首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Contarino  L.  Romano  P.  Yurchyshyn  V.B.  Zuccarello  F. 《Solar physics》2003,216(1-2):173-188
We describe a filament destabilization which occurred on 5 May 2001 in NOAA AR 9445, before a flare event. The analysis is based on Hα data acquired by THEMIS operating in IPM mode, Hα data and magnetograms obtained at the Big Bear Solar Observatory, MDI magnetograms and 171 Å images taken by TRACE. Observations at 171 Å show that ~ 2.5 hours before the flare peak, the western part of the EUV filament channel seems to split into two parts. The bifurcation of the filament in the Hα line is observed to take place ~ 1.5 hours before the flare peak, while one thread of the filament erupts ~10 min before the peak of the flare. Our analysis of longitudinal magnetograms shows the presence of a knot of positive flux inside a region of negative polarity, which coincides with the site of filament bifurcation. We interpret this event as occurring in two steps: the first step, characterized by the appearance of a new magnetic feature and the successive reconnection in the lower atmosphere between its field lines and the field lines of the old arcade sustaining the filament, leads to a new filament channel and to the observed filament bifurcation; the second step, characterized by the eruption of part of the filament lying on the old PIL, leads to a second reconnection, occurring higher in the corona.  相似文献   

2.
A statistical analysis of the surface distribution of the larger solar flares of the 21st cycle is carried out in this paper. The results are as follows: (1) There exist two active longitude belts, 220°–140° and 340°–320°. (2) The distribution of flares is assymetric about the solar equator. (3) Active regions located in 50°–60° E and 10°–20° W are good producers of flares; those in 80°–90° E (i.e., near the East limb) and 60°–70° W are poor producers. (4) The autocorrelation function of the flare series shows that a flare active region has a large probability of producing another flare after one rotation and a small probability of so doing after more than one rotation, and that there is a high probability of a flare occurring in the region next to the one in which a flare has already occurred.  相似文献   

3.
In this paper, we present a comprehensive picture for the M2.0 class flare of September 9, 2002 with an extensive multi-wavelength analysis. The flare was observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), the Owens Valley Solar Arrays (OVSA), and Big Bear Solar Observatory (BBSO). At BBSO, the observation was specially made at the wavelength of Hα ? 1.3 Å with a cadence of ~40 ms. For this multi-kernel flare, we find two pairs of conjugate kernels. Each pair has its centroid separation curve, which is well correlated with its own optical light curve. This clearly indicates two separate energy releasing sites. The proposed picture of the two energy release sites is supported by double peaks in microwave profiles, and, especially, the presence of two different 195 Å flaring loops observed by the Extreme UV Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory (SOHO). Nevertheless, the two pairs surely have some intrinsic relations, which are indicated from both temporal and spatial correlations. Because of the intimate relationship, we propose that the two loop systems were interacting during the flare. In addition, one of the most pronounced features of this multi-kernel flare is that the results from microwaves are poorly correlated with those from hard X-ray (HXR) and optical data. The discrepancy is shown in two aspects: time profiles as well as emission locations. We still cannot understand the cause of the discrepancy, except that the interacting loops may have complicated the situation.  相似文献   

4.
Magnetic fields dominate most solar activities, there exist direct relations between solar flare and the distributions of magnetic field, and also its corresponding magnetic energy. In this paper, the statistical results about the relationships between the spatial magnetic field and solar flare are given basing on vector magnetic field observed by the Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observing Station (HSOS). The spatial magnetic fields are obtained by extrapolated photosphere vector magnetic field observed by SMFT. There are 23 active regions with flare eruption are chosen as data samples, which were observed from 1997 to 2007. The results are as follows: 1. Magnetic field lines become lower after flare for 16 (69 %) active regions; 2. The free energy are decreased after flare for 17 (74 %) active regions. It can conclude that for most active regions the changes of magnetic field after solar flare re coincident with the previous observations and studies.  相似文献   

5.
P. X. Gao  J. L. Xie  J. Zhong 《Solar physics》2014,289(5):1831-1841
We study the phase relationships between the coronal-mass-ejection (CME) energy cycle, the sunspot-area cycle, and the flare-index cycle from 1996 to 2010. The results show the following: i) The activity cycle of the flare index significantly leads the activity cycle of the sunspot area. ii) The activity cycle of the CME energy is inferred to be almost in phase with the activity cycle of the sunspot area; the activity cycle of the CME energy at low latitudes slightly leads the activity cycle of the sunspot area; the CME energy at high latitudes is shown to significantly lag behind the sunspot area. iii) The CME energy is shown to significantly lag behind the flare index; the CME energy at low latitudes is shown to slightly lag behind the flare index; the CME energy at high latitudes is shown to significantly lag behind the flare index.  相似文献   

6.
Cinematic, photometric observations of the 3B flare of August 7, 1972 are described in detail. The time resolution was 2 s; the spatial resolution was 1–2″. Flare continuum emissivity at 4950 Å and at 5900 Å correlated closely in time with the 60–100 keV non-thermal X-ray burst intensity. The observed peak emissivity was 1.5 × 1010 erg cm?2 s?1 and the total flare energy in the 3900–6900 Å range was ~1030 erg. From the close temporal correspondence and from the small distance (3″) separating the layers where the visible emission and the X-rays arose, it is argued that the hard X-ray source must have had the same silhouette as the white light flare and that the emission patches had cross-sections of 3–5″. There was also a correlation between the location of the most intense visible emissions near sunspots and the intensity and polarization of the 9.4 GHz radio emission. The flare appeared to show at least three distinct particle acceleration phases: one, occurring at a stationary source and associated with proton acceleration gave a very bluish continuum and reached peak intensity at ~ 1522 UT. At 1523 UT, a faint wave spread out at 40 km s?1 from flare center. The spectrum of the wave was nearly flat in the range 4950–5900 Å. Association of the wave with a slow drift of the microwave emission peak to lower frequencies and with a softening of the X-ray spectrum is interpreted to mean that the particle acceleration process weakened while the region of acceleration expanded. The observations are interpreted with the aid of the flare models of Brown to mean that the same beam of non-thermal electrons that was responsible for the hard X-ray bremsstrahlung also caused the heating of the lower chromosphere that produced the white light flare.  相似文献   

7.
In an effort to examine the relationship between flare flux and corresponding CME mass, we temporally and spatially correlate all X-ray flares and CMEs in the LASCO and GOES archives from 1996 to 2006. We cross-reference 6733 CMEs having well-measured masses against 12 050 X-ray flares having position information as determined from their optical counterparts. For a given flare, we search in time for CMEs which occur 10 – 80 minutes afterward, and we further require the flare and CME to occur within ± 45° in position angle on the solar disk. There are 826 CME/flare pairs which fit these criteria. Comparing the flare fluxes with CME masses of these paired events, we find CME mass increases with flare flux, following an approximately log-linear, broken relationship: in the limit of lower flare fluxes, log (CME mass)∝0.68×log (flare flux), and in the limit of higher flare fluxes, log (CME mass)∝0.33×log (flare flux). We show that this broken power-law, and in particular the flatter slope at higher flare fluxes, may be due to an observational bias against CMEs associated with the most energetic flares: halo CMEs. Correcting for this bias yields a single power-law relationship of the form log (CME mass)∝0.70×log (flare flux). This function describes the relationship between CME mass and flare flux over at least 3 dex in flare flux, from ≈ 10−7 – 10−4 W m−2.  相似文献   

8.
One of the most powerful and long-lived flares on the active red dwarf YZ CMi is considered. The flare was observed in the U band at the Terskol Peak Observatory on February 9, 2008. During the formation of the flare over the course of 30 seconds, the flare-induced stellar luminosity increased and became more than 180 times the preflare value. The total duration of the flare was approximately one hour. At the flare maximum, quasi-periodic pulsations having a specified period of approximately 11 s, an initial modulation depth of 5.5%, and an exponential damping time of 29 s were discovered using wavelet analysis. Assuming that the pulsations were caused by fast magnetohydrodynamic oscillations of a flare loop, the following parameters were determined in the region of energy release using coronal seismology methods: plasma concentration (2 × 1010 cm−3), temperature (3 × 107 K), and magnetic field strength (0.015 T).  相似文献   

9.
There are very few reports of flare signatures in the solar irradiance at H i Lyman α at 121.5 nm, i.e. the strongest line of the solar spectrum. The LYRA radiometer onboard PROBA2 has observed several flares for which unambiguous signatures have been found in its Lyman-α channel. Here we present a brief overview of these observations followed by a detailed study of one of them: the M2 flare that occurred on 8 February 2010. For this flare, the flux in the LYRA Lyman-α channel increased by 0.6 %, which represents about twice the energy radiated in the GOES soft X-ray channel and is comparable with the energy radiated in the He ii line at 30.4 nm. The Lyman-α emission represents only a minor part of the total radiated energy of this flare, for which a white-light continuum was detected. Additionally, we found that the Lyman-α flare profile follows the gradual phase but peaks before other wavelengths. This M2 flare was very localized and had a very brief impulsive phase, but more statistics are needed to determine if these factors influence the presence of a Lyman-α flare signal strong enough to appear in the solar irradiance.  相似文献   

10.
We analyzed the monochromatic Hα and spectral (within a range of 6549–6579 Å) observational data for the 2B/X6.9 flare of August 9, 2011, that produced emission in the optical continuum. The morphology and evolution of the Hα flare and the position, time evolution, spectrum, and energetics of the white-light flare (WLF) kernels were studied. The following results were obtained: the flare erupted in the region of collision of a new and rapidly growing and propagating magnetic flux and a preexisting one. This collision led to a merger of two active bipolar regions. The white-light flare had a complex structure: no less than five kernels of continuum emission were detected prior to and in the course of the impulsive flare phase. Preimpulsive and impulsive white-light emission kernels belonged to different types (types II and I, respectively) of white-light flares. A close temporal agreement between the white-light emission maxima and the microwave emission peak was observed for the impulsive white-light emission kernels. The maximum flux, luminosity, and total energy emitted by the brightest impulsive WLF kernel equaled 1.4 × 1010 ergs cm?2 s?1, 1.5 × 1027 ergs/s, and 5 × 1029 ergs, respectively. The Hα profiles within the impulsive WLF kernels had broad wings (with a total extent of up to 26 Å and a half-width of up to 9 Å) and self-reversed cores. The profiles were symmetrical, but were shifted towards the red side of the spectrum. This is indicative of a downward motion of the entire emitting volume with a radial velocity of several tens of km/s. The intensity pattern in the wings did not correspond to the Stark one. The profiles were broadened by nonthermal turbulent motions with velocities of 150–300 km/s. The observed Hα profiles were analyzed and compared in their features to the profiles calculated for an intense heating of the chromosphere by nonthermal electrons accompanied by the development of a chromospheric condensation propagating downward. We came to the conclusion that the analyzed flare exhibited spectral features that may not be readily explained within the framework of chromosphere heating by a beam of nonthermal electrons.  相似文献   

11.
The paper presents the effect of solar flare index on Antarctic O3 depletion. Solar flare index is the actual representative of energy output of any flare event. A calibration curve between solar flare index and relative sunspot number is drawn. (A straight line is obtained and correlation coefficient between two variables is 0.95, n = 27, P < 0.01).The equation of straight line from least square principle becomes, Solar Flare Index (If) = 1.0932 * Relative Sunspot Number- 9.4391. From this equation solar flare index for long period is calculated from known values of relative sunspot numbers. O3 concentration of two antarctic Survey Stations, Halley Bay (76 °S, 27 °W) and McMurdo (78 °S, 166 °E) are considered for analysis and following results are obtained: (i) Correlation coefficient between O3 concentration and solar flare index during Antarctic Spring is not so significant. (ii) It is concluded that dramatic decrease of O3concentration during Antarctic Spring is independent of solar parameters. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
On 21 September 2012, we carried out spectral observations of a solar facula in the Si?i 10827 Å, He?i 10830 Å, and H\(\upalpha\) spectral lines. Later, in the process of analyzing the data, we found a small-scale flare in the middle of the time series. Based on the anomalous increase in the absorption of the He?i 10830 Å line, we identified this flare as a negative flare.The aim of this article is to study the influence of the negative flare on the oscillation characteristics in the facular photosphere and chromosphere.We measured the line-of-sight (LOS) velocity and intensity of all the three lines as well as the half-width of the chromospheric lines. We also used the Helioseismic and Magnetic Imager (HMI) magnetic field data. The flare caused a modulation of all these parameters. In the location of the negative flare, the amplitude of the oscillations increased four times on average. In the adjacent magnetic field local maxima, the chromospheric LOS velocity oscillations appreciably decreased during the flare. The facular region oscillated as a whole with a 5-minute period before the flare, and this synchronicity was disrupted after the flare. The flare changed the spectral composition of the LOS magnetic field oscillations, causing an increase in the low-frequency oscillation power.  相似文献   

13.
The aim of this paper is studying the relation between the coronal mass ejections (CMEs), and their associated solar flares. I used the CMEs data (obtained from CME catalogue) which observed by SOHO/LASCO, during the Solar Cycle 23rd (1996–2006), during this period I selected 12,433 CME records. Also I used the X-ray flares data which provided geostationary operational environmental satellite (GOES), during the same interval in the 1–8 Å GOES channel, the recorded flare events are 22,688. I filtered these CMEs and solar flare events to select 529 CME-Flare events. I found that there is a moderate relation between the solar flare fluxes and their associated CME energies, where R = 58 %. In addition I found that 61 % of the CME-Flare associated events ejected from the solar surface after the occurrence of the associated flare. Furthermore I found that the CME-Flare relation improved during the period of high solar activity. Finally, I examined the CME association rate as a function of flare longitude and I found that the CME association rate of the total 529 selected CME-Flare events are mostly disk-Flare events.  相似文献   

14.
132 soft X-ray flare events have been observed with The Aerospace Corporation/Marshall Space Flight Center S-056 X-ray telescope that was part of the ATM complement of instruments aboard Skylab. Analyses of these data are reported in this paper. The observations are summarized and a detailed discussion of the X-ray flare structures is presented. The data indicated that soft X-rays emitted by a flare come primarily from an intense well-defined core surrounded by a region of fainter, more diffuse emission. Loop structures are found to constitute a fundamental characteristic of flare cores and arcades of loops are found to play a more important role in the flare phenomena than previously thought. Size distributions of these core features are presented and a classification scheme describing the brightest flare X-ray features is proposed. The data show no correlations between the size of core features and: (1) the peak X-ray intensity, as indicated by detectors on the SOLRAD satellite; (2) the rise time of the X-ray flare event, or (3) the presence of a nonthermal X-ray component. An analysis of flare evolution indicates evidence for preliminary heating and energy release prior to the main phase of the flare. Core features are found to be remarkably stable and retain their shape throughout a flare. Most changes in the overall configuration seem to be the result of the appearance, disappearance or change in brightness of individual features, rather than the restructuring or re-orientation of these features. Brief comparisons with several theories are presented.  相似文献   

15.
Solar circumstances have been evaluated for January 28, 1967, the date of an observed ground level enhancement of cosmic rays which was not preceded by observation of a suitably great Hα flare. On the visible solar hemisphere, a bright subflare at S23° E19° occurred in appropriate time association with the cosmic ray event, and was accompanied by weak X-ray enhancement and radio frequency emission. If this flare, alone, or in combination with other minor flares observed on the visible hemisphere on January 28 was the source of the energetic cosmic rays recorded on that date, then current thinking regarding the characteristics of cosmic ray flares must be modified. An initial study of probable circumstances on the invisible hemisphere did not lead to the immediate recognition of amajor center of activity as the probable source of a cosmic ray flare. Further evaluation of all centers of activity on the invisible hemisphere identified one region, McMath Plage No. 8687, 64° beyond the west limb, as the most plausible, possible site for the cosmic ray flare on January 28, 1967. The location of this region is in accord with the source-position deduced in Lockwood's analysis (1968) of the cosmic ray event. This center of activity could not have been more than 5 days old on January 28, 1967. The interval of major activity in the region was confined primarily to the invisible hemisphere. The occurrence of an ‘isolated’ major flare in the region on February 13, 1967 is discussed. The present study exemplifies the partial nature of solar observations which are limited to the visible hemisphere. The possible role of exceptional geomagnetic calm, 1963–1967, in permitting atypical cosmic ray enhancements, as on January 28, 1967, is mentioned.  相似文献   

16.
We study the changes of the CaI λ6102.7 Å line profile and the magnetic field structure during the 1B/M2.2 while-light flare of August 12, 1981. The two brightest flare knots located in the penumbra of a sunspot with a δ configuration are investigated. The 1 ± V line profiles are analyzed. The reduction and analysis of our observations have yielded the following results. (1) The line profiles changed significantly during the flare, especially at the time of optical continuum emission observed near the flare maximum. In addition to the significant decrease in the depth, a narrow polarized emission whose Zeeman splitting corresponded to a longitudinal magnetic field strength of 3600 Gs was observed. This is much larger than the magnetic field strength in the underlying sunspot determined from the Zeeman splitting of absorption lines. (2) The largest changes of the CaI λ6102.7 Å line profile observed during the flare can lead to an underestimation of the longitudinal magnetic field strength measured with a video magnetograph by a factor of 4.5, but they cannot be responsible for the polarity reversal. (3) A sharp short-term displacement of the neutral line occurred at a time close to the flare maximum, which gave rise to a reversed-polarity magnetic field on a small area of the active region, i.e., a magnetic transient. This can be interpreted as a change in the inclination of the magnetic field lines to the line of sight during the flare. The short-term depolarization of the CaI λ6102.7 Å line emission observed at the other flare knot can also be the result of a change in the magnetic field structure. (4) These fast dynamic changes of the magnetic field lines occurred after the maximum of the impulsive flare phase and were close in time to the appearance of type II radio emission.  相似文献   

17.
J. G. Doyle 《Solar physics》1983,89(1):115-131
A wavelength list is presented for the solar flare of 7 September, 1973 in the spectral range 1335 Å–380 Å. The ions observed suggest a range of temperatures in the flare plasma from 8 × 103 K to 107 K. This wavelength range contains many of the important electron density diagnostics lines for the solar transition zone and corona. The line list should also be of potential use in the identification and comparison with stellar spectra.  相似文献   

18.
Observations of the large two-ribbon flare on 7 November 2004 made using SOHO and TRACE data are interpreted in terms of a three-dimensional magnetic field model. Photospheric flux evolution indicates that ?1.4×1043 Mx2 of magnetic helicity was injected into the active region during the 40-hour buildup prior to the flare. The magnetic model places a lower bound of 8×1031 ergs on the energy stored by this motion. It predicts that 5×1021 Mx of flux would need to be reconnected during the flare to release the stored energy. This total reconnection compares favorably with the flux swept up by the flare ribbons, which we measure using high-time-cadence TRACE images in 1?600 Å. Reconnection in the model must occur in a specific sequence that would produce a twisted flux rope containing significantly less flux and helicity (1021 Mx and ?3×1042 Mx2, respectively) than the active region as a whole. The predicted flux compares favorably with values inferred from the magnetic cloud observed by Wind. This combined analysis yields the first quantitative picture of the flux processed through a two-ribbon flare and coronal mass ejection.  相似文献   

19.
To understand better the variation of solar activity indicators originated at different layers of the solar atmosphere with respect to sunspot cycles, we carried out a study of phase relationship between sunspot number, flare index and solar radio flux at 2800 MHz from January 1966 to May 2008 by using cross-correlation analysis. The main results are as follows: (1) The flare index and sunspot number have synchronous phase for cycles 21 and 22 in the northern hemisphere and for cycle 20 in the southern hemisphere. (2) The flare index has a noticeable time lead with respect to sunspot number for cycles 20 and 23 in the northern hemisphere and for cycles 22 and 23 in the southern hemisphere. (3) For the entire Sun, the flare index has a noticeable time lead for cycles 20 and 23, a time lag for cycle 21, and no time lag or time lead for cycle 22 with respect to sunspot number. (4) The solar radio flux has a time lag for cycles 22 and 23 and no time lag or time lead for cycles 20 and 21 with respect to sunspot number. (5) For the four cycles, the sunspot number and flare index in the northern hemisphere are all leading to the ones in the southern hemisphere. These results may be instructive to the physical processes of flare energy storage and dissipation.  相似文献   

20.
On July 5, 1980 the Hard X-Ray Imaging Spectrometer on board the Solar Maximum Mission observed a complex flare event starting at 22 : 32 UT from AR 2559 (Hale 16955), then at N 28 W 29, which developed finally into a 2-ribbon flare. In this paper we compare the X-ray images with Hα photographs taken at the Big Bear Solar Observatory and identify the site of the most energetic flare phenomena. During the early phases of the event the hard X-rays (>16 keV) came from a compact source located near one of the two bright Hα kernels; we believe the latter are at the footpoints of a compact magnetic loop. The kernel identified with the X-ray source is immediately adjacent to one of the principal sunspots and in fact appears to ‘rotate’ around the sunspot over 90° in the early phase of the flare. Two intense X-ray bursts occur at the site of the rotating kernel, and following each burst the loop fills with hot, X-ray emitting plasma. If the first burst is interpreted as bremsstrahlung from a beam of electrons impinging on a collisionally dominated medium, the energy in such electrons, >16 keV, is ~ 5 × 1030 erg. The altitude of the looptop is 7–10 × 103 km. The temperature structure of the flare is extremely non-homogeneous, and the highest temperatures are found in the top of the loop. A few minutes after the hard X-ray bursts the configuration of the region changes; some of the flare energy is transferred along a system of larger loops that now become the defining structure for a 2-ribbon flare, which is how the flare develops as seen in Hα. In the late, cooling phase of the flare 15 min after maximum, we find a significant component of the plasma at temperatures between 25 and 30 × 106 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号