首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The well-known Titius-Bode law (T-B) giving distances of planets from the Sun was improved by Basano and Hughes (1979) who found: $$a_n = 0.285 \times 1.523^n ;$$ a n being the semi-major axis expressed in astronomical units, of then-th planet. The integern is equal to 1 for Mercury, 2 for Venus etc. The new law (B-H) is more natural than the (T-B) one, because the valuen=?∞ for Mercury is avoided. Furthermore, it accounts for distances of all planets, including Neptune and Pluto. It is striking to note that this law:
  1. does not depend on physical parameters of planets (mass, density, temperature, spin, number of satellites and their nature etc.).
  2. shows integers suggesting an unknown, obscure wave process in the formation of the solar system.
In this paper, we try to find a formalism accounting for the B-H law. It is based on the turbulence, assumed to be responsible of accretion of matter within the primeval nebula. We consider the function $$\psi ^2 (r,t) = |u^2 (r,t) - u_0^2 |$$ , whereu 2(r, t) stands for the turbulence, i.e., the mean-square deviation velocities of particles at the pointr and the timet; andu 0 2 is the value of turbulence for which the accretion process of matter is optimum. It is obvious that Ψ2(r n,t0) = 0 forr n=0.285×1.523 n at the birth timet 0 of proto-planets. Under these conditions, it is easily found that $$\psi ^2 (r,t_0 ) = \frac{{A^2 }}{r}\sin ^2 [\alpha log r - \Phi (t_0 )]$$ With α=7.47 and Φ(t 0)=217.24 in the CGS system, the above function accounts for the B-H law. Another approach of the problem is made by considering fluctuations of the potentialU(r, t) and of the density of matter ρ(r, t). For very small fluctuations, it may be written down the Poisson equation $$\Delta \tilde U(r,t_0 ) + 4\pi G\tilde \rho (r,t_0 ) = 0$$ , withU(r, t)=U 0(r)+?(r, t 0 ) and \(\tilde \rho (r,t_0 )\) . It suffices to postulate \(\tilde \rho (r,t_0 ) = k[\tilde U(r,t_0 )/r^2 ](k = cte)\) for finding the solution $$\tilde U(r,t_0 ) = \frac{{cte}}{{r^{1/2} }}\cos [a\log r - \zeta (t_0 )]$$ . Fora=14.94 and ζ(t 0)=434.48 in CGS system, the successive maxima of ?(r,t 0) account again for the B-H law. In the last approach we try to write Ψ(r, t) under a wave function form $$\Psi ^2 (r,t) = \frac{{A^2 }}{r}\sin ^2 \left[ {\omega \log \left( {\frac{r}{v} - t} \right)} \right].$$ It is emphasized that all calculations are made under mathematical considerations.  相似文献   

2.
It is suggested that gravitationally bound systems in the Universe can be characterized by a set of actions ?(s). The actions $$\hbar ^{\left( s \right)} = \left( {{\hbar \mathord{\left/ {\vphantom {\hbar {\frac{1}{{2\pi }}\frac{{C^5 }}{{GH_0^2 }}}}} \right. \kern-\nulldelimiterspace} {\frac{1}{{2\pi }}\frac{{C^5 }}{{GH_0^2 }}}}} \right)^{s/6} \left( {\frac{1}{{2\pi }}\frac{{C^5 }}{{GH_0^2 }}} \right)$$ ,derived from general theoretical consideration, are only determined by the fundamental physical constants (Planck's action ?, the velocity of lightC, gravitational constantG, and Hubble's constantH 0) and a scale parameters. It is shown thats=1, 2, and 3 correspond, respectively, to the scales of galaxies, stars, and larger asteroids. The spectra of the characteristic angular momenta and masses for gravitationally bound systems in the Universe are estimated byJ (s) andM (s) =(? (s) /G)1/2. Taken together, an angular momentum-mass relation is obtained,J (s)=A(M(s))2, where \(A = G/C\alpha ,{\text{ }}\alpha \simeq \tfrac{{\text{1}}}{{{\text{137}}}}\) , for the astronomical systems observed on every scale. ThisJ-M relation is consistent with Brosche's empirical relation (Brosche, 1974).  相似文献   

3.
In a static gravitational field the paths of light are curved, as noticed by H. Weyl. This property can bea priori stated for aV 3 Riemannian manifold: through any two points ofV 3 it is possible to draw two families of curves, the straight lines of Euclidean geometry and the photon trajectoriesz. We can perform a fibration of the Galilean space-time in an original way, by taking thez-trajectories of the photons as the base, the isochronic surfaces as fibres, and ‘the equal length time on az trajectory to reach a given point’ as the equivalence relation. The straight lines of Euclidean geometry can then carry the classical mechanics timet, and thez trajectories can carry the optics time t. These times are related by dt=F(x,t) dt. If we class the Universe as a pseudo-Riemannian manifold of normal hyperbolic typeC , the time t determined above can be taken as the time coordinate inV 4. Under these conditions we have \(d\overline s ^2 \) =F 2 \(d\overline s ^2 \) , where \(d\overline s ^2 \) is the metric of the Riemannian manifold, conforming to the metric ds 2 and allowing t as the cosmic time. We can then use the results previously achieved by the author (Peton, 1979) and write: 1 +Z G =F(A s,t s,)/F(Aos,t o) wherez G denotes the shift of the spectral lines due to the metric. In the case of relative motion betweenO andS, we have $${\text{1 + z' = (1 + }}z_{\text{G}} {\text{)(1 + }}\beta _{\text{r}} {\text{)(1 }} - {\text{ }}\beta ^2 {\text{)}}^{ - 1/2} $$ The Doppler-Fizeau effect therefore appears as a result of the application of the Fermat principle.  相似文献   

4.
A spherically-symmetric static scalar field in general relativity is considered. The field equations are defined by $$\begin{gathered} R_{ik} = - \mu \varphi _i \varphi _k ,\varphi _i = \frac{{\partial \varphi }}{{\partial x^i }}, \varphi ^i = g^{ik} \varphi _k , \hfill \\ \hfill \\ \end{gathered} $$ where ?=?(r,t) is a scalar field. In the past, the same problem was considered by Bergmann and Leipnik (1957) and Buchdahl (1959) with the assumption that ?=?(r) be independent oft and recently by Wyman (1981) with the assumption ?=?(r, t). The object of this paper is to give explicit results with a different approach and under a more general condition $$\phi _{;i}^i = ( - g)^{ - 1/2} \frac{\partial }{{\partial x^i }}\left[ {( - g)^{1/2} g^{ik} \frac{\partial }{{\partial x^k }}} \right] = - 4\pi ( -g )^{ - 1/2} \rho $$ where ?=?(r, t) is the mass or the charge density of the sources of the field.  相似文献   

5.
The Ideal Resonance Problem in its normal form is defined by the Hamiltonian (1) $$F = A (y) + 2B (y) sin^2 x$$ with (2) $$A = 0(1),B = 0(\varepsilon )$$ where ? is a small parameter, andx andy a pair of canonically conjugate variables. A solution to 0(?1/2) has been obtained by Garfinkel (1966) and Jupp (1969). An extension of the solution to 0(?) is now in progress in two papers ([Garfinkel and Williams] and [Hori and Garfinkel]), using the von Zeipel and the Hori-Lie perturbation methods, respectively. In the latter method, the unperturbed motion is that of a simple pendulum. The character of the motion depends on the value of theresonance parameter α, defined by (3) $$\alpha = - A\prime /|4A\prime \prime B\prime |^{1/2} $$ forx=0. We are concerned here withdeep resonance, (4) $$\alpha< \varepsilon ^{ - 1/4} ,$$ where the classical solution with a critical divisor is not admissible. The solution of the perturbed problem would provide a theoretical framework for an attack on a problem of resonance in celestial mechanics, if the latter is reducible to the Ideal form: The process of reduction involves the following steps: (1) the ration 1/n2 of the natural frequencies of the motion generates a sequence. (5) $$n_1 /n_2 \sim \left\{ {Pi/qi} \right\},i = 1, 2 ...$$ of theconvergents of the correspondingcontinued fraction, (2) for a giveni, the class ofresonant terms is defined, and all non-resonant periodic terms are eliminated from the Hamiltonian by a canonical transformation, (3) thedominant resonant term and itscritical argument are calculated, (4) the number of degrees of freedom is reduced by unity by means of a canonical transformation that converts the critical argument into an angular variable of the new Hamiltonian, (5) the resonance parameter α (i) corresponding to the dominant term is then calculated, (6) a search for deep resonant terms is carried out by testing the condition (4) for the function α(i), (7) if there is only one deep resonant term, and if it strongly dominates the remaining periodic terms of the Hamiltonian, the problem is reducible to the Ideal form.  相似文献   

6.
A two degree-of-freedom, conservative system is reduced to a single degree-of-freedom, kinematic system with Hamiltonian integral under the change of independent variable: $$dt = \zeta dt (\zeta = \upsilon _x - \upsilon _y )$$ where ζ is the curl (or vorticity) of the velocity field with cartesian inertial componentsu(x, y, t) andv(x, y, t). In the autonomous case whenu t=v t=0, orbits are globally represented by the level curves of an autonomous Hamiltonian functionH(x,y) satisfying a second-order quasilinear partial differential equation (Szebehely's Equation): $$2(H + U)\left( {H_{xx} H_y^2 - 2H_{xy} H_x H_y + H_{yy} H_x^2 } \right) + (H_x U_x + H_y U_y )\left( {H_x^2 + H_y^2 } \right) = 0$$ whereU(x, y) is the autonomous potential function. An inversion of dependent and independent variables reduces this equation to a second-order, ordinary differential equation for a function specifying the orbital curve. The true time variable is recovered by evaluating a quadrature. Fundamental differences exist between this approach and Hamilton-Jacobi theory.  相似文献   

7.
The spheroidal harmonics expressions $$\left[ {P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) - P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ and $$\left[ {\eta ^2 P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) + \xi ^2 P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ , have ξ22 as a factor. A method is presented for obtaining for these two expressions the coefficient of ξ22 in the form of a linear combination of terms of the formP 2m 2s (iξ)P 2n 2s (η)e i2sθ. Explicit formulae are exhibited for the casesr=1, 2, 3 and any positive or zero integersk ands. Such identities are useful in gravitational potential theory for ellipsoidal distributions when matching Legendre function expansions are employed.  相似文献   

8.
The method of evaluating the photometric perturbationsB 2m of eclipsing variables in the frequency domain, developed by Kopal (1959, 1975e, 1978) for an interpretation of mutual eclipses in systems whose components are distorted by axial rotation and mutual tidal action. The aim of the present paper has been to establish explicit expressions for the photometric perturbationB 2m in such systems, regardless of the kind of eclipses and non-integral values ofm. Recently, Kopal (1978) introduced two different kinds of integrals with respect to associated α-functions andI-integrals which have been expressed in terms of certain general types of series that can be easily programmed for automatic computation within seconds of real time on highspeed computers. Following a brief introduction (Section 1) in which the need of this new approach will be expounded, in Section 3 we shall deduce the integral $$\int_0^{\theta \prime } {\tfrac{{\alpha _n^\prime }}{\delta }} d(sin^{2m} \theta )$$ in terms of a certain general type of series and also β-function, which should enable us to evaluate explicit expressions forf * (h) ,f 1 (h) ,f 2 (h) as well asB 2m .  相似文献   

9.
The fact that the energy density ρg of a static spherically symmetric gravitational field acts as a source of gravity, gives us a harmonic function \(f\left( \varphi \right) = e^{\varphi /c^2 } \) , which is determined by the nonlinear differential equation $$\nabla ^2 \varphi = 4\pi k\rho _g = - \frac{1}{{c^2 }}\left( {\nabla \varphi } \right)^2 $$ Furthermore, we formulate the infinitesimal time-interval between a couple of events measured by two different inertial observers, one in a position with potential φ-i.e., dt φ and the other in a position with potential φ=0-i.e., dt 0, as $${\text{d}}t_\varphi = f{\text{d}}t_0 .$$ When the principle of equivalence is satisfied, we obtain the well-known effect of time dilatation.  相似文献   

10.
In the now classical Lindblad-Lin density-wave theory, the linearization of the collisionless Boltzmann equation is made by assuming the potential functionU expressed in the formU=U 0 + \(\tilde U\) +... WhereU 0 is the background axisymmetric potential and \(\tilde U<< U_0 \) . Then the corresponding density distribution is \(\rho = \rho _0 + \tilde \rho (\tilde \rho<< \rho _0 )\) and the linearized equation connecting \(\tilde U\) and the component \(\tilde f\) of the distribution function is given by $$\frac{{\partial \tilde f}}{{\partial t}} + \upsilon \frac{{\partial \tilde f}}{{\partial x}} - \frac{{\partial U_0 }}{{\partial x}} \cdot \frac{{\partial \tilde f}}{{\partial \upsilon }} = \frac{{\partial \tilde U}}{{\partial x}}\frac{{\partial f_0 }}{{\partial \upsilon }}.$$ One looks for spiral self-consistent solutions which also satisfy Poisson's equation $$\nabla ^2 \tilde U = 4\pi G\tilde \rho = 4\pi G\int {\tilde f d\upsilon .} $$ Lin and Shu (1964) have shown that such solutions exist in special cases. In the present work, we adopt anopposite proceeding. Poisson's equation contains two unknown quantities \(\tilde U\) and \(\tilde \rho \) . It could be completelysolved if a second independent equation connecting \(\tilde U\) and \(\tilde \rho \) was known. Such an equation is hopelesslyobtained by direct observational means; the only way is to postulate it in a mathematical form. In a previouswork, Louise (1981) has shown that Poisson's equation accounted for distances of planets in the solar system(following to the Titius-Bode's law revised by Balsano and Hughes (1979)) if the following relation wasassumed $$\rho ^2 = k\frac{{\tilde U}}{{r^2 }} (k = cte).$$ We now postulate again this relation in order to solve Poisson's equation. Then, $$\nabla ^2 \tilde U - \frac{{\alpha ^2 }}{{r^2 }}\tilde U = 0, (\alpha ^2 = 4\pi Gk).$$ The solution is found in a classical way to be of the form $$\tilde U = cte J_v (pr)e^{ - pz} e^{jn\theta } $$ wheren = integer,p =cte andJ v (pr) = Bessel function with indexv (v 2 =n 2 + α2). By use of the Hankel function instead ofJ v (pr) for large values ofr, the spiral structure is found to be given by $$\tilde U = cte e^{ - pz} e^{j[\Phi _v (r) + n\theta ]} , \Phi _v (r) = pr - \pi /2(v + \tfrac{1}{2}).$$ For small values ofr, \(\tilde U\) = 0: the center of a galaxy is not affected by the density wave which is onlyresponsible of the spiral structure. For various values ofp,n andv, other forms of galaxies can be taken into account: Ring, barred and spiral-barred shapes etc. In order to generalize previous calculations, we further postulateρ 0 =kU 0/r 2, leading to Poisson'sequation which accounts for the disc population $$\nabla ^2 U_0 - \frac{{\alpha ^2 }}{{r^2 }}U_0 = 0.$$ AsU 0 is assumed axisymmetrical, the obvious solution is of the form $$U_0 = \frac{{cte}}{{r^v }}e^{ - pz} , \rho _0 = \frac{{cte}}{{r^{2 + v} }}e^{ - pz} .$$ Finally, Poisson's equation is completely solvable under the assumptionρ =k(U/r 2. The general solution,valid for both disc and spiral arm populations, becomes $$U = cte e^{ - pz} \left\{ {r^{ - v} + } \right.\left. {cte e^{j[\Phi _v (r) + n\theta ]} } \right\},$$ The density distribution along the O z axis is supported by Burstein's (1979) observations.  相似文献   

11.
If a satellite orbit is described by means of osculating Jacobi α's and β's of a separable problem, the paper shows that a perturbing forceF makes them vary according to $$\dot \alpha _\kappa = {\text{F}} \cdot \partial {\text{r/}}\partial \beta _k {\text{ }}\dot \beta _k = {\text{ - F}} \cdot \partial {\text{r/}}\partial \alpha _k ,{\text{ (}}k = 1,2,3).{\text{ (A1)}}$$ Herer is the position vector of the satellite andF is any perturbing force, conservative or non-conservative. There are two special cases of (A1) that have been previously derived rigorously. If the reference orbit is Keplerian, equations equivalent to (A1), withF arbitrary, were derived by Brouwer and Clemence (1961), by Danby (1962), and by Battin (1964). IfF=?gradV 1(t), whereV 1 may or may not depend explicitly on the time, Equations (A1) reduce to the well known forms (e.g. Garfinkel, 1966) $$\dot \alpha _\kappa = {\text{ - }}\partial V_1 {\text{/}}\partial \beta _k {\text{ }}\dot \beta _k = \partial V_1 {\text{/}}\partial \alpha _k ,{\text{ (}}k = 1,2,3).{\text{ (A2)}}$$ holding for all separable reference orbits. Equations (A1) can of course be guessed from Equations (A2), if one assumes that \(\dot \alpha _k (t)\) and \(\dot \beta _k (t)\) depend only onF(t) and thatF(t) can always be modeled instantaneously as a potential gradient. The main point of the present paper is the rigorous derivation of (A1), without resort to any such modeling procedure. Applications to the Keplerian and spheroidal reference orbits are indicated.  相似文献   

12.
For the conservative, two degree-of-freedom system with autonomous potential functionV(x,y) in rotating coordinates; $$\dot u - 2n\upsilon = V_x , \dot \upsilon + 2nu = V_y $$ , vorticity (v x -u y ) is constant along the orbit when the relative velocity field is divergence-free such that: $$u(x,y,t) = \psi _y , \upsilon (x,y,t) = - \psi _x $$ . Unlike isoenergetic reduction using the Jacobi, integral and eliminating the time,non-singular reduction from fourth to second-order occurs when (u,v) are determined explicitly as functions of their arguments by solving for ψ (x, y, t). The orbit function ψ satisfies a second-order, non-linear partial differential equation of the Monge Ampere type: $$2(\psi _{xx} \psi _{yy} - \psi _{xy}^2 ) - 2(\psi _{xx} + \psi _{yy} ) + V_{xx} + V_{yy} = 0$$ . Isovortical orbits in the rotating frame arenot level curves of ψ because it contains time explicitly due to coriolis effects. Rather, (x, y) coordinates along the orbit are obtained, from (u, v) either by numerical integration of the kinematic equations, or by partial differentiation of the Legendre transform ? of ψ. In the latter case, ? is shown to satisfy a non-linear, second-order partial differential equation in three independent variables, derived from the Monge-Ampere Equation. Complete reduction to quadrature is possible when space-time symmetries exist, as in the case of central force motion.  相似文献   

13.
If a dynamical problem ofN degress of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form 1 $$\begin{array}{*{20}c} {F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 ,} & {\mu \ll 1.} \\ \end{array} $$ Herey is the momentum-vectory k withk=1,2?N, x 1 is thecritical argument, andx k fork>1 are theignorable co-ordinates, which have been eliminated from the Hamiltonian. The purpose of this Note is to summarize the first-order solution of the problem defined by (1) as described in a sequence of five recent papers by the author. A basic is the resonance parameter α, defined by 1 $$\alpha \equiv - B'/\left| {4AB''} \right|^{1/2} \mu .$$ The solution isglobal in the sense that it is valid for all values of α2 in the range 1 $$0 \leqslant \alpha ^2 \leqslant \infty ,$$ which embrances thelibration and thecirculation regimes of the co-ordinatex 1, associated with α2 < 1 and α2 > 1, respectively. The solution includes asymptotically the limit α2 → ∞, which corresponds to theclassical solution of the problem, expanded in powers of ε ≡ μ2, and carrying α as a divisor. The classical singularity at α=0, corresponding to an exact commensurability of two frequencies of the motion, has been removed from the global solution by means of the Bohlin expansion in powers of μ = ε1/2. The singularities that commonly arise within the libration region α2 < 1 and on the separatrix α2 = 1 of the phase-plane have been suppressed by means of aregularizing function 1 $$\begin{array}{*{20}c} {\phi \equiv \tfrac{1}{2}(1 + \operatorname{sgn} z)\exp ( - z^{ - 3} ),} & {z \equiv \alpha ^2 } \\ \end{array} - 1,$$ introduced into the new Hamiltonian. The global solution is subject to thenormality condition, which boundsAB″ away from zero indeep resonance, α2 < 1/μ, where the classical solution fails, and which boundsB′ away from zero inshallow resonance, α2 > 1/μ, where the classical solution is valid. Thedemarcation point 1 $$\alpha _ * ^2 \equiv {1 \mathord{\left/ {\vphantom {1 \mu }} \right. \kern-\nulldelimiterspace} \mu }$$ conventionally separates the deep and the shallow resonance regions. The solution appears in parametric form 1 $$\begin{array}{*{20}c} {x_\kappa = x_\kappa (u)} \\ {y_1 = y_1 (u)} \\ {\begin{array}{*{20}c} {y_\kappa = conts,} & {k > 1,} \\ \end{array} } \\ {u = u(t).} \\ \end{array} $$ It involves the standard elliptic integralsu andE((u) of the first and the second kinds, respectively, the Jacobian elliptic functionssn, cn, dn, am, and the Zeta functionZ (u).  相似文献   

14.
The Ideal Resonance Problem is defined by the Hamiltonian $$F = B(y) + 2\varepsilon A(y) \sin ^2 x,\varepsilon \ll 1.$$ The classical solution of the Problem, expanded in powers of ε, carries the derivativeB′ as a divisor and is, therefore, singular at the zero ofB′, associated with resonance. With α denoting theresonance parameter, defined by $$\alpha \equiv - B'/|4AB''|^{1/2} \mu ,\mu = \varepsilon ^{1/2} ,$$ it is shown here that the classical solution is valid only for $$\alpha ^2 \geqslant 0(1/\mu ).$$ In contrast, the global solution (Garfinkelet al., 1971), expanded in powers ofμ1/2, removes the classical singularity atB′=0, and is valid for all α. It is also shown here that the classical solution is an asymptotic approximation, for largeα 2, of the global solution expanded in powers ofα ?2. This result leads to simplified expressions for resonancewidth and resonantamplification. The two solutions are compared with regard to their general behavior and their accuracy. It is noted that the global solution represents a perturbed simple pendulum, while the classical solution is the limiting case of a pendulum in a state offast circulation.  相似文献   

15.
If a dynamical system ofN degrees of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form $$F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 , \mu<< 1.$$ Herey is the momentum-vectory k withk=1, 2,...,N, andx 1 is thecritical argument. A first-orderglobal solution,x 1(t) andy 1(t), for theactive variables of the problem, has been given in Garfinkelet al. (1971). Sincex k fork>1 are ignorable coordinates, it follows that $$y_\kappa = const., k > 1.$$ The solution is completed here by the construction of the functionsx k(t) fork>1, derivable from the new HamiltonianF′(y′) and the generatorS(x, y′) of the von Zeipel canonical transformation used in the cited paper. The solution is subject to thenormality condition, derived in a previous paper fork=1, and extended here to 2≤kN. It is shown that the condition is satisfied in the problem of the critical inclination provided it is satisfied fork=1.  相似文献   

16.
In previous publications the author has constructed a long-periodic solution of the problem of the motion of the Trojan asteroids, treated as the case of 1:1 resonance in the restricted problem of three bodies. The recent progress reported here is summarized under three headings:
  1. The nature on the long-periodic family of orbits is re-examined in the light of the results of the numerical integrations carried out by Deprit and Henrard (1970). In the vicinity of the critical divisor $$D_k \equiv \omega _1 - k\omega _2 ,$$ not accessible to our solution, the family is interrupted by bifurcations and shortperiodic bridges. Parametrized by the normalized Jacobi constant α2, our family may, accordingly, be defined as the intersection of admissible intervals, in the form $$L = \mathop \cap \limits_j \left\{ {\left| {\alpha - \alpha _j } \right| > \varepsilon _j } \right\};j = k,k + 1, \ldots \infty .$$ Here, {αj(m)} is the sequence of the critical αj corresponding to the exactj: 1 commensurability between the characteristic frequencies ω1 and ω2 for a given value of the mass parameterm. Inasmuch as the ‘critical’ intervals |α?αj|<εj can be shown to be disjoint, it follows that, despite the clustering of the sequence {αj} at α=1, asj→∞, the family extends into the vicinity of the separatrix α=1, which terminates the ‘tadpole’ branch of the family.
  2. Our analysis of the epicyclic terms of the solution, carrying the critical divisorD k , supports the Deprit and Henrard refutation of the E. W. Brown conjecture (1911) regarding the termination of the tadpole branch at the Lagrangian pointL 3. However, the conjecture may be revived in a refined form. “The separatrix α=1 of the tadpole branch spirals asymptotically toward a limit cycle centered onL 3.”
  3. The periodT(α,m) of the libration in the mean synodic longitude λ in the range $$\lambda _1 \leqslant \lambda \leqslant \lambda _2$$ is given by a hyperelliptic integral. This integral is formally expanded in a power series inm and α2 or \(\beta \equiv \sqrt {1 - \alpha ^2 }\) .
The large amplitude of the libration, peculiar to our solution, is made possible by the mode of the expansion of the disturbing functionR. Rather than expanding about Lagrangian pointL 4, with the coordinatesr=1, θ=π/3, we have expandedR about the circler=1. This procedure is equivalent to analytic continuation, for it replaces the circle of convergence centered atL 4 by an annulus |r?1|<ε with 0≤θ<2π.  相似文献   

17.
The Ideal Resonance Problem, defined by the Hamiltonian $$F = B(y) + 2\mu ^2 A(y)\sin ^2 x,\mu \ll 1,$$ has been solved in Garfinkelet al. (1971). As a perturbed simple pendulum, this solution furnishes a convenient and accurate reference orbit for the study of resonance. In order to preserve the penduloid character of the motion, the solution is subject to thenormality condition, which boundsAB" andB' away from zero indeep and inshallow resonance, respectively. For a first-order solution, the paper derives the normality condition in the form $$pi \leqslant max(|\alpha /\alpha _1 |,|\alpha /\alpha _1 |^{2i} ),i = 1,2.$$ Herep i are known functions of the constant ‘mean element’y', α is the resonance parameter defined by $$\alpha \equiv - {\rm B}'/|4AB\prime \prime |^{1/2} \mu ,$$ and $$\alpha _1 \equiv \mu ^{ - 1/2}$$ defines the conventionaldemarcation point separating the deep and the shallow resonance regions. The results are applied to the problem of the critical inclination of a satellite of an oblate planet. There the normality condition takes the form $$\Lambda _1 (\lambda ) \leqslant e \leqslant \Lambda _2 (\lambda )if|i - tan^{ - 1} 2| \leqslant \lambda e/2(1 + e)$$ withΛ 1, andΛ 2 known functions of λ, defined by $$\begin{gathered} \lambda \equiv |\tfrac{1}{5}(J_2 + J_4 /J_2 )|^{1/4} /q, \hfill \\ q \equiv a(1 - e). \hfill \\ \end{gathered}$$   相似文献   

18.
We obtain two explicit closed form representations of Chandrasekhar'sH-functionsH(z) characterising transfer of radiation in an active amplifying medium corresponding to the dispersion function $$T(z) = 1 - 2z^2 \int\limits_0^1 {Y(x)dx/(z^2 - x^2 ), Y(x)< 0 on [0, 1]} .$$ Their basic properties are derived and the values of theH-functionH(z, ω) whenY(x)=ω/2, are approximately computed for values of ω in the range (?10?12)–(?102) and for values ofzε[0, 1].  相似文献   

19.
20.
This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v), \(\sqrt {F(\upsilon )} \) and \(\sqrt {{1 \mathord{\left/ {\vphantom {1 {F(\upsilon )}}} \right. \kern-0em} {F(\upsilon )}}} \) are given, where $$F(\upsilon ) = (1 - e^2 )/(1 + 2e\cos \upsilon + e^2 ), e< 1$$ In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2. Some interesting relations involving Legendre polynomials are also noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号