首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the English Channel, extreme surge heights did not occur at the time of extreme high tides during the last decades and maximum recorded heights usually do not exceed the maximum astronomical tide by more than a few decimetres. To understand whether this lack of coincidence may be due to specific phenomena or only to chance, we have studied hourly tide records lasting a few decades from nine English and nine French stations as well as air pressure and wind data from nearby meteorological observatories. Among the case studies of moderate flooding at several coastal stations occurring during spring tide, we have selected those of 24–25/10/1980 and of 30/01/1983 to 02/02/1983 as representative of a normal situation without any special chance. The third case study 26–28/02/1990 was potentially more dangerous because of the storm intensity and duration; however, by chance, surge peaks occurred near the low tide. Finally, the propagation of the surge peak of 15–16/10/1987, which reached the maximum height recorded during all the instrumental period at several stations, has been followed all along the English Channel, using the hourly records of 12 tide-gauge stations and of 16 meteorological stations. The surge peak of this great storm, probably the strongest in the last two centuries, occurred everywhere at high tide and spread with the same velocity of the tidal wave. Fortunately, no major flooding occurred because it was the day after a neap tide. In conclusion, some good fortune has saved the low coastal areas of the English Channel from major floods during the last decades. However, the occurrence of the peak of a strong storm surge arriving near the western entrance of the Channel at the time of a great astronomical high tide is a possible event that could be devastating along both sides of the Channel coasts. Main parts of this paper have been presented orally in June 2005 at the joint INQUA–IGCP 495 Meeting “Dunkerque 2005” and in February 2006 at the ASLO-TOS-AGU “Ocean Sciences Meeting” (Honolulu, HI).  相似文献   

2.
Sea-level rise, as a result of global warming, may lead to more natural disasters in coastal regions where there are substantial aggregations of population and property. Thus, this paper focuses on the impact of sea-level rise on the recurrence periods of extreme water levels fitted using the Pearson type III (P-III) model. Current extreme water levels are calculated using observational data, including astronomical high tides and storm surges, while future extreme water levels are determined by superposing scenario data of sea-level rise onto current extreme water levels. On the basis of a case study using data from Shandong Province, China, results indicated that sea-level rise would significantly shorten the recurrence periods of extreme water levels, especially under higher representative concentration pathway (RCP) scenarios. Results showed that by the middle of the century, 100-year current extreme water levels for all stations would translate into once in 15–30 years under RCP 2.6, and once in ten to 25 years under RCP 8.5. Most seriously, the currently low probability event of a 1000-year recurrence would become common, occurring nearly every 10 years by 2100, based on projections under RCP 8.5. Therefore, according to this study, corresponding risk to coastlines could well be increase in future, as the recurrence periods of extreme water levels would be shortened with climate change.  相似文献   

3.
Measurements of dissolved Cd, Co, Cu, Mn, Ni, Pb, and Zn have been made on a seasonal basis at five stations on a north–south transect across the central English Channel between Cherbourg and the Isle of Wight. Vertical and horizontal distributions of dissolved Cd, Pb, Cu and Zn are relatively uniform except for sampling sites near the English coast. Dissolved Mn and Co show increased concentrations in the English coastal waters, and for Mn the seasonal trend in concentration follows the pattern seen in the Strait of Dover with higher values in the late summer. Ni and Cu are higher in concentration on the English side, which reflects mainly riverine sources. Measurements were also made of particulate forms of the metals above plus particulate Al, Ca, Fe, Mg, Sr and Ti. Water column concentrations of particulate metals broadly follow the distribution of suspended particulate matter, with highest concentrations near the UK coast. Trace metal concentrations have been integrated with modelled data on fluxes of water to provide estimates of fluxes for these elements into the eastern Channel, and an initial comparison is made with data for fluxes of metals through the Strait of Dover obtained during an earlier study. A major influence on the fluxes of particulate metals through the Isle of Wight-Cherbourg transect is the gyre system to the South east to the Isle of Wight, which has important east to west as well as west to east transport components. For those elements where the dissolved form of the metal dominates, the large flow of water in the central Channel waters leads to major fluxes of the metals towards the east and the Strait of Dover. However, the high suspended particulate matter loadings in the coastal waters and impact of the gyre system lead to net east to west fluxes of particulate Al, Fe, Mn and Ti. Comparison of these fluxes with data on the net west to east transport of these materials through the Strait of Dover infers that there must be a significant supply of these particulate metals to the eastern Channel.  相似文献   

4.
Based on tide gauge observations spanning almost 200 years, homogeneous time series of the mean relative sea level were derived for nine sites at the southern coast of the Baltic Sea. Our regionally concentrated data were complemented by long-term relative sea-level records retrieved from the data base of the Permanent Service for Mean Sea Level (PSMSL). From these records relative sea-level change rates were derived at 51 tide gauge stations for the period between 1908 and 2007. A minimum observation time of 60 years is required for the determination of reliable sea-level rates. At present, no anthropogenic acceleration in sea-level rise is detected in the tide gauge observations in the southern Baltic. The spatial variation of the relative sea-level rates reflects the fingerprint of GIA-induced crustal uplift. Time series of extreme sea levels were also inferred from the tide gauge records. They were complemented by water level information from historic storm surge marks preserved along the German Baltic coast. Based on this combined dataset the incidence and spatial variation of extreme sea levels induced by storm surges were analysed yielding important information for hazard assessments. Permanent GPS observations were used to determine recent crustal deformation rates for 44 stations in the Baltic Sea region. The GPS derived height change rates were applied to reduce the relative sea-level changes observed by tide gauges yielding an estimate for the eustatic sea-level change. For 13 tide gauge-GPS colocation sites a mean eustatic sea-level trend of 1.3 mm/a was derived for the last 100 years.  相似文献   

5.
The vulnerability to short-term and long-term sea-level rises is particularly high in subsiding deltaic areas, especially in microtidal seas, when surges (the differences between the observed sea heights and the simultaneous astronomical tide) are frequent. At the Grau-de-la-Dent tide-gauge in the Camargue (Rhone delta, France), daily sea-level records are available since 1905. Hourly tide data spanning the period 1979–1995 were obtained through the digitisation of the original paper records: the local harmonic constants and the surges for the whole 20th century have been computed from these hourly observations. It appears that the annual maximum observed sea-level height increases by 4 mm/yr at a rate that is two times faster than the average observed relative sea level. The increasing trend of the annual maximum positive sea surges (+1.9 mm/yr), which is equal to the average relative sea-level rise, is thus responsible for this difference. The most important meteorological factor associated with local sea-surge occurrences is wind blowing from 100° to 120° sectors, which tends to push the water toward the coasts. Since 1961, the frequency and the speed of wind from this sector increased, although with some variability, thus contributing in part to the increase in the frequency and intensity of the surges. Due to the changing hydrodynamics phenomenon in the Camargue, a positive feedback mechanism between extreme marine events and shoreline regression is another factor to explain the sea-surge rise over the long term. The increase in sea-surge frequency and height during the last century is especially of concern in the deltaic area if the near-future global sea-level rise predicted by climate models is also taken into account.  相似文献   

6.
《Continental Shelf Research》1999,19(15-16):2003-2018
Dissolved and particulate vanadium and chromium concentrations along a transect between Cherbourg and the Isle of Wight were investigated in the English Channel. Seawater samples were collected at two different depths (surface and bottom) at five sampling stations during five cruises carried out between September 1994 and September 1995. Calculated mass flows through this Channel section were 7600 T yr−1 for vanadium (about 66% was in the dissolved phase) and 1650 T yr−1 for chromium (about 50% was in the dissolved phase). Dissolved chromium concentrations do not vary significantly along the transect. Seasonal variations in chromium distribution linked to biotic parameters were noted during the September 1994 cruise, when a significant relationship between particulate chromium and algal organic carbon was found. In addition, dissolved Cr (III) and Cr (VI) were well correlated with both algal and terrestrial organic matter. In the May cruise, during phytoplanktonic decay, particulate chromium was correlated with the detritic and bacterial organic fractions. These observations suggest interactions between chromium and biotic material. During the winter period, no relationship between chromium and POC was found. Dissolved and particulate vanadium concentrations varied, respectively, between 15 and 28 nmol l−1 and 2–32 nmol l−1. Values of dissolved vanadium showed depletion in the Channel with respect to oceanic waters. This loss in dissolved vanadium was higher near the English coast, but was compensated for by the increase in the particulate vanadium. There was no clear relationship between dissolved vanadium and algal organic carbon and it is inferred that the vanadium transfer cannot be explained by trapping with biotic material. On the other hand, the dissolved vanadium depletion could be attributed to the presence of ferric oxyhydroxide phases in particles, which have strong adsorbing properties for a range of dissolved metal ions.  相似文献   

7.
Positive storm surges (PSS) lasting for several days can raise the water level producing significant differences between the observed level and the astronomical tide. These storm events can be more severe if they coincide with a high tide or if they bracket several tidal cycles, particularly in the case of the highest astronomical tide. Besides, the abnormal sea-level elevation near the coast can cause the highest waves generated to attack the upper beach. This combination of factors can produce severe erosion, threatening sectors located along the coastline. These effects would be more serious if the storm surge height and duration increase as a result of a climatic change. The Mar del Plata (Argentina) coastline and adjacent areas are exposed to such effects. A statistical characterization of PSS based on their intensity, duration and frequency, including a surge event classification, was performed utilizing tide-gauge records over the period 1956–2005. A storm erosion potential index (SEPI) was calculated from observed levels based on hourly water level measurements. The index was related to beach profile responses to storm events. Also, a return period for extreme SEPI values was calculated. Results show an increase in the average number of positive storm surge events per decade. Considering all the events, the last decade (1996–2005) exhibits an average 7% increase compared to each one of the previous decades. A similar behavior was found for the decadal average of the heights of maximum annual positive storm surges. In this case the average height of the last two decades exceeds that of the previous decades by approximately 8 cm. The decadal average of maximum annual duration of these meteorological events shows an increase of 2 h in the last three decades. A possible explanation of the changes in frequency, height and duration of positive storm surges at Mar del Plata would seem to lie in the relative mean sea-level rise.  相似文献   

8.
The role of the North Atlantic Oscillation (NAO) in effecting changes in winter extreme high and low waters and storm surges in UK waters has been investigated with the use of a depth-averaged tide+surge numerical model. Spatial patterns of correlation of extreme high and low waters (extreme still water sea levels) with the NAO index are similar to those of median or mean sea level studied previously. Explanations for the similarities, and for differences where they occur, are proposed. Spatial patterns of correlations of extreme high and low and median surge with the NAO index are similar to the corresponding extreme sea-level patterns. Suggestions are made as to which properties of surges (frequency, duration, magnitude) are linked most closely to NAO variability. Several climate models suggest higher (more positive) average values of NAO index during the next 100 years. However, the impact on the UK coastline in terms of increased flood risk should be low (aside from other consequences of climate change such as a global sea-level rise) if the existing relationships between extreme high waters and NAO index are maintained.  相似文献   

9.
Using a Before/During/After sampling protocol, the effects of the Le Havre harbour extension, which was started at the end of 2001, on the macrobenthic and suprabenthic communities in the eastern Bay of Seine (English Channel) were examined. As the construction phase has not yet been completed, the results presented here reflect only the data collected before and during the operations (September 2000 and 2002 for benthos sampling and March 2001, September 2001, October 2002 and March 2003 for suprabenthos sampling). Although bio-sedimentary changes did occur at the mouth of the Seine river, an analysis of benthic assemblages reveals that the dredging and construction operations do not seem to have influenced assemblage structure or the spatial distribution of organisms. Comparisons of the suprabenthic assemblages at each sampling date indicate that seasonal dynamics was mainly responsible for determining species distribution. We conclude that, 1 year into the harbour management plan, the observed changes in benthic and suprabenthic assemblage abundance do not exceed the range of spatial variability that exists naturally in the Seine estuary. Despite this compensatory actions designed to protect the aquatic habitats and to preserve a sustainable and healthy ecosystem have been added to the infrastructure development plan.  相似文献   

10.
A recently extended and spatially rich English Channel sea level dataset has been used to evaluate changes in extreme still water levels throughout the 20th century. Sea level records from 18 tide gauges have been rigorously checked for errors and split into mean sea level, tidal and non-tidal components. These components and the interaction between surge and tide have been analysed separately for significant trends before determining changes in extreme sea level. Mean sea level is rising at 0.8–2.3 mm/year, depending on location. There is a small increase (0.1–0.3 mm/year) in the annual mean high water of astronomical tidal origin, relative to mean sea level, and an increase (0.2–0.6 mm/year) in annual mean tidal range. There is considerable intra- and inter-decadal variability in surge intensity with the strongest intensity in the late 1950s. Storm surges show a statistically significant weak negative correlation to the winter North Atlantic Oscillation index throughout the Channel and a stronger significant positive correlation at the boundary with the southern North Sea. Tide–surge interactions increase eastward along the English Channel, but no significant long-term changes in the distribution of tide–surge interaction are evident. In conclusion, extreme sea levels increased at all of the 18 sites, but at rates not statistically different from that observed in mean sea level.  相似文献   

11.
《Continental Shelf Research》1999,19(15-16):2083-2099
Samples for analysis of nitrate plus nitrite, dissolved reactive phosphate and silicate were collected in the English Channel along a transect between Cherbourg and the Isle of Wight, within the framework of the FLUXMANCHE II programme. A total of 130 samples were obtained during 15 cruises between December 1994 and December 1995, thus giving a full seasonal coverage. Nutrient concentrations were generally highest on the UK side of the Channel, where riverine inputs were greatest. Nutrient fluxes across this transect from west to east for the winter period, when the nutrients exhibited quasi-conservative behaviour, were calculated using the N, P and Si data, and estimates of water fluxes derived from a two-dimensional hydrodynamic numerical model. A gyre system off the Isle of Wight led to localised east to west fluxes of nutrients. Although nutrient concentrations are lower in the central Channel than in the coastal zones, the nutrient fluxes are greatest through this central zone because of the higher fluxes of water through this part of the transect. The fluxes obtained through this mid-Channel transect are greater than fluxes estimated through the Straits of Dover for a similar winter period as part of the earlier FLUXMANCHE I (December 1990– March 1991) programme, suggesting significant variability from year to year, and/or removal of nutrients in the eastern Channel.  相似文献   

12.
Coastal flood risk will likely increase in the future due to urban development, sea-level rise, and potential change of storm surge climatology, but the latter has seldom been considered in flood risk analysis. We propose an integrated dynamic risk analysis for flooding task (iDraft) framework to assess coastal flood risk at regional scales, considering integrated dynamic effects of storm climatology change, sea-level rise, and coastal development. The framework is composed of two components: a modeling scheme to collect and combine necessary physical information and a formal, Poisson-based theoretical scheme to derive various risk measures of interest. Time-varying risk metrics such as the return period of various damage levels and the mean and variance of annual damage are derived analytically. The mean of the present value of future losses (PVL) is also obtained analytically in three ways. Monte Carlo (MC) methods are then developed to estimate these risk metrics and also the probability distribution of PVL. The analytical and MC methods are theoretically and numerically consistent. A case study is performed for New York City (NYC). It is found that the impact of population growth and coastal development on future flood risk is relatively small for NYC, sea-level rise will significantly increase the damage risk, and storm climatology change can also increase the risk and uncertainty. The joint effect of all three dynamic factors is possibly a dramatic increase of the risk over the twenty-first century and a significant shift of the probability distribution of the PVL towards high values. In a companion paper (Part II), we extend the iDraft to perform probabilistic benefit-cost analysis for various flood mitigation strategies proposed for NYC to avert the potential impact of climate change.  相似文献   

13.
Based on a three-month-scale standardized precipitation index (SPI-3) computed from the available rainfall data of 13 stations of Niger, meteorological drought trends, periodicities and the relationships with 10 oceanic–atmospheric variables were analysed using the Mann-Kendall test, continuous wavelet transform and cross-wavelet analysis, respectively. The results revealed a significant (p < 5%) increase in drought at five of the 13 stations. A common dominant drought periodicity of 2 years was found at all of the stations, whereas significant periodicities varied from 2 to 32 years at six stations. Among the considered climate indices, South Atlantic sea-surface temperature, Southern Oscillation Index, sea-level pressure, geopotential height and relative humidity from the Atlantic basin oscillated in anti-phase relative to the SPI-3 at an inter-annual to decadal time scale from 1960 to 1990. In this period, relative humidity from the Mediterranean basin and zonal wind oscillated in phase with the drought index.  相似文献   

14.
What dominates sea level at the coast: a case study for the Gulf of Guinea   总被引:1,自引:0,他引:1  
Sea level variations and extreme events are a major threat for coastal zones. This threat is expected to worsen with time because low-lying coastal areas are expected to become more vulnerable to flooding and land loss as sea level rises in response to climate change. Sea level variations in the coastal ocean result from a combination of different processes that act at different spatial and temporal scales. In this study, the relative importance of processes causing coastal sea level variability at different time-scales is evaluated. Contributions from the altimetry-derived sea-level (including the sea level rise due to the ocean warming and land ice loss in response to climate change), dynamical atmospheric forcing induced sea level (surges), wave-induced run-up and set-up, and astronomical tides are estimated from observational datasets and reanalyses. As these processes impact the coast differently, evaluating their importance is essential for assessment of the local coastline vulnerability. A case study is developed in the Gulf of Guinea over the 1993–2012 period. The leading contributors to sea level variability off Cotonou differ depending on the time-scales considered. The trend is largely dominated by processes included in altimetric data and to a lesser extent by swell-waves run-up. The latter dominates interannual variations. Swell-waves run-up and tides dominate subannual variability. Extreme events are due to the conjunction of high tides and large swell run-up, exhibiting a clear seasonal cycle with more events in boreal summer and a trend mostly related to the trend in altimetric-derived sea-level.  相似文献   

15.
Three years of mobile barrier operations have been simulated with a hydrodynamic model to check the efficiency of the barriers in defending the city of Venice from flooding. The simulations have been carried out in the actual situation and with a sea-level rise of 30 and 50 cm. Moreover, the interference of the barrier operations with the ship traffic has been studied. It is found that without a security increment for the forecasted water levels, the mobile barriers cannot defend completely Venice from flooding due to the uncertainty in the forecast. With a security increment of 10 cm, the barriers work well in actual conditions but still cannot avoid flooding with a global sea-level rise. The interference with the ship traffic is acceptable under actual conditions but becomes prohibitive with a sea-level rise of 50 cm, when nearly two-thirds of the ship passages are blocked or delayed.  相似文献   

16.
Abstract

This work presents a method for calculating the contributions of sea-level rise and urban growth to flood risk in coastal flood plains. The method consists of hydraulic/hydrological, urban growth and flood-damage quantification modules. The hydraulic/hydrological module estimates peak annual flows to generate flood stages impacted by sea-level rise within flood plains. A model for urban growth predicts patterns of urbanization within flood plains over the period 2010–2050. The flood-damage quantification module merges flood maps and urbanization predictions to calculate the expected annual flood damage (EAFD) for given scenarios of sea-level rise. The method is illustrated with an application to the Tijuana River of southern California, USA, and northwestern Mexico, where the EAFD is predicted to increase by over US$100 million because of sea-level rise of 0.25–1.0 m and urban growth by the year 2050. It is shown that urbanization plays a principal role in increasing the EAFD in the study area for the range of sea-level rise considered.

Editor Z.W. Kundzewicz

Citation Garcia, E.S. and Loáiciga, H.A., 2013. Sea-level rise and flooding in coastal riverine flood plains. Hydrological Sciences Journal, 59 (1), 204–220.  相似文献   

17.
Summary The trends appearing in the annual rainfall of the 14 selected coastal and island stations of the Mediterranean were invetigated by running 30-year averages. The periods used as well as the standard deviation, the average variability and the coefficient of variation of the annual rainfall are given for each of the 14 stations. It was found that in the majority of the stations upward and downward trends in the annual rainfall appeared but in a few only stations these trends coincide in the same intervals. A relative similarity appeared in the stations of Marseille-Trieste, Malta-Tunis, Gibraltar-Rome, Nicosia-Limassol and Beyrut-Alexandria. By examination of the three more important maxima and minima in the course of rainfall it was observed that many of them coincide simultaneously at about the same time in the different stations and also that these coincidences occurred near the maximum or minimum of sunspots.  相似文献   

18.
The frequency of floods has been projected to increase across Europe in the coming decades due to extreme weather events. However, our understanding of how flood frequency is affected by geomorphic changes in river channel capacity remains limited. This paper seeks to quantify the influence of trends in channel capacity on flood hazards. Measuring and predicting the effect of geomorphic changes on freshwater flooding is essential to mitigate the potential effects of major floods through informed planning and response. Hydrometric records from 41 stream gauging stations were used to measure trends in the flood stage (i.e. water surface elevation) frequency above the 1% annual exceedance threshold. The hydrologic and geomorphic components of flood hazard were quantified separately to determine their contribution to the total trend in flood stage frequency. Trends in cross‐sectional flow area and mean flow velocity were also investigated at the same flood stage threshold. Results showed that a 10% decrease (or increase) in the channel capacity would result in an increase (or decrease) in the flood frequency of approximately 1.5 days per year on average across these 41 sites. Widespread increases in the flood hazard frequency were amplified through both hydrologic and geomorphic effects. These findings suggest that overlooking the potential influence of changing channel capacity on flooding may be hazardous. Better understanding and quantifying the influence of geomorphic trends on flood hazard will provide key insight for managers and engineers into the driving mechanisms of fluvial flooding over relatively short timescales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The evolution of a barrier island and its stratigraphic architecture is investigated with the numerical model BIT (barrier island translation). The model simulates, with simplified equations, the effects of various processes (wind waves, storm surges, sea-level oscillations) on sediment location and characteristics. The presented formulation is able to reproduce both the cross-shore profile and the distribution of sediment facies in time.  相似文献   

20.
Low frequency sea-level variations and associated geostrophic currents in the central Great Barrier Reef (GBR) region near Townsville are studied using optimally-lagged multivariate regression. The analyses show that pressure-adjusted coastal sea levels and mid-shelf geostrophic currents are influenced predominantly by local along-shelf wind stress at the weather time-scale, and by climatic variables, such as atmospheric pressure and temperature, at seasonal and inter-annual time-scales. These forcing variables can specify sea levels over annual and inter-annual time-scales with a forecasting skill of 0.53 and 0.22, respectively (where 1.0 is perfect skill). Associated along-shelf geostrophic currents can be forecast with a skill of 0.57 over an annual time scale. If, instead, absolute coastal sea levels or offshore sea-level differences are used to specify the along-shelf geostrophic current, the forecasting skill is 0.75. A characteristic El Niño/Southern Oscillation (ENSO) response is detected for time periods up to 25 years in monthly sea-level both at Townsville and at western Pacific island sea-level stations. This spatially coherent response varies in intensity and phase within the Coral Sea. Sea-level differences show a pattern which characterizes known features of the large-scale circulation of the Coral Sea. These very low frequency sea-level variations in the Coral Sea must be taken into account to obtain accurate predictions of along-shelf geostrophic current variations on seasonal and inter-annual time scales. Regression analysis and a diagnostic river plume model show that the influence of the major rivers can produce sea-level changes due to buoyancy of order 5 cm. The corresponding errors in geostrophic velocities estimated using pressure-adjusted Townsville sea-level data alone are of order 5 cm s−1 rms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号