首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Long-term data from meteorological stations have been used in assessing the thermal state of the soil layer in large depressions of the Prebaikalia and Northern Transbaikalia. We examine the characteristics of temperature distribution in depth over an annual cycle for seasonally frozen and permafrost soils. For the Baikalian type depressions we carried out a spatial differentiation of the lowest and highest (having regard to the temperature lag) mean monthly soil temperatures. It is concluded that within a single depression the thermal regime of the soil fluctuates over a very broad range. On the other hand, an identical situation with the temperature regime can occur in different depressions.  相似文献   

2.
Combined observations of hourly soil temperature and electric potential, the latter converted to a relative index of soil-water solute concentration, yield information on the physical chemistry of near-surface frost effects. Solute concentration near the descending 0° C isotherm in the refreezing active layer above permafrost is divided into three distinct zones: (1) an ion-enriched zone in the unfrozen active layer that precedes the penetrating freezing front; (2) an ion-purified desorbed zone at the freezing front that is the source region of the downward-expelled ions and water; and (3) a hydrologically isolated subfreezing zone of enhanced solute concentration located above the freezing isotherm. High-frequency fluctuations superimposed on these general patterns are traceable to vapor migration driven by surface thermal fluctuations. These effects diminish at temperatures below about -0.4° C, as permeability decreases with soil-ice formation. The combined temperature-solute concentration time series is used to develop sorption curves for the frozen organic and mineral soils, and indicates that approximately half of the pore water present in the mineral soil at -0.4° C had not been converted to ice at -6° C. Gradual soil desiccation over winter appears to result from outward vapor diffusion, possibly through soil cracks. [Key words: Alaska, active layer, frozen ground, soil temperature, soil water, permafrost.]  相似文献   

3.
Based on the analysis and comparison of soil temperature, thermal regime and permafrost table under the experimental embankment of crushed rock structures in Beiluhe, results show that crushed rock structures provide an extensive cooling effect, which produces a rising permafrost table and decreasing soil temperatures. The rise of the permafrost table under the embankment ranges from an increase of 1.08 m to 1.67 m, with an average of 1.27 m from 2004 to 2007. Mean annual soil temperatures under the crushed rock layer embankment decreased significantly from 2005 to 2007, with average decreases of ?1.03 °C at the depth of 0.5 m, ?1.14 °C at the depth of 1.5 m, and ?0.5 °C at the depth of 5 m. During this period, mean annual soil temperatures under the crushed rock cover embankment showed a slight decrease at shallow depths, with an average decrease of ?0.2 °C at the depth of 0.5 m and 1.5 m, but a slight rise at the depth of 5 m. After the crushed rock structures were closed or crammed with sand, the cooling effect of the crushed rock layer embankment was greatly reduced and that of the crushed rock cover embankment was just slightly reduced.  相似文献   

4.
In the last several decades, the underlying surface conditions on the Qinghai-Tibet Plateau have changed dramatically, causing permafrost degradation due to climate change and human activities. This change severely influenced the cold regions environment and engineering infrastructure built above permafrost. Permafrost is a product of the interaction between the atmosphere and the ground. The formation and change of permafrost are determined by the energy exchange between earth and atmosphere system. Fieldwork was performed in order to learn how land surface change influenced the thermal regime in permafrost regions. In this article, the field data observed in the Fenghuo Mountain regions was used to analyze the thermal conditions under different underlying surfaces on the Qinghai-Tibet Plateau. Results show that underlying surface change may alter the primary energy balance and the thermal conditions of permafrost. The thermal flux in the permafrost regions is also changed, resulting in rising upper soil temperature and thickening active layer. Vegetation could prevent solar radiation from entering the ground, cooling the ground in the warm season. Also, vegetation has heat insulation and heat preservation functions related to the ground surface and may keep the permafrost stable. Plots covered with black plastic film have higher temperatures compared with plots covered by natural vegetation. The reason is that black plastic film has a low albedo, which could increase the absorbed solar radiation, and also decrease evapotranspiration. The "greenhouse effect" of transparent plastic film might effectively reduce the emission of long-wave radiation from the surface, decreasing heat loss from the earth's surface, and prominently increasing ground surface temperature.  相似文献   

5.
After the construction of Qinghai-Tibet Highway and Railway, the Qinghai-Tibet Power Transmission(QTPT) line is another major permafrost engineering project with new types of engineering structures. The changing process and trend of ground temperature around tower foundations are crucial for the stability of QTPT. We analyzed the change characteristics and tendencies of the ground temperature based on field monitoring data from 2010 to 2014. The results reveal that soil around the tower foundations froze and connected with the artificial permafrost induced during the construction of footings after the first freezing period, and the soil below the original permafrost table kept freezing in subsequent thawing periods. The ground temperature lowered to that of natural fields, fast or slowly for tower foundations with thermosyphons,while for tower foundations without thermosyphons, the increase in ground temperature resulted in higher temperature than that of natural fields. Also, the permafrost temperature and ice content are significant factors that influence the ground temperature around tower foundations. Specifically, the ground temperature around tower foundations in warm and ice-rich permafrost regions decreased slowly, while that in cold and ice poor permafrost regions cooled faster. Moreover, foundations types impacted the ground temperature, which consisted of different technical processes during construction and variant of tower footing structures. The revealed changing process and trend of the ground temperature is beneficial for evaluating the thermal regime evolution around tower foundations in the context of climate change.  相似文献   

6.
长江源区五道梁的土壤热状况研究   总被引:1,自引:0,他引:1       下载免费PDF全文
活动层土壤热状况是寒区陆面物理过程研究的重要内容之一。利用五道梁能量收支观测站1993年9月~2000年12月份实测辐射及土壤热通量资料结合五道梁气象站1961-2010时段的气象资料分析了近50 a来该地区活动层土壤的热状况。结果表明:五道梁地区土壤热通量有显著的年际、年代际变化;20世纪60~80年代,土壤热通量小于0.0 W/m2,活动层土壤以放热为主,自90年代以来,土壤热通量大于0.0 W/m2,活动层土壤以吸热为主。过去50 a中该地土壤热通量呈现增大趋势,平均每10 a土壤热通量增大0.31 W/m2。土壤热通量随净辐射的增大而增大。土壤热平衡系数的变化特点与土壤热通量的变化特点一致。60~80年代,活动层土壤热平衡系数<1,该地区冻土相对比较稳定,而自90年代以来此间土壤热平衡系数<1,表明该地多年冻土呈现出退化迹象。活动层土壤热平衡系数可表示为气温、地表温度及水汽压的函数。  相似文献   

7.

It has repeatedly been reported that snow cover is a dominating factor in determining the presence or absence of permafrost in the discontinuous and sporadic permafrost regions. The temperature at the snow-soil interface by the end of winter, known as the bottom temperature of winter snow (BTS) method, has been used to detect the existence of permafrost in European alpine regions when the maximum snow depth is about 1.0 m or greater. A critical snow thickness of about 50 cm or greater can prevent the development of permafrost in eastern Hudson Bay, Canada. The objective of this study is to investigate the impact of snow cover on the presence or absence of permafrost in cold regions through numerical simulations. A one-dimensional heat transfer model with phase change and a snow cover regime is used to simulate energy exchange between deep soils and the atmosphere. The model has been validated against the in situ data in the Arctic. The simulation results indicate that both snow depth and the onset date of snow cover establishment are important parameters in relation to the presence or absence of permafrost. Early establishment of snow cover can make permafrost disappear, even with a relatively thin snow cover. Permafrost may survive when snow cover starts after the middle of December even with a snow thickness >1.0 m. This effect of snow cover on the ground thermal regime can be explained with reference to the pattern of seasonal temperature variation. Early establishment of snow cover enhances the insulating impact over the entire cold season, thus warming and eventually thawing the permafrost. The insulating effect is substantially reduced when snow cover starts relatively late and snowmelt in the spring creates a huge heat sink, resulting in a favorable combination for permafrost existence.  相似文献   

8.
For the purpose of enhancing air convection and controlling solar radiation, a new crushed-rock slope embankment design combined with a sun-shade measure is proposed. A newly designed embankment was constructed in the Tuotuohe section of the Qinghai-Tibet Railway and a field-testing experiment was carried out to determine its convection and temperature characteristics. The results show that distinct air convection occurred in the crushed-rock layer of the new embankment, especially in cold seasons, which was enhanced when it flowed upwards along the slope. This preliminarily indicated that the new design of the embankment slope was good for reinforcing air convection in the crushed-rock layer. The frequent fluctuations of the convection speed and the environmental wind speed were in good agreement, suggesting that the convection in the crushed rock primarily came from the ambient wind. It was also preliminarily determined that the new embankment had a better cooling effect and sun-shade effect for decreasing the temperature of the embankment slope compared with a traditional crushed-rock slope embankment, and the mean temperature difference between them was up to 1.7 °C. The mean annual temperature at the bottom boundary of the crushed-rock layer was obviously lower than that at the top boundary, and heat flux calculation showed that the shallow soil beneath the embankment slope was weakly releasing heat, all of which indicated that the new embankment slope design was beneficial to the thermal stability of the embankment. This study is helpful in providing some references for improved engineering design and maintenance of roadbeds in permafrost regions.  相似文献   

9.
Significant lateral variations in observed temperatures in the Beaufort‐Mackenzie Basin raise the question on the temperature‐controlling factors. Based on the structural configuration of the sediments and underlying crust in the area, we calculate the steady‐state 3D conductive thermal field. Integrated data include the base of the relic permafrost layer representing the 0 °C‐isotherm, public‐domain temperature data (from 227 wells) and thermal conductivity data. For >75% of the wells the predicted temperatures deviate by <10 K from the observed temperatures, which validates the overall model setup and adopted thermal properties. One important trend reproduced by the model is a decrease in temperatures from the western to the eastern basin. While in the west, a maximum temperature of 185 °C is reached at 5000 m below sea level, in the east the maximum temperature is 138 °C. The main cause for this pattern lies in lateral variations in thermal conductivity indicating differences in the shale and sand contents of the different juxtaposed sedimentary units. North‐to‐south temperature trends reveal the superposition of deep and shallow effects. At the southern margin, where the insulating effect of the low‐conductive sediments is missing, temperatures are lowest. Farther north, where the sub‐sedimentary continental crust is thick enough to produce considerable heat and a thick pile of sediments efficiently stores heat, temperatures tend to be highest. Temperatures decrease again towards the northernmost distal parts of the basin, where thinned continental and oceanic crust produce less radiogenic heat. Wells with larger deviations of the purely conductive model from the temperature observations (>15 K at 10% of the wells) and their basin‐wide pattern of misfit tendency (too cold vs. too warm temperature predictions) point to a locally restricted coupling of heat transport to groundwater flow.  相似文献   

10.
On the basis of analyzing long-term field data, we investigated the vertical thermal structure of 66 lakes of the North-West of Russia during the freeze-up period. The largest variability in thermal structure is characteristic for low-drainage shallow water bodies. Detailed data were obtained at self-contained buoy stations located in a small Lake Vendyurskoe (southern Karelia) were used to identify water temperature changes at the depths for a winter season as well as making assessments of het flows at the water–bottom and water–ice interfaces. The interannual water temperature variability at the depths reaches 2°C. The main geographical factors influencing the formation of thermal stratifications in the 66 lakes used in the study during the winter period are their mean depth, area, water residence time and geographical latitude. The largest vertical water temperature gradients are characteristic for the group of the smallest and shallow lakes, in the bottom layers of which the water temperature exceeds the temperature of maximum density, whereas in the deep lakes (more than 15 m) the water temperature is below 4°C. The lowest values of water temperature are observed in large lakes. The water temperature in the upper layer (up to 10 m) of drainage water bodies also decreases to 0–1°C as the result of the removal of heat with the river discharge. According to the thermal stratifications, the lakes are categorized as small (shallow, deep and drainage lakes), medium-sized and large shallow and large deep lakes. The suggested regression model permits a typical water temperature to be assessed at standard depths at the end of a winter season for any water body in the study region using available geographical information. The verification of the model is done from independent data for eight lakes of Finland.  相似文献   

11.
The annually thawing active layer of permafrost is central to considerations of climate change consequences in arctic areas and interpretations of deep permafrost temperatures that constitute and exceptional archive of past climate change. Moreover, a sound understanding of the thermal regime of the active layer is of great interest, because all chemical, biological and physical processes are concentrated there. The author studied this layer by examining the soil physical properties and heat transfer processes that dictate soil temperatures for an arctic desert site in northwestern Spitsbergen. A wide array of soil physical properties based on field observations and laboratory measurements were defined. These include mineralogy, grain size distribution, local regolith thickness, porosity, density, typical soil moisture profile, heat capacity and thermal conductivity. Heat transfer processes were studied through modeling of soil temperatures. The heat transfer model accounted for much of the observed soil thermal regime. It was found that thermal conduction, phase change of soil water at 0°C, and changes in unfrozen water content are the primary thermal processes that explain the observed soil temperatues in this field site. Melt-water infiltration, which is often overlooked in the energy budget, causes abrupt warming events and delivers considerable energy to the soil in late spring. An increase in frequency or magnitude of infiltration events could mimic simple spring time surface warming. Advection of ground water and soil internal evaporation were found to be generally unimportant at the site studied.  相似文献   

12.
In order to study the stability of the Qinghai-Tibet Highway embankment at Chumaerhe in the permafrost region of northwest China, the ground temperature and deformation at different depths were monitored under the left and right shoulders of the embankment where thermosyphons were set up only on the left shoulder. Based on the monitored data, characteristics of ground temperature and deformation of the left and right shoulders are analyzed and discussed. The results show that the start time of freezing or thawing of the seasonal active layer was about one to two months later than that of the embankment body itself. The stability of each shoulder was mainly controlled by the settlement of different soil layers,whereasfrost heave of soil had scarcely any effect on the stability of the embankment. For the left shoulder, the settlement was mainly influenced by the seasonal active layer and then by the embankment body itself,due to freeze-thaw cycles which may change the soil properties; however, the permafrost layer remained fairly stable. For the right shoulder, creep of the warm permafrost layer was the main influence factor on its stability, followed by settlement of embankment body itself, and finally settlement of the seasonal active layer. Compared with the deformation of the left shoulder, the permafrost layer under the right shoulder was less stable, which indicates that the thermosyphons had a significantly positive effect on the stability of warm permafrost.  相似文献   

13.
1951—2010年中国土壤温度时空变化特征及其影响因素   总被引:1,自引:0,他引:1  
土壤温度状况对于研究气候变迁、地球物质能量循环以及土壤性质演变具有重要意义,但目前对国家尺度上土壤温度状况的长期序列和空间变化缺少研究。因此,本文基于土壤温度内插法和地理加权回归(GWR)模型,使用1951—2010年中国880个气象站点的观测数据,研究了中国土壤温度状况时空变化特征及其影响因素。结果表明:① 中国60年来土壤温度变化整体趋势为东北地区升温,西南地区少部分地区降温;② 中国土壤温度状况可划分为冷性土壤温度状况(东北地区、青藏高原地区和内蒙古东部)、温性土壤温度状况(新疆南部、内蒙古和山西南部以及山东)和热性土壤温度状况(华中、华东、华南以及西南的云南、贵州和四川);③ 经纬度和气温与土壤温度具有良好的响应关系,其中气温是最重要的影响因素;④ 中国60年来整体呈现温性土壤向北迁移(约46.5 km)、冷性土壤向南迁移(约43.4 km)的趋势。研究结果可为地理学、土壤学等相关领域深入研究提供一定参考,并为土壤系统分类研究提供理论依据。  相似文献   

14.
Soil temperature records obtained from the active layer above permafrost at a site in northern Alaska during autumn and winter have variance spectra inconsistent with a purely conductive heat-transfer system. Although conductive heat-transfer theory predicts that temperature fluctuations are attenuated with depth, sub-diurnal thermal variance at the 50-cm level, near the base of the active layer, exceeded that at the 10-cm level. Short segments of the temperature record were drawn from three distinct periods of soil-frost conditions: (1) at the maximum vertical development of the active layer in early autumn; (2) during frost penetration and the formation of a zero curtain in early winter; and (3) after freezeback of the active layer. The variance spectra of these time series show systematic seasonal transitions that reflect changing mechanisms of heat transfer. During the first and second periods, heat transfer by internal evaporation and condensation dominates at wavelengths in the diurnal range. The spectral traces are not strongly self-similar and the fractal dimensions indicate extreme space-filling, especially at deeper levels. Once the active layer is frozen, conductive heat transfer dominates, producing a trend toward self-similarity. Both the thermal variance and the fractal dimension decrease with depth in the frozen regime. [Key words: Alaska, active layer, coupled flow, fractal dimension, frozen ground, heat transfer, permafrost, soil freezing, spectral analysis, zero curtain.]  相似文献   

15.
Permafrost thickness under identical climates in cold regions can vary significantly because it is severely affected by climate change, topography, soil physical and thermal properties, and geothermal conditions. This study numerically in- vestigates the response of ground thermal regime and talik development processes to permafrost with different thicknesses under a thermokarst lake on the Qinghai-Tibet Plateau. On the basis of observed data and information from a representative monitored lake in the Beiluhe Basin, we used a heat transfer model with phase change under a cylindrical coordinate system to conduct three simulation cases with permafrost thicknesses of 45 m, 60 m, and 75 m, respectively. The simulated results indicate that increases in permafrost thickness not only strongly retarded the open talik formation time, but also delayed the permafrost lateral thaw process after the formation of open talik. Increasing the permafrost thickness by 33.3% and 66.7% led to open talik formation time increases of 83.66% and 207.43%, respectively, and resulted in increases in the lateral thaw duration of permafrost under the modeled thermokarst lake by 28.86% and 46.54%, respectively, after the formation of the open taliks.  相似文献   

16.
The active-layer soils overlying the permafrost are the most thermodynamically active zone of rock or soil and play important roles in the earth-atmosphere energy system. The processes of thawing and freezing and their associated complex hydrothermal coupling can significantly affect variation in mean annual temperatures and the formation of ground ice in permafrost regions. Using soil-temperature and-moisture data obtained from the active layer between September 2011 and October 2014 in the permafrost region of the Nanweng'he River in the Da Xing'anling Mountains, the freeze-thaw characteristics of the permafrost were studied. Based on analysis of ground-temperature variation and hydrothermal transport characteristics, the thawing and freezing processes of the active layer were divided into three stages:(1) autumn-winter freezing,(2) winter freeze-up, and(3) spring-summer thawing. Variations in the soil temperature and moisture were analyzed during each stage of the freeze-thaw process, and the effects of the soil moisture and ground vegetation on the freeze-thaw are discussed in this paper. The study's results show that thawing in the active layer was unidirectional, while the ground freezing was bidirectional(upward from the bottom of the active layer and downward from the ground surface).During the annual freeze-thaw cycle, the migration of soil moisture had different characteristics at different stages. In general, during a freezing-thawing cycle, the soil-water molecules migrate downward, i.e., soil moisture transports from the entire active layer to the upper limit of the permafrost. In the meantime, freeze-thaw in the active layer can be significantly affected by the soil-moisture content and vegetation.  相似文献   

17.
蒙古气旋产生强沙尘暴的诊断分析   总被引:1,自引:1,他引:0  
利用MICAPS资料、FY-2C红外卫星云图和2.5°×2.5°NCEP再分析资料,对2008年5月25日至28日大范围沙尘暴过程进行了天气动力诊断和物理量场分析。结果表明,强沙尘暴主要出现在冷平流前的温度梯度密集区和涡度梯度密集、陡峭区。在这次强沙尘暴过程中,暖平流是蒙古气旋发生、发展的重要热力因子,大气热力不稳定和强风是起沙的动力;500 hPa阶梯槽快速东移是飚线产生的触发系统;对流风暴是引发强沙尘暴主要因素。蒙古气旋的发展加大了冷锋前后的气压和温度梯度,为对流风暴的发生提供了热力不稳定条件。700 hPa冷平流爆发性下沉、南下,为强沙尘暴的产生提供了强大动力。  相似文献   

18.
One of the main construction problems in permafrost regions is protecting permafrost thermal stability. Although ventilating ducts and crushed-rock layers were successfully used in railway embankment construction, their effects might not meet large-width expressway requirements. The convection-intensifying composite embankment composed of perforated ventilation ducts and crushed-rock layers was numerically studied to investigate its cooling effects. Adopting a numerical model, the temperature fields for two kinds of composite embankment with and without air doors were analyzed considering air flow and heat transfer characteristics in porous media. The results show that wind velocity in the crushed-rock zone is intensified by the perforated ventilation duct. The underlying permafrost temperature obviously decreases, and the 0 °C isotherm position rises significantly due to composite embankment. The composite embankment with air doors is more effective than that without air doors. Therefore, the new convection-intensifying composite embankment is potentially a highly efficient cooling measure for construction in permafrost regions.  相似文献   

19.
准确获取青藏高原地表反照率的季节变化特征对高原地表能水循环研究具有重要意义。本文利用青藏高原多年冻土区西大滩和唐古拉2007年的气象及辐射数据,运用相关分析方法研究了太阳高度角、积雪及活动层冻融过程对地表反照率变化的影响。结果显示:冷暖季降雪过程中地表反照率的变化差异较明显;地表无积雪覆盖期间,地表反照率与气温和表层土壤含水量呈反相关关系。利用多元回归分析法构建了以积雪日数和气温为影响因子的月均地表反照率计算回归方程,经检验与观测值对比平均相对误差为7.1%,可用于青藏高原北部地表反照率的估算。  相似文献   

20.
塔里木盆地一次东灌型沙尘暴环流动力结构分析   总被引:6,自引:5,他引:1  
利用NCEP再分析资料和常规地面观测资料,对2006年4月10日塔里木盆地发生的一次东灌型沙尘暴,从气候背景、环流形势、螺旋度场、锋生次级环流、温度平流等方面进行分析,揭示了此类沙尘暴强盛期的环流动力结构。结果表明:①里咸海脊、乌拉尔脊、新地岛脊同位向叠加,西西伯利亚横槽转竖南下,引导泰米尔半岛强冷空气爆发直插新疆,东灌进入南疆盆地,造成大范围沙尘暴天气;②西西伯利亚地面冷高压爆发性南下并强烈发展是造成此次沙尘天气的根本原因;③盆地前期的干暖形势为沙尘暴的产生提供了有利的热力条件;④沙尘暴区上空螺旋度垂直分布为低层正值、高层负值,构成低空强辐合、高空强辐散的上升运动区,揭示强旋转上升运动是大范围沙尘暴发生的动力条件;⑤高空急流入口区次级环流下沉支导致高层动量下传 ,促使对流层中低层风力加大,冷锋南压,驱动沙尘天气的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号