首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While studies on gravel mantled and mixed alluvial bedrock rivers have increased in recent decades, few field studies have focused on spatial distributions of bedrock and alluvial reaches and differences between reach types. The objective of this work is to identify the spatial distribution of alluvial and bedrock reaches in the Upper Guadalupe River. We compare reach length, channel and floodplain width, sinuosity, bar length and spacing, bar surface grain size, and slope in alluvial and bedrock reaches to identify whether major differences exist between channel reach types. We find that local disturbances, interaction of the channel and valley sides, variation in lithology, and regional structural control contribute to the distribution of bedrock reaches in the largely alluvial channel. Alluvial and bedrock channel reaches in the Upper Guadalupe River are similar, particularly with respect to the distribution of gravel bars, surface grain size distributions of bars, and channel slope and width. Our observations suggest that the fluvial system has adjusted to changes in base level associated with the Balcones Escarpment Fault Zone by phased incision into alluvial sediment and the underlying bedrock, essentially shifting from a fully alluvial river to a mixed alluvial bedrock river.  相似文献   

2.
We examine the morphology and dynamics features of the river channels within the basin of the lower reaches of the Amur river on spawning grounds. We report evidence that the spawning grounds tend to occur at definite elements of the river channel as well as data on particle-size composition of alluvial deposits in autumn chum salmon (keta) spawning stretches. Factors having a negative influence on the preservation of spawning grounds have been identified.  相似文献   

3.
J.M. Hooke   《Geomorphology》2007,84(3-4):277
This paper addresses questions of the spatial pattern of instability and the mechanisms of change in an active meandering river, particularly whether and how change is propagated. More than 20 years of monitoring of a sequence of nearly 100 bends on one dynamic meandering river, combined with historical data and previous analyses of processes of change, provide a unique insight into the link between annual changes produced by erosion and deposition and the longer-term changes in planform. The study reach of the River Dane in NW England exhibits stable and unstable sections adjacent to one another. Rates of movement range up to 3 m a− 1, with maxima occurring in high curvature, free bends. Stable reaches are due to factors of gradient, curvature and bank resistance. Analysis of the large amount of data on occurrence of erosion and deposition in each bend each year reveals no definite association of changes in one bend with another. The detailed evidence of the morphological features in the bends shows that changes do not take place by bars moving progressively through reaches. Case studies of bends upstream of constrained, stable reaches indicate an oscillation of widening and narrowing of the channel, over a period of a few years, producing a net rotation of the bend. These areas are zones of stalling of sediment and change takes place by absorption and lateral movement. Overall, changes tend to be localised and fit the bend theory of meanders, but with low sensitivity reaches pinning the planform for longer periods in certain locations.  相似文献   

4.
We assess the spatiotemporal changes in channel processes on rivers of Russia, determine the causes for vertical (incision or directional sediment accumulation) and horizontal (displacement of channel forms) deformations and show the distribution of stream channel of different morphodynamical types and with a different reconfiguration rate. The conditions are revealed, under which the channel types change over time. Particular emphasis is placed on the analysis of spatiotemporal changes in channels caused by anthropogenic disturbances and by direct technogenic interferences in the life of rivers (hydroelectric schemes, quarries in the river channels, and waterway dredging).  相似文献   

5.
We examine the transformation of a gentle segmental to a meander loop with the result that the city, founded in the 17th century, found itself on the caving bank. Comparison of cartographic materials from different times showed the occurrence of secondary bends on elongated rectilinear wings. Not only did such an evolution of the meanders lead to the caving of the terraced urban bank, but also it involved a likely emergency situation on the underwater crossing of the pipeline, and on other engineering facilities. We ascertained the causes of the ongoing channel deformations; modeling data were used in developing recommendations on meander straightening in order to divert the river away from the city.  相似文献   

6.
高超  王随继 《地理科学》2018,38(4):618-627
以黄河青藏高原阿万仓和采日玛两段主河道50 km与65 km长的网状河段为研究对象,利用2013年3期遥感影像绘制了不同流量下(176 m3/s,978 m3/s,1 610 m3/s)网状河段活动河道的分布变化图,结合DEM数据分析了现有河道在流量增加过程中的空间分布格局和潜在定量关系。研究结果表明:根据流量大小划分出的3类活动河道,其分布规律基本是后者位于前者的两侧,据此可以推断,网状河分支河道基本是从主河道向两侧逐渐发展的。对于阿万仓河段,在河谷和河间地相对宽阔处,每个河道断面上3类活动河道数的比值为1:1.67:2.25;而在河谷较窄的地方,该比值为1:1.22:1.33。在采日玛河段,该比值分别为1:1.3:1.4和1:0.95:1.16。在宽阔的草原湿地河段,当网状河的主河道发生弯曲时,弯道内侧的活动河道数要大于弯道外侧的活动河道数。在平坦开阔的河谷地带,断面上的活动河道线密度与河谷宽度之间呈现出极好的线性负相关关系;而峡谷地带由于两侧高地形的限制,河谷宽窄不一,活动河道的线密度相对较大、且差别也较大。  相似文献   

7.
Along the entire length of a large river there is taking place a substantial change in the formation conditions and stability of the channel, the rate and character of channel deformations and, accordingly, in the possibilities of water resources utilization, transport and engineering development of the river. By parametrizing the channel processes, it is possible to rank the river sections according to the degree of complexity of the channel processes, forms of their manifestation, and to the regime of channel reconfiguration, which, in turn, determines the possibilities of planning the measures ensuring the water resources utilization. Using the Ob’ as an example, we provide a rationale for the criteria for singling out the river sections differing by the degree of complexity of the channel processes, on the basis of parameters characterizing the forms of their manifestation, the state of the channels, and the intensity of deformations. We have identified eight sections of a different length, sequentially alternating along the length of the river from the confluence of the Biya and Katun’ as far as the mouth. The ranking of the river sections permitted the future planning of the water resources utilization measures.  相似文献   

8.
Elucidating the influence of dams on fluvial processes can inform river protection and basin management. However, relatively few studies have focused on how multiple factors interact to affect the morphological evolution of meandering reaches. Using hydrological and topographical data, we analyzed the factors that influence and regulate the meandering reaches downstream the Three Gorges Dam (TGD). Our conclusions are as follows. (1) The meandering reaches can be classified into two types based on their evolution during the pre-dam period: G1 reaches, characterized by convex point bar erosion and concave channel deposition (CECD), and G2 reaches, characterized by convex point bar deposition and concave channel erosion (CDCE). Both reach types exhibited CECD features during the post-dam period. (2) Flow processes and sediment transport are the factors that caused serious erosion of the low beaches located in the convex point bars. However, changes in the river regime, river boundaries and jacking of Dongting Lake do not act as primary controls on the morphological evolution of the meandering reaches. (3) Flood discharges ranging from 20,000 to 25,000 m3/s result in greater erosion of convex point bars. The point bars become scoured if the durations of these flows, which are close to bankfull discharge, exceed 20 days. In addition, the reduction in bedload causes the decreasing of point bar siltation in the water-falling period. (4) During the post-dam period, flood abatement, the increased duration of discharges ranging from 20,000 to 25,000 m3/s, and a significant reduction in sediment transport are the main factors that caused meandering reaches to show CECD features. Our results are relevant to other meandering reaches, where they can inform estimates of riverbed change, river management strategies and river protection.  相似文献   

9.
Ground‐penetrating radar surveys, coring and the analyses of satellite and aerial images have been carried out to study differences in the evolution of meander bends formed in various geological conditions. The research was conducted in the lower course of the Obra River (western Poland) characterized by a complex geology: particular sections of the valley were formed in glacial, stagnant water and fluvioglacial deposits. The research was conducted in four detailed study sites representing different formation conditions for the meander bends. Four types of meanders were distinguished: laterally migrating bends characterized by frequent changes of migration direction accompanied by river bed avulsions and cutoffs; bends with traces of continuous migration limited by stagnant water basin deposits; confined meanders in a narrow valley formed in glacial till characterized by the occurrence of mid‐channel islands; and meanders with traces of complex changes of the river bed migration influenced by anthropogenic intervention followed by intensive overbank deposition. Moreover, traces of an early development of the Obra valley and remains of multi‐channel pattern were discovered. The results also show that despite being formed in different geological conditions, a similar number of the meander migration phases were recorded in the floodplain architecture during the last 7000 years at each of the sites. It is also found that the development of the studied meanders was slow compared with cases of actively migrating meandering rivers.  相似文献   

10.
长江中下游阻隔性河段作用机理   总被引:1,自引:0,他引:1  
阻隔性河段能够阻隔上游河势调整向下游的传递,对稳定河势起到关键性作用。本文以长江中下游34个单一河段为研究对象,在系统总结长江中下游河道演变规律的基础上,归纳出阻隔性河段控制要素包括:单一微弯的河道平面形态、河段中上部无挑流节点;河相系数小于4;河道纵比降大于1.2?;凹岸黏粒含量高于9.5%;床沙中值粒径大于0.158 mm等。从Navier-Stokes方程出发,推导出河湾水流动力轴线弯曲半径的表达式,进而分析了各控制要素对水流动力轴线摆动及阻隔性河段形成的作用。阻隔性河段的判别条件为:不同流量级下水流动力轴线摆动力与河道边界条件约束力的比值始终小于1;阻隔性河段作用机理在于:即便上游河势发生调整,本河段的河道边界始终能约束主流摆动幅度,归顺上游不同河势条件下的主流平面位置,为下游河道提供了相对稳定的入流条件,从而阻隔上游河势调整向下游传递。  相似文献   

11.
Using the confluence nodes of broad-floodplain rivers as an example, we examine the different variants of effects of channel deformations (channel meandering of the main river and its tributary, formation of forks, and shift of meander bars) upon their configuration and reconfiguration across time. We demonstrate the diversity of these effects even where the deformations themselves are of the same type. Problems of further investigations are formulated.  相似文献   

12.
The results of investigations for the Selenga river basin and delta are presented. The causes for the changes in the channel network structure are considered. The study revealed tendencies of erosion activity and plane deformations within the delta. An analysis is made of the distribution of water flow rate and sediment loads for the channel network, based on field measurements and existing research material.  相似文献   

13.
黄河下游断面形态与水沙输移关系及数学模拟方法   总被引:4,自引:0,他引:4  
以前人对黄河下游的实测资料分析为基础,本文讨论断面形态与来水来沙关系、断面形态对输水输沙的影响,并根据实测资料,提出黄河下游弯段与直段断面冲淤变化的两种模式,建立了主流摆动及坍岸影响断面形态变化以及纵向冲淤量在断面的分布两种数学模拟方法。  相似文献   

14.
Elucidating the influence of dams on fluvial processes can inform river protection and basin management.However,relatively few studies have focused on how multiple factors interact to affect the morphological evolution of meandering reaches.Using hydrological and topographical data,we analyzed the factors that influence and regulate the meandering reaches downstream the Three Gorges Dam(TGD).Our conclusions are as follows.(1)The meandering reaches can be classified into two types based on their evolution during the pre-dam period:G1 reaches,characterized by convex point bar erosion and concave channel deposition(CECD),and G2 reaches,characterized by convex point bar deposition and concave channel erosion(CDCE).Both reach types exhibited CECD features during the post-dam period.(2)Flow processes and sediment transport are the factors that caused serious erosion of the low beaches located in the convex point bars.However,changes in the river regime,river boundaries and jacking of Dongting Lake do not act as primary controls on the morphological evolution of the meandering reaches.(3)Flood discharges ranging from 20,000 to 25,000 m3/s result in greater erosion of convex point bars.The point bars become scoured if the durations of these flows,which are close to bankfull discharge,exceed 20 days.In addition,the reduction in bedload causes the decreasing of point bar siltation in the water-falling period.(4)During the post-dam period,flood abatement,the increased duration of discharges ranging from 20,000 to 25,000 m3/s,and a significant reduction in sediment transport are the main factors that caused meandering reaches to show CECD features.Our results are relevant to other meandering reaches,where they can inform estimates of riverbed change,river management strategies and river protection.  相似文献   

15.
黄河流域河型转化现象初探   总被引:9,自引:0,他引:9  
黄河以其高含沙水流以及下游河道的高沉积速率而著称于世。迄今的研究, 主要针对黄河中下游流域的 侵蚀、水文泥沙和河床演变方面的研究, 而对黄河流域主支流发生河型转化的现象关注不够。在黄河的不同河段, 河型的变化频繁, 类型多样, 现象复杂, 是研究者不可回避的科学问题。本文选取黄河上游第一弯的玛曲河段、黄河 上游末段托克托附近河段及黄河下游高村上下河段来研究河型转化的形式及影响因素。玛曲河段沿流向发生网状 河型→弯曲河型→辫状河型的转化现象, 该系列转化呈现出由极稳定河型向极不稳定河型的转化, 这与世界上通 常可以观察到的沿流向不稳定河型向稳定河型转化的情况完全相反。这主要受到地壳的抬升、上下峡谷卡口、水动 力特征、边界沉积物特征及植被的区域分布等因素的控制。托克托附近沿流向发生了弯曲河型→顺直河型转化的 现象, 这是较稳定河型向极稳定河型的转化, 主要受到边界沉积物、水动力等因素的控制。高村上下河段沿流向发 生的辫状河型→弯曲河型转化的现象, 是由极不稳定河型向较稳定河型转化的现象, 河道边界沉积物及水动力是 其主要控制因素, 人工大堤只是限制了河道摆动的最大幅度, 对河型的性质影响不大, 但其上游河段修筑的水库导 致下泻的水流在辫状河段的侵蚀能力增强而使其边界沉积物粗化, 并将泥质物大量沉积在弯曲河段, 客观上促进 了河型的转化。  相似文献   

16.
Leif M. Burge   《Geomorphology》2004,63(3-4):115-130
This study tests the assumption that the characteristics of channels within multiple channel rivers are different from those of single channel rivers. Some river restoration approaches propose radical transformation of river patterns, from multiple to single channels, based on the link between river patterns and their in-channel characteristics. Determining the links between river patterns and their in-channel characteristics is complicated by differences in geology, history, climate and discharge among rivers. Furthermore, multiple channel rivers are composed of a mosaic of channel types with a range of in-channel characteristics. This study minimizes these problems by analysing a single river containing neighbouring single and multiple channel patterns with little change in discharge downstream, and by analysing all channel types. The study addressed two objectives: to determine the hydraulic geometry, energy, and sediment mobility characteristics of neighbouring single and multiple channel river patterns, and to test for statistical differences in these characteristics between patterns. The Renous River shows a wandering pattern for 11.5 km, with multiple channels around semipermanent islands and abandoned channels in the flood plain. The river displays a single channel river pattern where channels are confined by their valley walls, upstream and downstream of wandering. The analysis was conducted at three scales. First, the confined single channel and wandering multiple channel patterns were compared (pattern scale). Second, the confined channel pattern was compared to single and multiple channel sections within the wandering pattern (section scale). Third, all channel types were compared (channel type scale). Multi response permutation procedure (MRPP) and analysis of variance (ANOVA) were used to analyze differences between channels. Difference tests found no simple discrimination between the single and multiple channel river patterns of the Renous River. Tests between the single confined and multiple wandering channel patterns found few differences in the in-channel variables. The tests did find differences between multiple channel sections within the wandering pattern and confined single channels; however, a greater number of differences were found between multiple channel and single channel sections within the wandering pattern, highlighting the variability within the wandering pattern. Two groups emerged when all channel types were tested for differences: perennial main-channels containing the thalweg, and ephemeral side-channels. Therefore, side-channels define the in-channel characteristics of wandering rivers because few differences were found among main-channels in either pattern. This analysis suggests that all channel types, not just main-channels, should be investigated to obtain a complete picture of a river pattern prior to any restoration efforts. Engineers must exercise caution when applying the link between river patterns and in-channel characteristics to river restoration efforts.  相似文献   

17.
Evolution of the river channel downstream of reservoirs is a complex process that is closely related to the operational mode of the reservoirs and the channel boundary conditions. Numerous studies have been carried out on the fluvial processes of downstream reservoirs. However, only a few of them have focused on the relationship between runoff-sediment conditions and channel pattern indicators. Also, the impacts of river training works on fluvial processes are seldom dealt with. In this paper, the evolutionary processes of three sections in the Lower Yellow River, including Tiexie-Yiluo River mouth reach, Huayuankou-Heigangkou reach and Jiahetan-Gaocun reach, were analyzed for variations in the channel boundary line and the mainstream between 1960 and 2015. Channel pattern indicators such as sinuosity, mainstream wandering range and width/depth ratio were analyzed based on field measurements obtained by the Hydrological Department of the Yellow River Conservancy Commission. The effects of river training works on the channel evolution are then described. Since 1960, numerous medium- and large-sized reservoirs have been built on the Yellow River, including Longyangxia Reservoir, Liujiaxia Reservoir and Xiaolangdi Reservoir. These reservoirs impound the runoff from upstream and retain the sediment, which changes the runoff and sediment conditions in the downstream reach. As a consequence, annual runoff and the frequency and peak of flooding have all decreased. As a result, the flow dynamics and their action on the river channel are also reduced, which changes the dynamic state of the river course. The discrimination results obtained using the single parameter discrimination rule and the discrimination equation show that the degree of wandering is weakened in the reaches studied. The variations in the channel pattern indicators show that the sinuosity increases and the wandering range decreases with a reduction in the total annual volume of water. However, the degree of wandering has little relationship to the sediment concentration. In addition, river training works play an important role in controlling the river course. Due to improvements in the river training works, the river course has become more stable under the same runoff and sediment conditions. A new discrimination rule that takes into account the impacts of the river training works is proposed. The discrimination results were found to fit well with the actual river pattern, which shows that the discrimination rule is applicable to the Lower Yellow River. The results show that the runoff and sediment conditions are the most important factors in the evolution of the river course. The river training works have at the same time limited the wandering range of the mainstream and played an important role in the fluvial processes. Both factors combined lead to the stabilization of the river.  相似文献   

18.
三峡大坝下游水位变化与河道形态调整关系研究   总被引:8,自引:2,他引:6  
三峡水库蓄水利用已有13年,对坝下游洪、枯水位和河道形态调整的影响已初步显现,通过对1955-2016年长江中游水位、河道地形等资料的分析,结果表明:① 坝下游各水文站同流量枯水位下降、洪水位变化不大,最低水位上升,最高水位下降趋势;② 2002年10月-2015年10月枯水河槽冲刷量占平滩河槽冲刷量的95.5%,冲淤分布由蓄水前“冲槽淤滩”转为“滩槽均冲”,不同蓄水阶段存在差异;③ 河槽冲刷过程中,上荆江及以上河段枯水位下降趋势趋缓,下荆江及以下河段下降速率增加,应采取防控措施遏制河道水位下降趋势;④ 枯水河槽冲刷是长江中下游航道水深提升的基础,枯水位降幅小于深槽下切深度,在河道和航道整治工程综合作用下航道尺度提升,提前5年实现了2020年航道尺度规划目标;⑤ 平滩水位以上河槽形态调整不大,在河床粗化、岸滩植被、人类活动等综合作用下河道综合阻力增加,出现了中洪水流量—高水位现象,应引起足够重视。三峡水库汛期调蓄作用可有效提升中下游洪水防御能力,但不排除遭遇支流洪水叠加效应,中下游洪水压力仍然较大。  相似文献   

19.
Alluvial channel has always adjusted itself to the equilibrium state of sediment transport after it was artificially or naturally disturbed. How to maintain the equilibrium state of sediment transport and keep the river regime stable has always been the concerns of fluvial geomorphologists. The channel in the middle and lower reaches of the Yangtze River is characterized by the staggered distribution of the bifurcated river and the single-thread river. The change of river regime is more violently in the bifurcated river than in the single-thread river. Whether the adjustment of the river regime in the bifurcated river can pass through the single-thread river and propagate to the downstream reaches affects the stabilities of the overall river regime. Studies show that the barrier river reach can block the upstream channel adjustment from propagating to the downstream reaches; therefore, it plays a key role in stabilizing the river regime. This study investigates 34 single-thread river reaches in the middle and lower reaches of the Yangtze River. On the basis of the systematic summarization of the fluvial process of the middle and lower reaches of the Yangtze River, the control factors of barrier river reach are summarized and extracted: the planar morphology of single-thread and meandering; with no flow deflecting node distributed in the upper or middle part of the river reach; the hydraulic geometric coefficient is less than 4; the longitudinal gradient is greater than 12‰, the clay content of the concave bank is greater than 9.5%, and the median diameter of the bed sediment is greater than 0.158 mm. From the Navier-Stokes equation, the calculation formula of the bending radius of flow dynamic axis is deduced, and then the roles of these control factors on restricting the migration of the flow dynamic axis and the formation of the barrier river reach are analyzed. The barrier river reach is considered as such when the ratio of the migration force of the flow dynamic axis to the constraint force of the channel boundary is less than 1 under different flow levels. The mechanism of the barrier river reach is such that even when the upstream river regime adjusts, the channel boundary of this reach can always constrain the migration amplitude of the flow dynamic axis and centralize the planar position of the main stream line under different upstream river regime conditions, providing a relatively stable incoming flow conditions for the downstream reaches, thereby blocking the upstream river regime adjustment from propagating to the downstream reaches.  相似文献   

20.
黄河下游河道断面形态参数变化及其水沙过程响应   总被引:1,自引:0,他引:1  
刘慰  王随继  王彦君 《地理科学》2020,40(9):1563-1572
基于1965—2015年黄河下游花园口、高村、泺口站的逐年水文和汛前河道断面的实测资料,分析了河道断面形态参数(河道断面面积,河道宽深比等)的变化,以及对河道断面形态与来水来沙间的关系做出定量化分析。结果表明:主槽断面形态参数与水沙搭配以及前期断面形态密切相关,沿程3个断面形态参数调整方式存在显著差异。河宽调整幅度沿程减小,辫状河段变幅最大,尤其在1986—1999年,辫状河段萎缩程度最为严重,其次为弯曲河段,顺直河段横向调整幅度最小。受到前期断面形态的影响,辫状河段河道断面调整方式既有横向展宽(萎缩)又有垂直加深(淤积);弯曲河段河道宽深比与流量呈较弱的正相关关系,具有横向和垂向的调整方式;而顺直河段的宽深比与流量呈负相关关系,与来沙系数呈正相关关系,河道以垂直加深(淤积)为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号