首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Artificially prepared specimens of bischofite (MgCl2-6H2O) have been experimentally deformed at temperatures between 20 and 100°C, strain rates between 10−4 and 10−88 s−1, and confining pressures between 0.1 and 28 MPa. Development of microstructure with strain was studied by in-situ deformation experiments, and results of these were correlated with observations made on thin sections of deformed samples.In a first series of experiments the effect of grain size, impurity content and water content on the flow behaviour was investigated. Addition of about 0.1 wt.% water to dry samples was found to decrease the flow stress by a factor of 5. This effect was found to be associated with the formation of a thin fluid film on grain boundaries, strongly enhancing dynamic recrystallization due to the movement of high-angle grain boundaries, and possibly also to enhanced intracrystalline plasticity due to excess water present in the lattice. In a second series of experiments the strain-rate sensitivity of the flow stress of selected samples was investigated. Two regimes could be distinguished: one with a stress exponent n = 4.5 in the power law creep equation for values of the differential stress above 2.0 MPa, and one with n = 1.5 for stresses below this value.The main deformation mechanisms were intracrystalline slip, twinning, and grain-boundary sliding. Recrystallization occurred by subgrain rotation and high-angle grain-boundary migration. The rates of grain-boundary migration fell into two different regimes, one regime being distinguished by extremely fast migration rates. The applicability of the experimentally found flow law to the behaviour of bischofite rocks in nature is discussed.  相似文献   

2.
Plastically deformed quartzites from the Betic Movement Zone (Betic Cordilleras, Spain) exhibit microstructures indicative of crystal plasticity on a mineral grain scale. Quartzites with dynamically recrystallized grain sizes larger than 10 μm have strong crystallographic preferred orientations, narrow grain boundaries, little creep damage, and an inverse proportionality of dislocation density and grain size. Mylonites with grain sizes smaller than 10 μm have low crystallographic preferred orientations, wide grain boundaries (up to 1000 Å), abundant creep damage, and decreasing dislocation density with diminishing grain size. This is thought to reflect a clear-cut shift in deformational regimes from dislocation creep to superplastic flow at 10 μm grain size. Superplasticity can be acquired by quartzites which suffer dynamic recrystallization to grain sizes smaller than 10 μm during an initial dislocation creep stage. Dislocation motion is the major accomodating mechanism for strain incompatibilities that arise during grain-boundary sliding in the mylonites.It seems reasonable to estimate flow stresses from unbound dislocation densities and dynamically recrystallized grain sizes in the tectonite specimens. In the mylonites, dynamically recrystallized grain size probably reflects the stress magnitude before the shift in deformational mechanisms, and an estimate for late stage stresses is provided by unbound dislocation densities. In both deformational regimes the flow strength appears to depend on the extent of dynamic recrystallization.  相似文献   

3.
This paper is based on a combined field, transmission-electron (TEM) and transmission-optical (TOM) microscope study of limestones from the Helvetic zone (Swiss Alps) and discusses the deformation mechanisms and flow regimes that governed the deformation of these rocks.During pre-metamorphic regional ductile deformations the limestones deformed by power-law dislocation creep with differential stresses probably not exceeding 1 kbar. Dynamic recrystallization with grain-boundary sliding and grain-boundary migration allowed the grains to be less elliptical than the strain ellipse. A characteristic of the structure is the existence of dislocation-free subgrains. In the footwall of and approaching the Lochseiten calc-mylonite along the Glarus overthrust, grain-boundary sliding becomes more important (shift to diffusional creep or superplastic flow).During a syn- and post-metamorphic deformation, dynamic recovery seems to have become less competitive (no dislocation-free sub-grains), and along thrust faults twinning indicates a shift to higher differential stresses at the close of the deformation.It was not possible to separate these deformation phases on the basis of the dislocation debris. Sub-grain sizes as observed in TEM and TOM were identical.In limestones that underwent cataclastic deformation the rocks seem to have started breaking up along the grain boundaries. The new grain fragments are very small (0.1–0.3 μm) and are heavily twinned. In TEM the old large grains show very long straight glide dislocations, cleavage and, when shattered, ring patterns in diffraction.  相似文献   

4.
In this contribution we present a review of the evolution of microstructures and fabric in ice. Based on the review we show the potential use of ice as an analogue for rocks by considering selected examples that can be related to quartz-rich rocks. Advances in our understanding of the plasticity of ice have come from experimental investigations that clearly show that plastic deformation of polycrystalline ice is initially produced by basal slip. Interaction of dislocations play an essential role for dynamic recrystallization processes involving grain nucleation and grain-boundary migration during the steady-state flow of ice. To support this review we describe deformation in polycrystalline ‘standard’ water-ice and natural-ice samples, summarize other experiments involving bulk samples and use in situ plane-strain deformation experiments to illustrate the link between microstructure and fabric evolution, rheological response and dominant processes. Most terrestrial ice masses deform at low shear stresses by grain-size-insensitive creep with a stress exponent (n ≤ 3). However, from experimental observations it is shown that the distribution of plastic activity producing the microstructure and fabric is initially dominated by grain-boundary migration during hardening (primary creep), followed by dynamic recrystallization during transient creep (secondary creep) involving new grain nucleation, with further cycles of grain growth and nucleation resulting in near steady-state creep (tertiary creep). The microstructural transitions and inferred mechanism changes are a function of local and bulk variations in strain energy (i.e. dislocation densities) with surface grain-boundary energy being secondary, except in the case of static annealing. As there is a clear correspondence between the rheology of ice and the high-temperature deformation dislocation creep regime of polycrystalline quartz, we suggest that lessons learnt from ice deformation can be used to interpret polycrystalline quartz deformation. Different to quartz, ice allows experimental investigations at close to natural strain rate, and through in-situ experiments offers the opportunity to study the dynamic link between microstructural development, rheology and the identification of the dominant processes.  相似文献   

5.
综述了有关长石的碎裂流动、位错蠕变、扩散蠕变、颗粒边界滑动及超塑性流动的特点及有关现象,并指出了长石塑性变形机制研究的重要意义。  相似文献   

6.
Microstructures and crystallographic preferred orientations in a fine-grained banded quartz-feldspar mylonite were studied by optical microscopy, SEM, and TEM. Mylonite formation occurred in retrograde amphibolite facies metamorphism. Interpretation of the microstructures in terms of deformation mechanisms provides evidence for millimetre scale partitioning of crystal plasticity and superplasticity. Strain incompatibilities during grain sliding in the superplastic quartz-feldspar bands are mainly accommodated by boundary diffusion of potassic feldspar, the rate of which probably controls the rate of superplastic deformation.

There is evidence for equal flow stress levels in the superplastic and crystal-plastic domains. In this case mechanism partitioning results in strain-rate partitioning. Fast deformation in the superplastic bands therefore dominates flow, and deformation is probably best modelled by a superplastic law.

If this deformational behaviour is typical, shearing in mylonite zones of the lower continental crust may proceed at exceptionally high rates for a given differential stress, or at low differential stresses in case of fixed strain rates.  相似文献   


7.
The possibility of a linear-creep (Newtonian-viscosity) upper mantle is reexamined on the basis of present knowledge on flow mechanisms in olivine, including differences between activation parameters for creep and for diffusion, and revised estimates of grain boundary width. Results of the comparison between linear superplastic creep and power-law creep are presented as crossover temperature between lattice and grain-boundary diffusion, and crossover stress between non-linear and linear creep, as a function of temperature (depth), grain size, grain-boundary width, grain-boundary diffusion activation energy, and rate-controlling species (silicon or oxygen). For the most realistic values of the parameters, linear creep is well within the range of possibilities. There is no major objection from rheology to the idea of a Newtonian-viscosity upper mantle.Viscosities for the two kinds of creep are compared for laboratory, upper mantle, and—tentatively—lower mantle conditions. This results in a prediction of the grain size at which Coble creep could be observed in olivine polycrystals in the laboratory (~ 10 μm or less). The upper mantle viscosity is in the 1020–1021 Pa s range. Minimum estimates for the viscosity of the lower mantle are of the same order.The pictures of the rheology of the mantle derived from microphysical models of flow and from geophysical observation can therefore be made compatible.  相似文献   

8.
New rheological data on Solenhofen limestone at temperatures of 600–900°C show a transition into power-law creep with n-values around 4.5 followed by a second transition into low n-values (n 2). It is suggested that the mechanism associated with low n-values is probably the active one in many geological situations involving flow in fine-grained carbonates and corresponds to superplastic phenomena known to occur in fine-grained metals.  相似文献   

9.
Twiss (1976) has suggested that the “ductile faulting” events observed by Post (1973) during high temperature creep of dunite are due to a transition from creep by dislocation movement to a diffusion accommodated, grain-boundary sliding mechanism following a reduction in grain size by dynamic recrystallization. Similarly, Goetze (1978) has explained both ductile faulting and water weakening of dunite by transition to a “nonlinear Coble” creep mechanism. However, the fundamental assumption made by Twiss (1976) that the stress exponent, n, reduces to unity during ductile faulting events is questionable. If the stress exponent remains high, (n≥3), then a diffusion-accomodated grain-boundary sliding mechanism is excluded. “Nonlinear Coble” creep would remain a viable alternative; however, this model fails to adequately explain the water weakening phenomenon, and the available data do not constrain us to this model. Assuming that the water-weakening phenomenon can be explained by other models (e.g., Blacic, 1972), it will be shown (by analogy with the behavior of metals) that a third model, also consistent with the available data, also qualitatively explains the observations associated with ductile faulting without appeal to a transition in creep mechanisms. The model is similar to one for metals undergoing deformation by dislocation movement and recovery by dynamic recrystallization, which commonly exhibit behavior virtually identical to that observed in dunite during ductile faulting events without transition to grain-size-sensitive creep mechanisms.  相似文献   

10.
The analysis of fabric and microstructure across an amphibolite facies shear zone of mafic composition reveals that the strain-dependent change from grain size insensitive to grain size sensitive creep is associated with a fundamental reorganization of the mylonitic fabric. At moderate strain a banded mylonite evolves from a metagabbro, which displays a mechanically-induced compositional layering. Strain is concentrated in monomineralic layers of dynamically recrystallized plagioclase. At higher strain and decreasing grain size (10-30 µm) the phase segregation is progressively destroyed and replaced by a phase mixture of amphibole and plagioclase. Phase mixing in these ultramylonites is developed and stabilized by heterogeneous nucleation processes of amphibole and plagioclase within unlike phases and at dilatant sites. Nucleation appears to be controlled by grain-scale gradients in stress. A dispersed phase distribution in fine-grained ultramylonites indicates (water-assisted) diffusion processes that accommodate grain boundary sliding. Although diffusion-controlled creep plays a dominant role in these ultramylonites, the dislocation densities remain high (2.0-4.0᎒9 cm-2) and indicate that two competing mechanisms (dislocation and diffusion creep) accommodate grain boundary sliding. Commonly accepted criteria for superplastic or granular flow derived from monomineralic aggregates must be applied with caution to polymineralic rocks of mafic composition.  相似文献   

11.
Previous experiments by Raleigh et al. (1971) have shown that at strain rates of 10−2.sec−1 to 10−7.sec−1 only slip occurs in dry enstatite at temperatures above 1300°C and 1000°C, respectively.The present experiments have been conducted on polycrystalline enstatite under wet conditions in this regime where enstatite only slips, polygonizes and recrystallizes. Slip occurs throughout the whole regime on the system (100)[001] and at strains greater than 40% the system (010)[001] is observed. Polygonization and intragranular recrystallization begin at about 1300°C and 10−4.sec−1 and the orientation of these neoblasts is host-controlled. At lower strain rates intergranular neoblasts develop and their fabric is one of [100] maximum parallel with σ1 and [010] and [001] girdles in the σ2 = σ3 plane, similar to those in natural enstatite tectonites.Dislocation substructures of experimentally deformed enstatite have been examined by transmission electron microscopy. The samples were deformed within the field in which slip polygonization and recrystallization are the dominant deformation mechanisms. Samples within this regime have microstructures that are characterized by stacking faults and partial dislocations. Under the conditions of steady-state flow in olivine, these microstructures inhibit the operation of recovery mechanisms in enstatite.Other samples deformed within the polygonization and recrystallization field have microstructures that confirm the optical observations of intragranular and intergranular growth of neoblasts. It is suggested that the former result from strain-induced tilt of subrains, whereas the latter may result from bulge nucleation into adjacent subgrains.Mechanical data from constant strain-rate experiments at steady state, stress relaxation and temperature-differential creep tests are best fit to a power-law creep equation with the stress exponent, n~3 and the apparent activation energy for creep, Q~65 kcal/mole. Extrapolation of this equation to a representative natural geologic strain rate of 10−4. sec−1, over the temperature interval 1000–2000°C, gives an effective viscosity range of 1020–1018 poise and stresses in the range of 7-0.1 bar, respectively. Comparison with corrected wet-olivine mechanical data (Carter, 1976) over the same environment indicates that olivine is consistently the weaker of the two minerals and will recrystallize whilst enstatite will only slip and kink, thus accounting for the different habits of olivine and enstatite in ultramafic tectonites.  相似文献   

12.
 High-temperature creep behavior in Ni2GeO4 spinel was investigated using synthetic polycrystalline aggregates with average grain sizes ranging from submicron to 7.4 microns. Cylindrical samples were deformed at constant load in a gas-medium apparatus at temperatures ranging from 1223 to 1523 K and stresses ranging from 40 to 320 MPa. Two deformation mechanisms were identified, characterized by the following flow laws: where σ is in MPa, d is in μm and T is in Kelvin. These flow laws suggest that deformation was accommodated by dislocation creep and grain-boundary diffusion (Coble) creep, respectively. A comparison with other spinels shows that an isomechanical group can be defined for spinels although some differences between normal and inverse spinels can be identified. When creep data for olivine and spinel are normalized and extrapolated to Earth-like conditions, spinel (ringwoodite) has a strength similar to olivine in the dislocation creep regime and is considerably stronger than olivine in the diffusion creep regime at coarse grain size. However, when grain-size reduction occurs, spinel can become weaker than olivine due to its high grain-size sensitivity (Coble creep behavior). Analysis of normalized diffusion creep data for olivine and spinel indicate that spinel is weaker than olivine at grain sizes less than 2 μm. Received: 18 June 2000 / Accepted: 3 April 2001  相似文献   

13.
It is now admitted that the high strength of the subcontinental uppermost mantle controls the first order strength of the lithosphere. An incipient narrow continental rift therefore requires an important weakening in the subcontinental mantle to promote lithosphere-scale strain localisation and subsequent continental break-up. Based on the classical rheological layering of the continental lithosphere, the origin of a lithospheric mantle shear/fault zone has been attributed to the existence of a brittle uppermost mantle. However, the lack of mantle earthquakes and the absence of field occurrences in the mantle fault zone led to the idea of a ductile-related weakening mechanism, instead of brittle-related, for the incipient mantle strain localisation. In order to provide evidence for this mechanism, we investigated the microstructures and lattice preferred orientations of mantle rocks in a kilometre-scale ductile strain gradient in the Ronda Peridotites (Betics cordillera, Spain). Two main features were shown: 1) grain size reduction by dynamic recrystallisation is found to be the only relevant weakening mechanism responsible for strain localisation and 2), with increasing strain, grain size reduction is coeval with both the scattering of orthopyroxene neoblasts and the decrease of the olivine fabric strength (LPO). These features allow us to propose that grain boundary sliding (GBS) partly accommodates dynamic recrystallisation and subsequent grain size reduction.A new GBS-related experimental deformation mechanism, called dry-GBS creep, has been shown to accommodate grain size reduction during dynamic recrystallisation and to induce significant weakening at low temperatures (T < 800 °C). The present microstructural study demonstrates the occurrence of the grain size sensitive dry-GBS creep in natural continental peridotites and allows us to propose a new rheological model for the subcontinental mantle. During dynamic recrystallisation, the accommodation of grain size reduction by three competing deformation mechanisms, i.e., dislocation, diffusion and dry-GBS creeps, involves a grain size reduction controlled by the sole dislocation creep at high temperatures (> 800 °C), whereas dislocation creep and dry-GBS creep, are the accommodating mechanisms at low temperatures (< 800 °C). Consequently, weakening is very limited if the grain size reduction occurs at temperatures higher than 800 °C, whereas a large weakening is expected in lower temperatures. This large weakening related to GBS creep would occur at depths lower than 60 km and therefore provides an explanation for ductile strain localisation in the uppermost continental mantle, thus providing an alternative to the brittle mantle.  相似文献   

14.
The dominant flow mechanism in tectonic processes depends on the rheological properties of geological materials and the physical conditions prevailing during deformation. We have evaluated the relative importance of intercrystalline diffusion and intracrystalline creep in crustal deformation in terms of temperature and grain size.Oxygen isotope thermometry has been used to elucidate the thermal environment obtaining during deformation and contemporaneous metamorphism of Dalradian rocks from Southwest Scotland. The temperature and grain size data, applied in conjunction with microstructural criteria for evaluating independent mechanisms of steady-state flow, allow recognition of a low-temperature deformation regime dominated by intercrystalline diffusion, and a high-temperature regime dominated by dislocation processes.The transition between the fields of intercrystalline diffusion and dislocation creep for quartz and calcite of 100 Mm grain size occurs at about 450° C and about 300° C, respectively. These empirically derived results are consistent with the temperature intervals over which intercrystalline diffusion and dislocation creep, respectively, are predicted to be dominant at geologically reasonable strain rates, as derived from theoretically formulated deformation mechanism maps for quartz and calcite.Grain growth may play an important role in delimiting the higher-temperature boundary of the intercrystalline diffusion field. Intercrystalline diffusion is the only deformation mechanism that involves mass transfer over distances that are large in relation to the grain size. This result has important consequences for geochemical transport phenomena.  相似文献   

15.
Mylonitization of medium-grade marbles in the Bancroft shear zone, Ontario, Canada, is characterized by decreasing grain-size of both calcite and graphite, and a variety of textures. Calcite grain-sizes vary from several millimeters in the protolith, to 50–200 μm in mylonite, to <30 μm in ultramylonite. Corresponding calcite grain shapes are equant in the protolith, elongate in protomylonite (first-developed dimensional preferred orientation), equant in coarse mylonite, elongate in fine mylonite (second-developed dimensional preferred orientation) and generally equant in ultramylonite, which suggests that external energy (applied stress) that tends to elongate grains competed with internal energy sources (e.g. distortional strain) that favor equant shapes. Graphite grain-size changes from several millimeters to centimeters in the protolith to submicroscopic in ultramylonite. In the mylonitic stages, graphite is present as dark bands, while in the ultramylonitic stage it is preserved as a fine coating on calcite grains.Based on textural evidence, twinning (exponential creep; regime I), dynamic recrystallization (power law creep; regime II) and possibly grain boundary sliding superplasticity (regime III) are considered the dominant deformation mechanisms with increasing intensity of mylonitization; their activity is largely controlled by calcite grain-size. Calcite grain-size reduction occurred predominantly by the process of rotation recrystallization during the early stages of mylonitization, as indicated by the occurrence of core and mantle or mortar structures, and by the grain-size of subgrains and recrystallized grains. Grain elongation in S-C structures indicates the activity of migration recrystallization; these structures are not the result of flattening of originally equant grains. Differential stress estimates in coarse mylonites and ultramylonites, based on recrystallized grain-size, are 2–5 and 14–38 MPa, respectively. Initial grain-size reduction of graphite occurred by progressive separation along basal planes, analogous to mica fish formation in quartzo-feldspathic mylonites.Calcite-graphite thermometry on mylonitic and ultramylonitic samples shows that the metamorphic conditions during mylonitization were 475 ± 50°C, which, combined with a differential stress value of 26 MPa, gives a strain rate of 1.2 x 10−10s−1 based on constitutive equations; corresponding displacement rates are <38 mmyr−1.  相似文献   

16.
It is often observed that dynamic recrystallization results in a recrystallized grain size distribution with a mean grain size that is inversely related to the flow stress. However, it is still open to discussion if theoretical models that underpin recrystallized grain size–stress relations offer a satisfactorily microphysical basis. The temperature dependence of recrystallized grain size, predicted by most of these models, is rarely observed, possibly because it is usually not systematically investigated. In this study, samples of wet halite containing >10 ppm water (by weight) were deformed in axial compression at 50 MPa confining pressure. The evolution of the recrystallized grain size distribution with strain was investigated using experiments achieving natural strains of 0.07, 0.12 and 0.25 at a strain rate of 5×10−7 s−1 and a temperature of 125 °C. The stress and temperature dependence of recrystallized grain size was systematically investigated using experiments achieving fixed strains of 0.29–0.46 (and one to a strain of 0.68) at constant strain rates of 5×10−7–1×10−4 s−1 and temperatures of 75–240 °C, yielding stresses of 7–22 MPa. The microstructures and full grain size distributions of all samples were analyzed. The results showed that deformation occurred by a combination of dislocation creep and solution-precipitation creep. Dynamic recrystallization occurred in all samples and was dominated by fluid assisted grain boundary migration. During deformation, grain boundary migration results in a competition between grain growth due to the removal of grains with high internal strain energy and grain size reduction due to grain dissection (i.e. moving boundaries that crosscut or consume parts of neighbouring grains). At steady state, grain growth and grain size reduction processes balance, yielding constant flow stress and recrystallized grain size that is inversely related to stress and temperature. Evaluation of the recrystallized grain size data against the different models for the development of mean steady state recrystallized grain size revealed that the data are best described by a model based on the hypothesis that recrystallized grain size organizes itself in the boundary between the (grain size sensitive) solution-precipitation and (grain size insensitive) dislocation creep fields. Application of a piezometer, calibrated using the recrystallized grain size data, to natural halite rock revealed that paleostresses can vary significantly with temperature (up to a factor of 2.5 for T=50–200 °C) and that the existing temperature independent recrystallized grain size–stress piezometer may significantly underestimate flow stresses in natural halite rock.  相似文献   

17.
Deformation mechanism maps for feldspar rocks   总被引:6,自引:0,他引:6  
Deformation mechanism maps for feldspar rocks were constructed based on recently published constitutive laws for dislocation and grain boundary diffusion creep of wet and dry plagioclase aggregates. The maps display constant temperature contours in stress-grain size space for strain rates ranging from 10−16 to 10−12 s−1.Two fields of dominance of grain boundary diffusion-controlled creep and dislocation creep are separated by a strongly grain size-sensitive transition zone. For wet rocks, diffusion-controlled creep dominates below a grain size of about 0.1–1 mm, depending on temperature, stress, strain rate and feldspar composition. Plagioclase aggregates containing up to 0.3 wt.% water as often found in natural feldspars are more than 2 orders of magnitude weaker than dry rocks. The strength of water-bearing feldspar rocks is moderately dependent on composition and water fugacity.For a grain size range of about 10–50 μm commonly observed in natural ultramylonites, the deformation maps predict that diffusion-controlled creep is dominant at greenschist to granulite facies conditions. Low viscosity estimates of 1018–1019 Pa·s from modeling postseismic stress relaxation and channel flow of the continental lower crust can only be reconciled with laboratory experiments assuming dislocation creep at high temperatures >900 °C or, at lower temperatures, diffusion creep of fine-grained rocks possibly localized in abundant high strain shear zones. For similar thermodynamic conditions and grain size, lower crustal rocks are predicted to be less than order of magnitude weaker than upper mantle rocks.  相似文献   

18.
We present detailed microstructural and chemical analyses from an initially dry anorthositic rock deformed during wet amphibolite facies conditions. Three different domains representing the microstructural variation of the deformed samples are investigated in detail in terms of fracture morphology and mode, grain characteristics and chemistry of present phases. Results show transient deformational behaviour where a close interaction between brittle, plastic and fluid-assisted deformation mechanisms can be observed. Our analysis allows us to describe the succession, interrelationships and effects of active mechanisms with progressively increasing strain in three so-called stages. In Stage 1, initial fracturing along cleavage planes promoted fluid influx that caused fragmentation and chemical reactions, producing fine-grained mineral assemblages in the fractures. Deformation twins and dislocations developed in clast pieces due to stress relaxation. Passive rotation of conjugate fracture sets and interconnection of intracrystalline fractures formed micro-shear-zones, constituting Stage 2. Microstructures and grain relationships indicate the activity and fluctuation between fracturing, dissolution-precipitation creep, grain boundary sliding and locally dislocation creep, reflecting the transient behaviour of brittle and plastic deformation mechanisms. Further rotation and widening of fractures into overall foliation parallel shear-bands (Stage 3) promoted strain partitioning into these areas through increased fluid influx, influence of fluid-assisted grain boundary sliding, phase mixing and presence of weak phases such as white mica. We suggest that local differences in fluid availability, volume fraction of weak phases produced by fluid present metamorphic reactions coupled with volume increase and local variations in stress concentration induced transient brittle-plastic behaviour. The studied shear-zone represents an example of the transformation of a rigid dry rock to a soft wet rock during deformation through syntectonic fracturing.  相似文献   

19.
MCT Zone of Alakhnanda valley is a major ductile shear zone in Garhwal Himalaya, which is characterised by different types of mylonite rocks. On the basis of grain size and the percentage of matrix in the rock, zones comprising protomylonite, augen mylonite, mylonite and ultramylonite have been identified. The study of microstructures, grain size and crystallographic preferred orientation of quartz c-axis fabric reveals that the rocks of the MCT zone were deformed by a combination of intracrystalline creep (power law creep) and grain boundary migration (sliding super plasticity).  相似文献   

20.
Microstructures and quartz c-axis fabrics were analyzed in five quartzite samples collected across the eastern aureole of the Eureka Valley–Joshua Flat–Beer Creek composite pluton. Temperatures of deformation are estimated to be 740±50 °C based on a modified c-axis opening angle thermometer of Kruhl (J. Metamorph. Geol. 16 (1998) 142). In quartzite layers located closest (140 m) to the pluton-wall rock contact, flattened detrital grains are plastically deformed and partially recrystallized. The dominant recrystallization process is subgrain rotation (dislocation creep regime 2 of Hirth and Tullis (J. Struct. Geol. 14 (1992) 145)), although grain boundary migration (dislocation creep regime 3) is also evident. Complete recrystallization occurs in quartzite layers located at a distance of 240 m from the contact, and coincides with recrystallization taking place dominantly through grain boundary migration (regime 3). Within the quartzites, strain is calculated to be lowest in the layers closest to the pluton margin based on the aspect ratios of flattened detrital grains.The c-axis fabrics indicate that a slip operated within the quartzites closest to the pluton-wall rock contact and that with distance from the contact the operative slip systems gradually switch to prism [c] slip. The spatial inversion in microstructures and slip systems (apparent “high temperature” deformation and recrystallization further from the pluton-contact and apparent “low temperature” deformation and recrystallization closer to the pluton-contact) coincides with a change in minor phase mineral content of quartzite samples and also in composition of the surrounding rock units. Marble and calc-silicate assemblages dominate close to the pluton-wall rock contact, whereas mixed quartzite and pelite assemblages are dominant further from the contact.We suggest that a thick marble unit located between the pluton and the quartzite layers acted as a barrier to fluids emanating from the pluton. Decarbonation reactions in marble layers interbedded with the inner aureole quartzites and calc-silicate assemblages in the inner aureole quartzites may have produced high XCO2 (water absent) fluids during deformation. The presence of high XCO2 fluid is inferred from the prograde assemblage of quartz+calcite (and not wollastonite)+diopside±K-feldspar in the inner aureole quartzites. We suggest that it was these “dry” conditions that suppressed prism [c] slip and regime 3 recrystallization in the inner aureole and resulted in a slip and regime 2 recrystallization, which would normally be associated with lower deformation temperatures. In contrast, the prograde assemblage in the pelite-dominated outer part of the aureole is biotite+K-feldspar. These “wet” pelitic assemblages indicate fluids dominated by water in the outer part of the aureole and promoted prism [c] slip and regime 3 recrystallization. Because other variables could also have caused the spatial inversion of c-axis fabrics and recrystallization mechanisms, we briefly review those variables known to cause a transition in slip systems and dislocation creep regimes in quartz. Our conclusions are based on a small number of samples, and therefore, the unusual development of crystal fabrics and microstructures in the aureole to the EJB pluton suggests that further study is needed on the effect of fluid composition on crystal slip system activity and recrystallization mechanisms in naturally deformed rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号