首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Hybrid simulation has been shown to be a cost-effective approach for assessing the seismic performance of structures. In hybrid simulation,critical parts of a structure are physically tested,while the remaining portions of the system are concurrently simulated computationally,typically using a finite element model. This combination is realized through a numerical time-integration scheme,which allows for investigation of full system-level responses of a structure in a cost-effective manner. However,conducting hybrid simulation of complex structures within large-scale testing facilities presents significant challenges. For example,the chosen modeling scheme may create numerical inaccuracies or even result in unstable simulations; the displacement and force capacity of the experimental system can be exceeded; and a hybrid test may be terminated due to poor communication between modules(e.g.,loading controllers,data acquisition systems,simulation coordinator). These problems can cause the simulation to stop suddenly,and in some cases can even result in damage to the experimental specimens; the end result can be failure of the entire experiment. This study proposes a phased approach to hybrid simulation that can validate all of the hybrid simulation components and ensure the integrity largescale hybrid simulation. In this approach,a series of hybrid simulations employing numerical components and small-scale experimental components are examined to establish this preparedness for the large-scale experiment. This validation program is incorporated into an existing,mature hybrid simulation framework,which is currently utilized in the Multi-Axial Full-Scale Sub-Structuring Testing and Simulation(MUST-SIM) facility of the George E. Brown Network for Earthquake Engineering Simulation(NEES) equipment site at the University of Illinois at Urbana-Champaign. A hybrid simulation of a four-span curved bridge is presented as an example,in which three piers are experimentally controlled in a total of 18 degrees of freedom(DOFs). This simulation illustrates the effectiveness of the phased approach presented in this paper.  相似文献   

2.
Hybrid simulation has been shown to be a cost-effective approach for assessing the seismic performance of structures. In hybrid simulation, critical parts of a structure are physically tested, while the remaining portions of the system are concurrently simulated computationally, typically using a finite element model. This combination is realized through a numerical time-integration scheme, which allows for investigation of full system-level responses of a structure in a cost-effective manner. However, conducting hybrid simulation of complex structures within large-scale testing facilities presents significant challenges. For example, the chosen modeling scheme may create numerical inaccuracies or even result in unstable simulations; the displacement and force capacity of the experimental system can be exceeded; and a hybrid test may be terminated due to poor communication between modules (e.g., loading controllers, data acquisition systems, simulation coordinator). These problems can cause the simulation to stop suddenly, and in some cases can even result in damage to the experimental specimens; the end result can be failure of the entire experiment. This study proposes a phased approach to hybrid simulation that can validate all of the hybrid simulation components and ensure the integrity large-scale hybrid simulation. In this approach, a series of hybrid simulations employing numerical components and small-scale experimental components are examined to establish this preparedness for the large-scale experiment. This validation program is incorporated into an existing, mature hybrid simulation framework, which is currently utilized in the Multi-Axial Full-Scale Sub-Structuring Testing and Simulation (MUST-SIM) facility of the George E. Brown Network for Earthquake Engineering Simulation (NEES) equipment site at the University of Illinois at Urbana-Champaign. A hybrid simulation of a four-span curved bridge is presented as an example, in which three piers are experimentally controlled in a total of 18 degrees of freedom (DOFs). This simulation illustrates the effectiveness of the phased approach presented in this paper.  相似文献   

3.
Supported by the recent advancement of experimental test methods, numerical simulation, and high‐speed communication networks, it is possible to distribute geographically the testing of structural systems using hybrid experimental–computational simulation. One of the barriers for this advanced testing is the lack of flexible software for hybrid simulation using heterogeneous experimental equipment. To address this need, an object‐oriented software framework is designed, developed, implemented, and demonstrated for distributed experimental–computational simulation of structural systems. The software computes the imposed displacements for a range of test methods and co‐ordinates the control of local and distributed configurations of experimental equipment. The object‐oriented design of the software promotes the sharing of modules for experimental equipment, test set‐ups, simulation models, and test methods. The communication model for distributed hybrid testing is similar to that used for parallel computing to solve structural simulation problems. As a demonstration, a distributed pseudodynamic test was conducted using a client–server approach, in which the server program controlled the test equipment in Japan and the client program performed the computational simulation in the United States. The distributed hybrid simulation showed that the software framework is flexible and reliable. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Substructure hybrid simulation has been actively investigated and applied to evaluate the seismic performance of structural systems in recent years. The method allows simulation of structures by representing critical components with physically tested specimens and the rest of the structure with numerical models. However, the number of physical specimens is limited by available experimental equipment. Hence, the benefit of the hybrid simulation diminishes when only a few components in a large system can be realistically represented. The objective of the paper is to overcome the limitation through a novel model updating method. The model updating is carried out by applying calibrated weighting factors at each time step to the alternative numerical models, which encompasses the possible variation in the experimental specimen properties. The concept is proposed and implemented in the hybrid simulation framework, UI‐SimCor. Numerical verification is carried out using two‐DOF systems. The method is also applied to an experimental testing, which proves the concept of the proposed model updating method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Hybrid simulation combines numerical and experimental methods for cost‐effective, large‐scale testing of structures under simulated earthquake loading. Structural system level response can be obtained by expressing the equation of motion for the combined experimental and numerical substructures, and solved using time‐stepping integration similar to pure numerical simulations. It is often assumed that a reliable model exists for the numerical substructures while the experimental substructures correspond to parts of the structure that are difficult to model. A wealth of data becomes available during the simulation from the measured experiment response that can be used to improve upon the numerical models, particularly if a component with similar structural configuration and material properties is being tested and subjected to a comparable load pattern. To take advantage of experimental measurements, a new hybrid test framework is proposed with an updating scheme to update the initial modeling parameters of the numerical model based on the instantaneously‐measured response of the experimental substructures as the test progresses. Numerical simulations are first conducted to evaluate key algorithms for the selection and calibration of modeling parameters that can be updated. The framework is then expanded to conduct actual hybrid simulations of a structural frame model including a physical substructure in the laboratory and a numerical substructure that is updated during the tests. The effectiveness of the proposed framework is demonstrated for a simple frame structure but is extendable to more complex structural behavior and models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Hybrid simulation combines numerical and experimental methods for cost‐effective, large‐scale testing of structures under simulated dynamic earthquake loads. Particularly for experimental seismic collapse simulation of structures, hybrid testing can be an attractive alternative to earthquake simulators due to the limited capacity of most facilities and the difficulties and risks associated with a collapsing structure on a shaking table. The benefits of hybrid simulation through collapse can be further enhanced through accurate and practical substructuring techniques that do not require testing the entire structure. An innovative substructuring technique for hybrid simulation of structures subjected to large deformations is proposed to simplify the boundary conditions by overlapping the domains between the numerical and experimental subassemblies. The advantages of this substructuring technique are the following: it requires only critical components of the structure to be tested experimentally; it reduces the number of actuators at the interface of the experimental subassemblies; and it can be implemented using typically available equipment in laboratories. Compared with previous overlapping methods that have been applied in hybrid simulation, this approach requires additional sensing in the hybrid simulation feedback loop to obtain internal member forces, but provides significantly better accuracy in the highly nonlinear range. The proposed substructuring technique is verified numerically and validated experimentally, using the response of a four‐story moment‐resisting frame that was previously tested to collapse on an earthquake simulator. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
地球磁层顶湍动重联的数值模拟   总被引:1,自引:1,他引:1       下载免费PDF全文
用二维磁流体力学数值模拟研究了磁层顶的磁场湍动重联.提出了一个新的磁场湍动重联模型.数值模拟表明,如果磁层顶是一个开放系统并同时存在磁场剪切和流场剪切,当雷诺数和磁雷诺数超过某临界数值时,磁场重联具有很强的湍动特性,可产生许多不同尺度的磁岛和涡旋结构.随着雷诺数和磁雷诺数的增大和减小,大尺度结构能破碎成中小尺度结构,小尺度结构也能合并成大中尺度结构.湍动重联是涡旋诱发重联在一定条件下的过渡.依据本文的模拟结果,我们预言:磁层预可发生准定常重联、瞬时局地重联和湍动重联等多种重联过程;大中小不同尺度的结构都可以存在于磁层顶;湍动重联及其所产生的中小尺度结构在太阳风-磁层的能量、动量和质量耦合过程中可起重要作用.  相似文献   

8.
Real‐time dynamic substructuring is an experimental technique for testing the dynamic behaviour of complex structures. It involves creating a hybrid model of the entire structure by combining an experimental test piece—the substructure—with a numerical model describing the remainder of the system. The technique is useful when it is impractical to experimentally test the entire structure or complete numerical modelling is insufficient. In this paper, we focus on the influence of delay in the system, which is generally due to the inherent dynamics of the transfer systems (actuators) used for structural testing. This naturally gives rise to a delay differential equation (DDE) model of the substructured system. With the case of a substructured system consisting of a single mass–spring oscillator we demonstrate how a DDE model can be used to understand the influence of the response delay of the actuator. Specifically, we describe a number of methods for identifying the critical time delay above which the system becomes unstable. Because of the low damping in many large structures a typical situation is that a substructuring test would operate in an unstable region if additional techniques were not implemented in practice. We demonstrate with an adaptive delay compensation technique that the substructured mass–spring oscillator system can be stabilized successfully in an experiment. The approach of DDE modelling also allows us to determine the dependence of the critical delay on the parameters of the delay compensation scheme. Using this approach we develop an over‐compensation scheme that will help ensure stable experimental testing from initiation to steady state operation. This technique is particularly suited to stiff structures or those with very low natural damping as regularly encountered in structural engineering. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Real‐time hybrid simulation is a viable experiment technique to evaluate the performance of structures equipped with rate‐dependent seismic devices when subject to dynamic loading. The integration algorithm used to solve the equations of motion has to be stable and accurate to achieve a successful real‐time hybrid simulation. The implicit HHT α‐algorithm is a popular integration algorithm for conducting structural dynamic time history analysis because of its desirable properties of unconditional stability for linear elastic structures and controllable numerical damping for high frequencies. The implicit form of the algorithm, however, requires iterations for nonlinear structures, which is undesirable for real‐time hybrid simulation. Consequently, the HHT α‐algorithm has been implemented for real‐time hybrid simulation using a fixed number of substep iterations. The resulting HHT α‐algorithm with a fixed number of substep iterations is believed to be unconditionally stable for linear elastic structures, but research on its stability and accuracy for nonlinear structures is quite limited. In this paper, a discrete transfer function approach is utilized to analyze the HHT α‐algorithm with a fixed number of substep iterations. The algorithm is shown to be unconditionally stable for linear elastic structures, but only conditionally stable for nonlinear softening or hardening structures. The equivalent damping of the algorithm is shown to be almost the same as that of the original HHT α‐algorithm, while the period elongation varies depending on the structural nonlinearity and the size of the integration time‐step. A modified form of the algorithm is proposed to improve its stability for use in nonlinear structures. The stability of the modified algorithm is demonstrated to be enhanced and have an accuracy that is comparable to that of the existing HHT α‐algorithm with a fixed number of substep iterations. Both numerical and real‐time hybrid simulations are conducted to verify the modified algorithm. The experimental results demonstrate the effectiveness of the modified algorithm for real‐time testing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
滚动FPS和MR阻尼器混合基础动力学模型及仿真   总被引:2,自引:0,他引:2  
本文中作者将新型双磙子FPS系统的动力学方程推广到由滚动FPS和MR阻尼器组成的混合隔震基础系统,得到了更便于应用的水平分量形式的运动微分方程,并将与FPS有关的力和MR阻尼力处理成力源项,构造了可以方便地考虑不同上部结构形式的MATLAB/SIMULINK仿真模型。采用RD-1005型MR阻尼器和模糊逻辑控制器,在两个典型的地震输入情况下对混合系统进行了振动控制仿真。仿真结果表明,本文建立的混合隔震基础系统的动力学模型是正确和精确的,直接利用动力学模型进行前向计算可避免附加的模型误差且计算效率高,而仿真模型中将不同的力源由分开的块组成,使得仿真设计非常方便快捷。  相似文献   

11.
三层地铁车站振动台试验的数值模拟   总被引:1,自引:0,他引:1  
进行了三层地铁车站大型振动台试验,获得了可靠的试验数据。通过室内实验获取了模型材料和土体材料的力学参数。基于ABAQUS有限元计算平台,建立了振动台试验的二维有限元模型,处理了混凝土本构模型及其参数的选取、土体本构模型及其参数的选取、阻尼设置、边界条件设置等问题。对多种工况下的试验结果和模拟结果进行了对比分析。结果表明,按照本文建议的建模方法,可以很好地重现振动台试验,数值模拟结果无论在趋势上还是数值上都和试验结果符合得很好。  相似文献   

12.
In this paper, a new hybrid control technique, based on a combination of base-isolation and semi-active variable stiffness/damping in a superstructure, is presented. To illustrate the efficiency of the proposed control system, model tests on a mini-electromagnetic shaking table and a numerical simulation were performed. The test and numerical calculation results indicate that this new hybrid control mode with additional damping and smaller additional stiffness can achieve a better control efficiency.  相似文献   

13.
Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-offreedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the frame is represented physically in the laboratory as a cantilevered steel column. For realtime execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six-degrees-of-freedom are controlled at the interface between substructures.  相似文献   

14.
The basic aspects of testing small-scale masonry building models on simple earthquake simulators are discussed. Since the scale effects represent a difficult problem to solve, the overall seismic behaviour of structural systems, and not the behaviour of structulal details, has been studied by testing the reduced-sized models on a simple earthquake simulator. Accurate results regarding the dynamic behaviour and failure mechanism of the tested structures have been obtained by means of testing the relatively simple, adequately designed small-scale masonry building models. A simple earthquake simulator capable of simulating the uni-directional earthquake ground motion has been developed to study the seismic behaviour of masonry building models. Although a multipurpose programmable actuator was used to drive the shaking table, the comparison of the dynamic characteristics of the generated shaking-table motion and the earthquake acceleration records used for the simulation of seismic loads showed an acceptable degree of correlation between the input and output seismic motion.  相似文献   

15.
Real‐time hybrid testing combines experimental testing and numerical simulation, and provides a viable alternative for the dynamic testing of structural systems. An integration algorithm is used in real‐time hybrid testing to compute the structural response based on feedback restoring forces from experimental and analytical substructures. Explicit integration algorithms are usually preferred over implicit algorithms as they do not require iteration and are therefore computationally efficient. The time step size for explicit integration algorithms, which are typically conditionally stable, can be extremely small in order to avoid numerical stability when the number of degree‐of‐freedom of the structure becomes large. This paper presents the implementation and application of a newly developed unconditionally stable explicit integration algorithm for real‐time hybrid testing. The development of the integration algorithm is briefly reviewed. An extrapolation procedure is introduced in the implementation of the algorithm for real‐time testing to ensure the continuous movement of the servo‐hydraulic actuator. The stability of the implemented integration algorithm is investigated using control theory. Real‐time hybrid test results of single‐degree‐of‐freedom and multi‐degree‐of‐freedom structures with a passive elastomeric damper subjected to earthquake ground motion are presented. The explicit integration algorithm is shown to enable the exceptional real‐time hybrid test results to be achieved. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Hybrid simulation is a testing methodology that combines laboratory and analytical simulation to evaluate seismic response of complex structural framing systems. One or more portions of the structure, which may be difficult to model numerically or have properties that have not been examined before, are tested in one or more laboratories, whereas the remainder of the structure is modeled in software using one or more computers. These separate portions are assembled such that combined dynamic response of the hybrid model to excitation is computed using a time‐stepping procedure. A hybrid simulation conducted to examine the seismic response of a type of steel concentrically braced frame, the suspended‐zipper‐braced frame, is presented. The hybrid simulation testing architecture, hybrid model, test setup, solution algorithm, and the seismic response of the suspended‐zipper‐braced frame hybrid model are discussed. Accuracy of this hybrid simulation is examined by comparing hybrid and computer‐only simulations and the errors are quantified using an energy‐based approach. This comparison indicates that the deployed hybrid simulation method can be used to accurately model the seismic response of a complex structural system such as the zipper‐braced frame. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
本文针对油气藏储层预测中的不连续及非均质地质信息识别问题,研究基于地震成像数据的稀疏反演方法.由于该类地质体的地震响应特征为弱信号,因此利用平面波破坏滤波器由地震成像数据中去除强反射同相轴.在此基础上,对剩余的地震数据进行非线性加强滤波,并构建L1稀疏反演模型.为有效求解L1模型,采用非光滑泛函L1范数逼近和拟牛顿求解算法.该方法考虑稀疏先验信息,能够提高反演结果信噪比.缝洞模型测试验证该方法在检测断点、微断裂、散射点等小尺度地质体上的有效性,塔北缝洞型碳酸盐岩储层预测的应用效果进一步证实该方法的实用性.  相似文献   

18.
基于网络通讯平台NetSLab,采用Visual Basic语言开发了一个标准化的开放式单层结构远程协同拟动力试验平台NetSLab-SDOF,它由控制中心、真实试验机、虚拟试验机和远程观察器4个模块组成,并通过互联网传输试验控制信号和反馈数据。该平台可以使不同的结构实验室联合进行结构拟动力试验,同时还提供远程用户同步观察试验并获取试验数据的功能。通过桥梁结构的真实拟动力试验及数值模拟试验和网络速度测试,验证了NetSLab-SDOF试验平台的有效性。  相似文献   

19.
基础隔震建筑混合控制的变结构趋近律方法   总被引:2,自引:0,他引:2  
本文对叠层胶支座基础震建筑的混合振动控制问题进行了研究。利用控制律设计的变结构趋近律方法,给出了相应的闭环控制律表示式。  相似文献   

20.
This paper presents a synthesis of the activities carried out in the framework of the European project EFAST (design study of a European Facility for Advanced Seismic Testing) to determine the general characteristics of a new European world-class facility for earthquake testing of structures. To this end the demands for the necessary testing to support the modern seismic engineering research have been investigated and compared to the actual capabilities of European laboratories. The outcome is the determination of performance objectives and requirements in the gross. On the basis of the needs assessment carried out during the first phase of the project and taking into account the technological advances in both experimental techniques and equipment (hardware and software) for seismic testing, a modern facility for experimental seismic research should be composed, mainly, of a high performance shaking tables array and a large reaction structure where both traditional (pseudo-static/dynamic) and innovative testing techniques (e.g. real time hybrid testing) can be applied and combined. A tentative layout of the facility is also proposed and issues related to the best utilization of such a laboratory are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号