造运动特征,基于2016—2019年GPS和地质资料,解算了该断裂的三维速度场,通过构建断层模型反演了滑动速率。结果显示:依兰—伊通断裂带黑龙江段总体呈下沉趋势,沉降速率在1~2 mm/a,断裂呈右旋走滑态势,闭锁层15 km以下走滑速率为(1.7±0.4)mm/a。佳木斯—萝北段以右旋走滑为主、拉张为辅;五常—佳木斯段以拉张为主、右旋走滑为辅。  相似文献   

7.
以ldquo;中国地壳运动观测网络rdquo;区域站在海原断裂带附近的所有观测数据及跨断裂GPS剖面观测数据作为约束,用Smith 3-D体力模型反演了海原断裂带断层滑动速率和断层闭锁深度.从西到东断裂共分为5段,采用遗传算法拟合GPS水平运动速度场,拟合残差均方根为1.1mm/a.反演结果为:毛毛山断裂左旋走滑运动速率为3.5mm/a,闭锁深度为22.0km;老虎山断裂左旋走滑速率为6.5mm/a,闭锁深度为110.3km;海原断裂带西段、中段和东段的滑动速率依次为4.5mm/a、5.6mm/a和5.5mm/a,闭锁深度依次为8.4km、3.6km和4.3km.表明毛毛山断裂左旋走滑运动速率小,闭锁深度大,有利于应变能的积累,使得该断裂及附近地区存在发生强震的背景.   相似文献   

8.
用GPS数据反演海原断裂带断层滑动速率和闭锁深度   总被引:7,自引:1,他引:6  
以"中国地壳运动观测网络"区域站在海原断裂带附近的所有观测数据及跨断裂GPS剖面观测数据作为约束,用Smith 3-D体力模型反演了海原断裂带断层滑动速率和断层闭锁深度.从西到东断裂共分为5段,采用遗传算法拟合GPS水平运动速度场,拟合残差均方根为1.1 mm/a.反演结果为:毛毛山断裂左旋走滑运动速率为3.5 mm/a,闭锁深度为22.0km;老虎山断裂左旋走滑速率为6.5 mm/a,闭锁深度为10.3 km;海原断裂带西段、中段和东段的滑动速率依次为4.5 mm/a、5.6 mm/a和5.5 mm/a,闭锁深度依次为8.4 km、3.6km和4.3 km.表明毛毛山断裂左旋走滑运动速率小,闭锁深度大,有利于应变能的积累,使得该断裂及附近地区存在发生强震的背景.  相似文献   

9.
位于华北板块和扬子板块之间的陕西中南部由渭河盆地、秦岭造山带和汉中盆地构成,其新构造运动主要形式为山脉隆升、盆地断陷,因此以重复水准测量为手段的地壳垂直运动研究尤为重要.基于研究区1970年以来的多期精密水准测量数据,用GPS垂直运动速率约束的动态平差方法获得了区域垂直运动速度场.以此为基础,用倾滑位错模型、网格搜索方法反演了研究区主要断层倾滑速率和闭锁深度,结果显示:秦岭北缘断裂倾滑速率为2.25~4.53 mm·a~(-1),闭锁深度为7.7~10.0 km;华山山前断裂倾滑速率为2.35~2.71 mm·a~(-1);闭锁深度为2.8~5.0 km,反映了该断裂在华县大地震之后,可能还没有完全闭锁,发生大震的应变能积累条件不足;渭河盆地北缘断裂的倾滑动速率为2.0~2.5 mm·a~(-1),闭锁深度仅为3.0 km左右,说明该断裂以蠕滑运动为主;略阳断裂倾滑速率为3.02 mm·a~(-1),闭锁深度6.7 km,是陕南较活动的断裂.  相似文献   

10.
李乐  陈棋福  钮凤林 《地球物理学报》2021,64(12):4308-4326
发生在同一断层部位上0.5~4.0 级的重复地震(也称重复微震)是研究断裂带深部变形的天然(有力)工具.本文系统汇集了川滇地区主要断裂带识别出的 76 组重复地震研究结果,构建了川滇地区重复地震的时空分布图像和断裂带深部变形时空演化特征,结果表明:丽江—宁蒗断裂带在脆韧转换带约23 km深处的滑动速率为4.3~5.4 mm·a-1 ,小江断裂带3.0~12.3 km深处的滑动速率为 1.6~10.1 mm·a-1 ,红河断裂带北段在 6.0~13.4 km深处的滑动速率为2.3~10.0 mm·a-1 ,鲜水河断裂带南段 3.0~18.7 km深处的滑动速率为 3.0~10.2 mm·a-1 ,龙门山断裂带在4.0~17.3 km的汶川 8.0级地震孕育深处的滑动速率为 3.5~9.6 mm·a-1 ,龙门山断裂带南端3.6~18.7 km处滑动速率为 5.8~10.2 mm·a-1 .综合分析认为:川滇地区主要边界断裂带的深部滑动速率较为一致,揭示了川滇地块和巴颜喀拉地块整体协同变形的特征.由重复微震与深部滑动速率变化构建了孕震深处的变形模式,即重复微震与断裂带局部闭锁段在空间位置上存在密切的关联性,强震前孕震闭锁区存在明显的深浅部构造形变差异,震前存在的深部加速变形过程可能是断层亚失稳阶段的具体表征.  相似文献   

11.
基于GPS资料约束反演川滇地区主要断裂现今活动速率   总被引:37,自引:0,他引:37  
以GPS数据给出的川滇地区(96°~108°E, 21°~35°N)速度场为约束, 依据研究区已知断裂分布情况建立连接断层元模型, 用最小二乘方法反演了该地区主要活动断层的现今错动速率. 结果显示, 印藏碰撞引起的北北东向推挤和高原隆升引起的重力势能作用造成青藏高原物质东向挤出. 遇到来自稳定华南块体的阻挡后, 高原东南部物质相对稳定欧亚板块转向南东方向继而向南运动, 使得川滇地区围绕喜马拉雅东构造结作顺时针转动, 造成川滇地块东侧断裂作左旋走滑活动, 而其西侧断裂以右旋走滑活动为主. 其中甘孜-玉树、鲜水河、安宁河、则木河、大凉山、小江断裂及其向南西方向延伸的部分和打洛-景洪、湄沾断裂构成青藏高原东南部东向挤出的东北边界和东边界, 左旋速率分别为0.3~14.7, 8.9~17.1, (5.1 ± 2.5), (2.8 ± 2.3), (7.1 ± 2.1), (9.4 ± 1.2), (10.1 ± 2.0), (7.3 ± 2.6)和(4.9 ± 3.0) mm/a. 青藏高原东南部东向挤出的西南边界似乎不是由单一断裂带构成, 而是在较宽范围内形成的一条右旋剪切带. 位于红河断裂北东侧的南华-楚雄-建水断裂和西南侧的无量山断裂带、龙陵-澜沧断裂活动性较强, 分别具有(4.2 ± 1.3), (4.3 ± 1.1)和(8.5 ± 1.7) mm/a的右旋走滑活动. 但金沙江断裂目前基本不活动, 红河断裂的活动性不强. 龙门山一带没有发现明显的地壳活动, 而其西北方向的活动带(龙日坝断裂)约有(5.1 ± 1.2) mm/a的右旋走滑分量. 川滇菱形块体内部的一些断裂表现出较强的活动性, 其中理塘断裂左旋走滑速率为(4.4 ± 1.3) mm/a, 拉张速率(2.7 ± 1.1) mm/a; 玉农希断裂及其周边地区右旋剪切形变速率为(2.7 ± 2.3) mm/a, 地壳缩短速率(6.7 ± 2.3) mm/a. 丽江-小金河断裂中段活动性强于北段和南段, 达到左旋走滑(5.4 ± 1.2) mm/a, 拉张(0.5 ± 1.0) mm/a. 与此同时, 讨论了不同断裂锁定深度对结果的影响, 并得到鲜水河断裂的锁定深度为15 km, 70%置信区间为11~19 km. 上述反演结果表明, 研究区存在多条错动速率非常有限的活动断裂, 将地壳分割成多个相互运动的地块, 青藏高原的东向挤出通过这些断裂的活动被吸收和调整, 而不是少数大型走滑断裂的快速走滑造成向东南方向的“逃逸”.  相似文献   

12.
根据地质资料,首先建立庄浪河断裂带、马衔山北缘断裂带空间展布的三维几何模型和分段模型,并把地质方法大致推测或估计的各段滑动速率和滑动方式作为先验初值,通过三维深断裂位错模型对GPS观测站点速度场的最佳拟合,反演获得各断裂段的现今滑动速率。结果表明,马衔山北缘断裂有1.4~3.0mm/a的逆倾滑,且中部断层段有约3mm/a的左旋走滑;庄浪河断裂有0.6~1.2mm/a的逆倾滑,走滑分量不明显。这些滑动速率值均在地质方法的推测范围内,且模型预测的GPS站点速度与实际观测值在整体上取得了较好的吻合。本研究表明,对于庄浪河断裂带、马衔山北缘断裂带这样一些滑动速率相对较低且传统地质调查方法较难实施的断裂,基于GPS观测结果的滑动速率反演是一种有效的补充手段  相似文献   

13.
川滇菱形块体主要边界运动模型的GPS数据反演分析   总被引:29,自引:7,他引:29       下载免费PDF全文
利用川滇地区1991-1999年的高精度GPS观测处理结果,采用稳健 - 贝叶斯最小二乘算法与多断裂位错模型,分析研究了川滇菱形块体主要边界运动的定量模型.反演分析表明:川西鲜水河断裂带和安宁河断裂带的左旋走滑运动速率约30mm/a,倾滑运动(逆断层)速率分别约9-11mm/a;滇西红河断裂带、程海断裂带、鹤庆 - 洱源断裂带的走滑运动(分别为右旋、左旋、左旋)速率分别约、11、13mm/a,倾滑运动(正断层)速率分别约16、24、16mm/a;如将其视为弹性应力应变积累,则各断层每年有相当于6级左右的地震能量积累.依据上述反演结果,模拟了区域主要断层运动引起的水平位移、应变速率场图像,显示了边界断裂及其之间的相互作用.  相似文献   

14.
苏小宁  孟国杰 《地震》2017,37(4):1-9
2016年1月21日青海省门源县发生了MS6.4地震, 发震断裂为冷龙岭北侧断裂, 震中位置与1986年门源6.4级地震相同。 本文收集了本次地震震中及其周边区域1999—2015年GPS观测资料, 解算了GPS速度场、 跨断裂连续观测站基线时间序列和应变率场。 结果显示, 祁连山断裂带为一条宽度约60 km的连续变形带。 在断裂带南侧地壳运动以顺时针旋转为主, 运动量值没有显著差异; 跨过断裂带到达其北部之后, 地壳运动量值明显减小, 显示出该断裂带的强烈活动特征。 冷龙岭断裂左旋走滑速率为6.17±0.41 mm/a, 挤压速率为1.83±0.38 mm/a, 断层闭锁深度为22.1±3.1 km。 利用GPS连续观测站数据解算的地震同震位移显示, 震中西南侧26.8 km处的青海门源(QHME)测站记录到了明显同震位移, 其水平运动方向为北东向, 与逆冲为主的震源机制解一致。  相似文献   

15.
小江断裂带是川滇菱形块体的东南边界断裂,是大型左旋走滑断裂。在总结已有研究成果的基础上,概述了小江断裂带空间展布、滑动速率、地震活动特征、强震地表破裂特征、地震危险性等方面的研究进展。已有研究结果表明,小江断裂带可分为北段、中段、南段,其中中段又可分为东支和西支。整条断裂带全新世的滑动速率为10 mm/a左右,其中北段和中段滑动速率为8~12 mm/a,南段滑动速率小于8 mm/a。小江断裂带沿线及周边地区地震频发,北段、中段地震活动性明显高于南段,强震活动具有明显的时空不均匀性,南段和巧家-东川段为地震空区,具有较高的强震危险性。通过对小江断裂带的论述,认为小江断裂带南段穿过红河断裂并向南延伸,但小江断裂带向南延伸模式及小江断裂带南段速度亏损是否由曲江断裂、石屏-建水断裂和红河断裂吸收,小江断裂带古地震是否与曲江断裂、石屏-建水断裂古地震相互影响,“Y”字形构造带吸收和调节模式还需进一步研究。  相似文献   

16.
祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定   总被引:14,自引:0,他引:14  
何文贵  袁道阳  葛伟鹏  罗浩 《地震》2010,30(1):131-137
冷龙岭活动断裂是青藏高原东北缘祁连山断裂带的重要组成部分, 位于祁连山断裂带中东段。 根据野外考察结果认为, 该断裂全新世以来活动强烈, 主要表现为左旋走滑运动, 并伴有正倾滑性质, 断错地貌特征明显。 通过高分辨率SPOT卫星数字影像和大比例尺航空照片处理确定断层的位置, 利用断错地貌测图、 热释光(TL)和碳十四(14C)测年方法, 厘定了冷龙岭断裂的晚第四纪滑动速率, 冷龙岭断裂晚更新世以来的平均水平滑动速率为(4.3±0.7)mm/a, 全新世晚期以来的平均水平滑动速率为(3.9±0.36)mm/a。  相似文献   

17.
用GPS数据反演分析海原断裂带分段活动特征   总被引:6,自引:3,他引:3       下载免费PDF全文
胡亚轩  崔笃信  张希  王雄 《地震工程学报》2009,31(3):227-230,253
首先应用1999-2007年的GPS观测资料分析海原断裂带的运动特征,看出期间该断裂带GPS站点运动速度由南向北逐渐衰减,在NWW和NE走向断层两盘的运动差异较为明显,断层的活动以走滑运动为主.然后依据地质、地球物理等资料给出反演参数初值,利用水平形变资料对断裂三段的走滑速率及断层下界深度进行反演.结果为从西到东断裂带各段走滑速率分别为8.25 mm/a、5.49 mm/a和5.97 mm/a,断层底部深度依次为22.8 km;13.3 km;11.1 km.综合分析认为毛毛山-老虎山断裂运动速度明显高于海原断裂速度,在速度变化梯度较大的毛毛山断裂存在6级以上地震空区,推测具有发生强震的危险性.  相似文献   

18.
通过分析高精度数字化SPOT卫星影像 ,结合野外考察和年代学测试 ,对阿尔金南缘走滑断裂带的 3个典型走滑断层断错地貌点进行了研究。在安南坝沟 ,阿尔金南缘走滑断裂带一主要分支自 (9.36± 0 .73)kaBP以来的左旋滑动速率为 (7.5± 1.7)mm/a ;在七个泉子阿尔金南缘走滑断裂带有 4条分支 ,其中 1条规模较小的断层分支自 (13 86± 1 0 7)kaBP以来的左旋滑动速率为 (2 .3±0 5 )mm/a ,由此推断七个泉子附近断裂带全新世以来的滑动速率为 (6 .9± 1.5 )~ (9.2± 2 .0 )mm/a ;约马克其断裂带自 (4 .73± 0 .38)kaBP以来的左旋滑动速率为 (10 .6± 3.0 )mm/a。综合以上各点结果 ,阿尔金南缘走滑断裂带中段 88°30′E与 93°0 5′E之间全新世以来的水平滑动速率为 7~ 11mm/a ,与最新的GPS观测结果非常接近  相似文献   

19.
本文搜集、整理1998—2013年境内外天山及周边地区(包括中国新疆、哈萨克斯坦、吉尔吉斯斯坦等)500余个GPS观测点数据,采用GAMIT/GLOBK软件对其进行解算和平差计算,并利用了弹性块体模型计算区域块体边界断层闭锁深度、块体运动参数和主要活动断层的滑动速率.研究结果表明,东、西昆仑地震带闭锁深度最大(19km),其次为南天山地区,闭锁深度达到17km,闭锁深度最小的为哈萨克斯坦(13km);各块体相对欧亚板块作顺(逆)时针旋转,旋转速率最大(-0.7208±0.0034°/Ma)为塔里木块体,其围绕欧拉极(38.295±0.019°N,95.078±0.077°E)顺时针方向转动,旋转速率最小为天山东段(0.108±0.1210°/Ma),而天山东、西两段无论是在旋转速率上还是在旋转方向上都有显著的区别.西昆仑断裂带的滑动速率(10.2±2.8mm·a-1)最大,南天山西段滑动速率为9.5±1.8mm·a-1,其东段为3.9±1.1mm·a-1;而北天山东段滑动速率(4.7±1.1mm·a-1)高于北天山西段(3.7±0.9mm·a-1);塔里木盆地南缘的阿尔金断裂带平均滑动速率为7.6±1.4mm·a-1,其结果与阿勒泰断裂带滑动速率(7.6±1.6mm·a-1)基本相当;天山断裂带运动方式主要以挤压为主,而阿尔金、昆仑、阿尔泰以及哈萨克斯坦断裂带均是以走滑运动方式为主,除阿勒泰断裂带走滑方式为右旋以外,其余几个断裂带均为左旋运动.最后,利用主要断裂带的滑动速率计算出各地震带的地震矩变化率以及1900年以来地震矩累计变化量,其结果与利用地震目录计算所得到的地震矩进行比较,判定出各地震带上地震矩均衡分布状态,研究结果显示阿尔金、西昆仑、东昆仑和北天山东段断裂带存在较大的地震矩亏损,均具有发生7级以上地震的可能性,南天山东段和哈萨克斯坦断裂带地震矩亏损相对较小,具有孕育6~7级地震的潜能,而天山西段、阿勒泰地震矩呈现出盈余状态,不具在1~3年内有发生强震的可能.  相似文献   

20.
通过卫星影像解译、野外实地调查和地质填图,获得滇西南地区澜沧断裂的基本特征和活动性参数,澜沧断裂属于龙陵—澜沧新生地震断裂带的东南段,北起耿马县联合村,向南东经澜沧县哈卜吗、战马坡、大塘子至澜沧县城东南,总体走向NNW,长度约85km。该断裂为一条全新世活动的右旋走滑断裂,兼具倾滑分量,沿断裂形成了丰富的断错地貌现象,主要表现为断层陡崖、冲沟右旋、断层陡坎、断层沟槽、断层垭口和断陷凹坑等。通过详细的野外考察,选择典型断错地貌进行差分GPS测量,结合所获相应地貌面的年代数据,得到该断裂全新世以来平均右旋走滑速率为(4.2±2.3)mm/a,其结果与现今GPS观测所得速率相当,反映了该断裂长期以来滑动速率的稳定性。同时根据岩体的最大位错量4.6~4.8km,估算断裂开始右旋走滑的时代为距今约1.1 Ma,即早更新世晚期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号