首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental studies in the Fe3C–SiO2–MgO system (P = 6.3 GPa, T = 1100–1500°C, t = 20–40 h) have been carried out. It has been established that carbide-oxide interaction resulted in the formation of Fe-orthopyroxene, graphite, wustite, and cohenite (1100 and 1200°C), as well as a Fe–C–O melt (1300–1500°C). The main processes occurring in the system at 1100 and 1200°C are the oxidation of cohenite, the extraction of carbon from carbide, and the crystallization of metastable graphite, as well as the formation of ferrosilicates. At T ≥ 1300°C, graphite crystallization and diamond growth occur as a result of the redox interaction of a predominantly metallic melt (Fe–C–O) with oxides and silicates. The carbide–oxide interaction studied can be considered as the basis for modeling a number of carbon-producing processes in the lithospheric mantle at fO2 values near the iron–wustite buffer.  相似文献   

2.
The paper presents results of experiments aimed at diamond synthesis in the Fe–C–S system at 5.3–5.5 GPa and temperatures of 1300–1370°C and detailed data on the microtextures of the experimental samples and the composition of the accompanying phases (Fe3C and Fe7C3 carbides, graphite, and FeS). It is demonstrated that diamond can be synthesized after temperatures at which carbides are formed are overcome and can crystallize within the temperature range of 1300°C (temperature of the peritectic reaction melt + diamond = Fe7C3) to 1370°C (of thermodynamically stable graphite) under the appearance experimental pressure. The possible involvement of natural metal- and sulfur-bearing compounds in the origin of natural diamond is discussed.  相似文献   

3.
ABSTRACT

The preservation of metastable diamond in ultrahigh-pressure metamorphic (UHPM) complexes challenges our understanding of the processes taking place during exhumation of these subduction zone complexes. The presence of diamonds in UHPM rocks implies that diamonds remained metastable during exhumation, and within thermodynamic stability of graphite for an extended period. This work studies the influence of pressure on the surface graphitization rate of diamond monocrystals in carbonate systems to understand the preservation of microdiamond during exhumation of UHP subduction complexes. Experiments were performed with 2–3 mm synthetic diamond monocrystals at 2–4 GPa in СаСО3 (1550°С) and К2СО3 (1450°С) melts using a high-pressure multi-anvil apparatus. The highest rate of surface graphitization took place at 2 GPa; diamond crystals were almost completely enveloped by a graphite coating. At 4 GPa, only octahedron-shaped pits formed on flat {111} diamond crystal faces. Our results demonstrate that the surface graphitization rate of diamonds in the presence of carbonate melts at 1450–1550°C increases with decreasing pressure. Decreased pressure alone can graphitize diamond regardless of exhumation rate. Metastable diamond inclusions survive exhumation with little or no graphitization because of excess pressure up to 2 GPa acting on them, and because inclusions are protected from interaction with C-O-H fluid.  相似文献   

4.
At temperatures above about 1100° C degassed molten kimberlites were found to attack diamond, producing both graphite and metallic iron on the diamond surface. Using ordinary kimberlites in experiments performed at 1 Kb in a closed system, diamonds developed etch features (at temperatures above about 1000° C), consistent with attack by wet CO2, but no graphite or iron was formed on the surfaces of the diamonds.  相似文献   

5.
Experimental research in the Fe3C–(Fe,Ni)S system was carried out. The objective of the investigation was to model the reactions of carbide–sulfide interaction related to graphite (diamond) formation in reduced lithosphere mantle domains. T ≤ 1200°C is the formation temperature of the Ni-cohenite + graphite assemblage coexisting with two immiscible melts such as sulfide (Fe60–Ni3–S37)L and metal–sulfide (Fe71–Ni7–S21–C1)L containing dissolved carbon. Т ≥ 1300°C is the generation temperature of a unified melt such as (Fe80–Ni6–S10–C4)L characterized by graphite crystallization and diamond growth. The extraction of carbide carbon during the interaction with the sulfide melt can be considered as one of the potential mechanisms of graphite and diamond formation in the reduced mantle.  相似文献   

6.
Mixtures of synthetic crystalline enstatite and diopside were reacted with small water contents in sealed capsules in piston-cylinder apparatus at 30 kb between 1000° C and 1700° C. The compositions of coexisting enstatite and diopside solid solutions were measured with an ARL-EMX electron microprobe between 1000° C and 1500° C. Between 1100° C and 1500° C the pyroxenes coexisted with H2O-undersaturated liquid which quenched to inhomogeneous pyroxene crystals. The presence of liquid facilitated growth of pyroxene crystals suitable for microprobe determinations. The solvus of Davis and Boyd (1966) is generally used in geothermometry; our enstatite solvus limb is a few mol-% richer in Mg2Si2O6 in the temperature range 1000–1400° C; our diopside solvus limb is a few mol-% richer in Mg2Si2O6 below 1100°C, in close agreement between 1100° C and 1200° C, but richer in CaMgSi2O6 between 1200° C and 1500° C. Estimated equilibration temperatures for a diopside with composition 78.7% Di is 1300° C according to our results compared with 1210° C for the Davis and Boyd solvus.  相似文献   

7.
An experimental study of the dissolution of natural and synthetic diamonds in a sulfur-bearing iron melt (Fe0.7S0.3) with high P–T parameters (4 GPa, 1400°С) was performed. The results demonstrated that under these conditions, octahedral crystals with flat faces and rounded tetrahexahedral diamond crystals are transformed into rounded octahedroids, which have morphological characteristics similar to those of natural diamonds from kimberlite. It was suggested that, taking into account the complex history of individual natural diamond crystals, including the dissolution stages, sulfur-bearing metal melts up to sulfide melts were not only diamond-forming media during the early evolution of the Earth, but also natural solvents of diamond in the mantle environment before the formation of kimberlitic melts.  相似文献   

8.
A xenolith of eclogite from the kimberlite pipe Udachnaya–East, Yakutia Grt+Cpx+Ky + S + Coe/Qtz + Dia + Gr has been studied. Graphite inclusions in diamond have been studied in detail by Confocal Raman (CR) mapping. The graphite inclusion in diamond has a highly ordered structure and is characterized by a substantial shift in the band (about 1580 cm–1) by 7 cm–1, indicating a significant residual strain in the inclusion. According to the results of FTIR spectroscopic studies of diamond crystals, a high degree of nitrogen aggregation has been detected: it is present mainly in form A, which means an “ancient” age of the diamonds. In the xenolith studied, the diamond formation occurred about 1 Byr, long before their transport by the kimberlite melt, and the conditions of the final equilibrium were temperatures of 1020 ± 40°C at 4.7 GPa. Thus, these graphite inclusions found in a diamond are the first evidence of crystallization of metastable graphite in a diamond stability field. They were formed in rocks of the upper mantle significantly below (≥20 km) the graphite-diamond equilibrium line.  相似文献   

9.
Diamond crystals 0.1–0.8 carats were synthesized in experiments conducted in a BARS split-sphere multianvil high-pressure apparatus in the systems Fe-Co-S-C and Fe-Ni-S-C at a pressure of 5.5 GPa and temperature of 1300°C. The microtextures of the samples and the phases accompanying diamond (carbides, graphite, monoslufide solid solution, pentlandite, and taenite) are examined in much detail, the properties of metal-sulfide-carbon alloys are discussed, and issues related to the genesis of sulfide inclusions in diamonds and graphite crystallization in the diamond stability field are considered. The experiments demonstrate that diamonds can be synthesized and grow in pre-eutectic metal-sulfide melts with up to 14 wt % sulfur at relatively low P-T parameters, which correspond to the probable temperatures and pressures of natural diamond-forming processes at depths of approximately 150 km in the Earth’s upper mantle.  相似文献   

10.
The transition between rutile and α-PbO2 structured TiO2 (TiO2II) has been investigated at 700–1,200 °C and 4.2–9.6 GPa. Hydrothermal phase equilibrium experiments were performed in the multi-anvil apparatus to bracket the phase boundary at 700, 1,000, and 1,200 °C. The equilibrium phase boundary is described by the equation: P (GPa)=1.29+0.0065 T ( °C). In addition, growth of TiO2II was observed in experiments at 500 and 600 °C, although growth of rutile was too slow to bracket unambiguously the equilibrium boundary at these temperatures. Water was not detected in either rutile or TiO2II, and dry synthesis experiments at 1,200 °C were consistent with the phase boundary determined in the fluid-bearing experiments, suggesting that the equilibrium is unaffected by the presence of water. Our bracket of the phase boundary at 700 °C is consistent with the reversed, dry experiments of Akaogi et al. (1992) and the reversals of Olsen et al. (1999). The new data suggest that the phase boundary is linear, in agreement with Akaogi et al. (1992), but in striking contrast to the phase diagram inferred by Olsen et al. (1999). The natural occurrence of TiO2II requires formation pressures considerably higher than the graphite–diamond phase boundary.  相似文献   

11.
PT parameters of crystallization have been determined for pyropes and Cr-diopsides from loose sediments of the Kola region, taking into account the chemical compositions of these minerals. Being either deep-seated xenocrysts or constituents of mantle xenoliths in kimberlites, pyropes and Cr-diopsides bear information on composition of the lithospheric mantle and its diamond resource potential. It was established that pyropes belong to the lherzolitic (45%), harzburgitic (30%), and eclogitic (25%) mineral assemblages. The Ni thermometry of pyropes yielded their formation temperature at 650–1250°C, which corresponds to a depth interval of 75–190 km. The distribution of different pyrope-bearing assemblages and their trace element composition allowed us to suggest a layered structure of the Kola lithospheric mantle. Its shallow unit (75–110 km) is mainly composed of depleted lherzolite; the medium-deep unit (110–170 km) consists of harzburgite, and the deep unit (170–190 km), of both lherzolite and harzburgite. About 16% of lherzolitic-harzburgitic pyropes were derived from the diamond mantle facies, i.e., from a depth of 140–190 km. Cr-diopsides are subdivided into two genetic groups: eclogitic (high Al2O3 and Na2O, low MgO and CaO) and ultramafic (high MgO, CaO, and Cr2O3; low Al2O3 and Na2O). The crystallization parameters of Cr-diopside from deep-seated ultramafic group were determined using the Cr-in-Cpx barometer and En-in-Cpx thermometer. Most samples fall into the graphite stability field (20–45 kbar and 700–1150°C). If these minerals were derived from kimberlites, this implies that the latter were constituents of carbonatite-ultramafic intrusions. Cr-diopsides may also be derived from diamond-free ultramafic xenoliths contained in alkaline ultramafic dikes. Nevertheless, 15% of Cr-diopside compositions fall in the field of diamond stability (55–60 kbar and 1000–1100°C). These conditions fit the geotherm characterizing a low heat flow. The results support the high resource potential of the Kola region for diamonds.  相似文献   

12.
This study demonstrates that a hydrous, halide bearing silicate melt is a viable medium for diamond growth. Experiments were conducted in the MgO–SiO2–H2O–C ± KCl ± NaCl system, which was used as a model for harzburgitic mantle. In no case did we observe crystals that could be interpreted as spontaneously nucleated, but growth of diamond on seed crystals at 1,400–1,600°C and 7 GPa in experiments of 4 h duration was observed. The addition of KCl to the system produced crystallization of diamond at temperatures as low as 1,400°C. At higher temperatures, larger growth features were produced than those that seen in the KCl-free system at the same conditions. The NaCl-bearing system is different; in these experiments, the diamond seed crystals show evidence of possible dissolution and layer growth, albeit more subdued growth than in the KCl system. Therefore, NaCl may be an inhibitor of diamond growth in a hydrous silicate melt. Based on these results, hydrous silicate melts could play a role in formation of diamond in either deep subduction zones, or above slabs imbricated against a lithospheric ‘root’ in the sub-continental lithospheric mantle. The water and halide necessary for their formation could be transported into the mantle in hydrous phases such as serpentine in subducting lithospheric slabs. Dehydration of serpentine at >200 km depth would release hydrous, halide-bearing fluids into the overlying mantle wedge or lithospheric root, triggering melting at conditions similar to those of the formation of natural diamond.  相似文献   

13.

To characterize the influence of alkaline metal chlorides on the phase ratios under melting of upper mantle eclogites, the eclogite–CaCO3–NaCl–KCl system with Н2О + СО2-fluid was studied in the experiments under 4 GPa and 1200–1300°C. A low difference in temperatures (<100°C) was registered between the eclogite solidus and liquidus (>1200 and <1300°C, respectively), which is characteristic for the near-eutectic compositions. The phase proportions were peculiar for the absence of any silicate melt over the entire temperature range considered. The carbonate melt coexisted with clinopyroxene and garnet within 1200–1250°C, whereas a carbonate melt exclusively occurred under above-liquidus conditions at 1300°C. The melt quenching resulted in the formation of a multiphase fine-grained mixture of Ca, Na, and K carbonates and chlorides containing microinclusions of clinopyroxene and garnet. The occurrence of a high-calcium carbonate melt in Cl-containing eclogite systems might play a significant role in the mantle metasomatism of subduction zones characterized by the water–alkaline–chloride type of fluids.

  相似文献   

14.
The staged high-pressure annealing of natural cubic diamonds with numerous melt microinclusions from the Internatsional’naya kimberlite pipe was studied experimentally. The results mainly show that the carbonate phases, the daughter phases in partially crystallized microinclusions in diamonds, may undergo phase transformations under the mantle PT conditions. Most likely, partial melting and further dissolution of dolomite in the carbonate–silicate melt (homogenization of inclusions) occur in inclusions. The experimental data on the staged high-pressure annealing of diamonds with melt microinclusions allow us to estimate the temperature of their homogenization as 1400–1500°C. Thus, cubic diamonds from the Internatsional’naya pipe could have been formed under quite high temperatures corresponding to the lithosphere/asthenosphere boundary. However, it should be noted that the effect of selective capture of inclusions with partial loss of volatiles in relation to the composition of the crystallization medium is not excluded during the growth. This may increase the temperature of their homogenization significantly between 1400 and 1500°C.  相似文献   

15.
Experimental data on the etching of diamond crystals in basaltic melt at 1130°C with variable oxygen fugacity in the environment are considered. The oxygen fugacity was set with the HM and NNO buffers. The study was carried out on a 0.6–0.8 mm fraction (powder) of natural diamond crystals. It has been established that, at the same temperature, the rate of diamond etching (oxidation) in silicate melt depends on the oxygen fugacity in the environment. The etching rate decreases with decline in the oxygen fugacity from the case where the melt comes into contact with atmospheric air to the conditions controlled by the HM and NNO buffers. Under the conditions of the HM and NNO buffers, oxidation was accompanied by surface graphitization of diamond crystals.  相似文献   

16.
A series of experiments was conducted on the decomposition of natural and chemically mixed chlorites to examine the stable hydrous phases in the MgO–FeO–Al2O3–SiO2–H2O (MFASH) system under 5–12 GPa and 700–1100 °C. The upper pressure and temperature limits of the stability region of chlorite are consistent with those observed in previous studies. The hydrous aluminum bearing pyroxene (phase HAPY) and Mg-sursassite (Sur) were observed just above the temperature stability region of chlorite (Chl); clinohumite (cHm) was observed coexisting with phase HAPY at 6 GPa and 800 °C and coexisting with the 23-Å phase at 7 GPa and 800 °C, which may suggest the transportation of water through Chl → (HAPY → cHm) → 23-Å phase along a relatively warm slab. The 23-Å phase has a wider stability region in the pure MASH system (up to 12 GPa and 1100 °C) than it does in the MFASH system (7–10 GPa, up to 1000 °C). The stability of the 23-Å phase beyond the chlorite breakdown pressure indicates that it may play an important role in transporting water into the deep Earth and even into the mantle transition zone.  相似文献   

17.
The first results of experimental study of diamond dissolution in a S-bearing Fe melt at high PT parameters are reported and the morphology of partially dissolved crystals is compared with that of natural diamonds. Our results show that under the experimental conditions (4 GPa, 1400°C), flat-faced octahedral diamond crystals are transformed into curve-faced octahedroids with morphological features similar to those of natural diamonds.  相似文献   

18.
Diamond crystallization in multicomponent melts of variable composition is studied. The melt carbonates are K2CO3, CaCO3?MgCO3, and K-Na-Ca-Mg-Fe-carbonatites, and the melt silicates are model peridotite (60 wt.% olivine, 16 wt.% orthopyroxene, 12 wt.% clinopyroxene, and 12 wt.% garnet) and eclogite (50 wt.% garnet and 50 wt.% clinopyroxene). In the experiments carried out under the PT-conditions of diamond stability, the carbonate-silicate melts behave like completely miscible liquid phases. The concentration barriers of diamond nucleation (CBDN) in the melts with variable proportions of silicates and carbonates have been determined at 8.5 GPa. In the system peridotite–K2CO3–CaCO3?MgCO3–carbonatite they correspond to 30, 25, and 30 wt.% silicates, respectively, and in the analogous eclogite–carbonate system, 45, 30, and 35 wt.%. In the silicate-carbonate melts with higher silicate contents seed diamond growth occurs, which is accompanied by the crystallization of thermodynamically unstable graphite phase. In the experiments with melts compositionally corresponding to the CBDN at 7.0 GPa and 1200–1700 °C, a full set of silicate minerals of peridotite (olivine, orthopyroxene, clinopyroxene, garnet) and eclogite (garnet, clinopyroxene) parageneses was obtained. The minerals occur as syngenetic inclusions in natural diamonds; moreover, the garnets contain an impurity of Na, and the pyroxenes, K. The experimental data indicate that peridotite-carbonate and eclogite-carbonate melts are highly effective for the formation of diamond (or unstable graphite) together with syngenetic minerals and melts, which agrees with the carbonate-silicate (carbonatite) model for the mantle diamond formation.  相似文献   

19.
Ga-bearing tourmaline was originally synthesized in boron, boron–alkaline, and boron–fluorine hydrothermal solutions at a temperature of 600–650°C and pressure of 100 MPa as crystals of spontaneous growth and on seeds. The maximal concentration of Ga2O3 in synthetic crystals reaches ~24.5 wt %. In addition to Ga-bearing tourmaline, Ga-bearing topaz crystallizes in boron–fluorine solution. Ga-bearing albite crystallizes in boron–alkaline solutions, whereas no additional phases are formed in pure boron solutions.  相似文献   

20.

The first studies of diamonds in eclogitic xenoliths from the Komsomolskaya kimberlite pipe are described. Among round and oval-shaped xenoliths with diamond ingrowths, samples with a garnet content of 40–90% of the xenolith volume dominate. Two eclogite samples contain grains of accessory rutile; a kyanite sample is also revealed. Certain samples contain two or more crystals of diamonds. Diamonds with an octahedral habit and crystals with transitional habits, which belong to an octahedral-rhombic dodecahedral row, dominate in eclogites; there are many variety VIII aggregates. A high concentration of structural nitrogen, commonly in the A form, was registered in most of the crystals. Diamonds with a small content of nitrogen impurities, 40–67% in the B1 form, are present in a number of xenoliths. The calculated temperatures of the formation of eclogitic xenoliths is 1100–1300°C. Diversity in the impurity compositions of diamonds in the same xenolith shows that these diamonds were formed at various times and in different settings. The diamond position in xenoliths, the various level of nitrogen aggregation in the diamonds, and a number of other factors point to the later formation of the diamonds, as compared to minerals of eclogites, from fluid or fluid-melts in the process of metasomatosis.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号