首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Annually resolved June–July–August (JJA) temperatures from ca. 570 BC to AD 120 (±100 a; approximately 690 varve years) were quantified from biogenic silica and chironomids (Type II regression; Standard Major Axis calibration‐in‐time) preserved in the varved sediments of Lake Silvaplana, Switzerland. Using 30 a (climatology) moving averages and detrended standard deviations (mean–variability change, MVC), moving linear trends, change points and wavelets, reconstructed temperatures were partitioned into a warmer (+0.3°C; ca. 570–351 BC), cooler (?0.2°C; ca. 350–16 BC) and moderate period (+0.1°C; ca. 15 BC to AD 120) relative to the reconstruction average (10.9°C; reference AD 1950–2000 = 9.8°C). Warm and variable JJA temperatures at the Late Iron Age–Roman Period transition (approximately 50 BC to AD 100 in this region) and a cold anomaly around 470 BC (Early–Late Iron Age) were inferred. Inter‐annual and decadal temperature variability was greater from ca. 570 BC to AD 120 than the last millennium, whereas multi‐decadal and lower‐frequency temperature variability were comparable, as evident in wavelet plots. Using MVC plots of reconstructed JJA temperatures from ca. 570 BC to AD 120, we verified current trends and European climate model outputs for the 21st century, which suggest increased inter‐annual summer temperature variability and extremes in a generally warmer climate (heteroscedasticity; hotspot of variability). We compared these results to MVC plots of instrumental and reconstructed temperatures (from the same sediment core and proxies but a different study) from AD 1177 to AD 2000. Our reconstructed JJA temperatures from ca. 570 BC to AD 120 showed that inter‐annual JJA temperature variability increased rapidly above a threshold of ~10°C mean JJA temperature. This increase accelerated with continued warming up to >11.5°C. We suggest that the Roman Period serves with respect to inter‐annual variability as an analogue for warmer 21st‐century JJA temperatures in the Alps. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
We present a multi-proxy record (pollen, microscopic charcoal, magnetic susceptibility, carbon-isotopic composition, total organic carbon [TOC], carbon/nitrogen [C/N] ratios, and particle size) of the late Holocene environmental change and human activities from Bongpo marsh on the east coast of Korea. Mutual interaction between the environment and humans during the late Holocene has not been properly investigated in Korea due to the lack of undisturbed samples with high sedimentation rates. In this study, the history of human responses to late Holocene environmental changes is clearly reconstructed using a multi-proxy paleoenvironmental approach that has not previously been applied in Korea. The evidence from Bongpo marsh indicates that 1) Bongpo marsh began to develop ca. 650 BC as a coastal lagoon was rapidly filled with organic matter, 2) agricultural disturbance around the study site remained slight until ca. AD 600, 3) full-scale intensive agriculture prevailed and the area of deforestation increased between ca. AD 600 and ca. AD 1870, and 4) the land use changed from lowland rice agriculture to upland cultivation when agricultural productivity declined after AD 1870, probably due to severe deforestation and the consequent heavy influx of clastic sediment on rice fields, as described in various historical documents.  相似文献   

3.
A multi‐proxy record is presented for approximately the last 4500 cal a BP from Lake Shkodra, Albania/Montenegro. Lithological analyses, C/N ratio and δ13C of the organic and inorganic carbon component suggest that organic matter and bulk carbonate are predominantly authigenic. The δ18O record of bulk carbonate indicates the presence of two prominent wet periods: one at ca. 4300 cal a BP and one at ca. 2500–2000 cal a BP. The latter phase is also found in southern Spain and Central Italy, and represents a prominent event in the western and central Mediterranean. In the last 2000 years, four relatively wet intervals occurred between ca. 1800 and 1500 cal a BP (150–450 AD), 1350–1250 (600–700 AD), 1100–800 (850–1150 AD), and at ca. 90 cal a BP (1860 AD). Between ca. 4100 and 2500 cal a BP δ18O values are relatively high, with three prominent peaks indicating drier conditions at ca. 4100–4000 cal a BP, ca. 3500 and at ca. 3300 cal a BP. Four additional drier events are identified at 1850 (ca. 100 AD), 1400 (ca. 550 AD), 1150 (800 AD) and ca.750 cal a BP (1200 AD). The pollen record does not show changes in accordance with these episodes owing to the poor sensitivity of vegetation in this area, which is dominated by an orographic rainfall effect and where changes in altitudinal vegetation belts do not affect the pollen rain in the lake catchment. However, since ca. 900 cal a BP a significant decrease in the percentage arboreal pollen and in pollen concentrations suggest major deforestation produced by human activities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
La Virgen is an ephemeral tributary of the Ebro River in northeast Spain with a complex alluvial sequence. We analyzed alluvial stratigraphy to develop a model of Holocene fluvial evolution for La Virgen and infer causes of floodplain dynamics. Three alluvial terraces were mapped and described using a combination of geoarchaeological and geomorphological techniques. Stratigraphic ages were estimated using 14C dating and archaeological remains. Sedimentation in the valley floor commenced in the Neolithic period ca. 6000 BC and continued during the Bronze and Iron ages (ca. 1800–500 BC), the Iberian and Roman periods (ca. 500 BC–AD 500), and the Middle Ages (ca. AD 500–1500). The main terrace (N3) is 14m thick and predominantly composed of sand, silt, and clay that we believe are derived from local hillslopes and represent a long period of human‐induced soil erosion that intensified during the Bronze and Iron ages until the Late Roman period. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
Lipid extracts from a 61.7-cm-long subtropical stalagmite in southern China, spanning the period of ca. 10,000–21,000 yr ago as constrained by U–Th dating, were analyzed using gas chromatography–mass spectrometry. The higher plants and microorganisms in the overlying soils contribute a proportion of n-alkanes identified in the stalagmite. The occurrence of LMW (lower molecular weight) n-alkanols and n-alkan-2-ones in the stalagmite was mainly related to the soil microorganisms. We suggest that HMW (higher molecular weight) n-alkanols and n-alkan-2-ones identified in the stalagmite originate from soil organics and reflect input from contemporary vegetation. Shifts in the ratio of LMW to HMW n-alkanols or n-alkan-2-ones indicative of the variation of soil ecosystems (e.g., microbial degradation of organic matter and/or the relative abundance of soil microorganisms to higher plants) are comparable with the subtropical alkenone-SST (sea surface temperature) record of the same period. The similar trends seen in the δ13C data and the lipid parameters in this stalagmite imply that the overlying soil ecosystem response to climate might be responsible for the variation of δ13C values.  相似文献   

6.
Environmental change in NW Iberia between 7000 and 500 cal BC   总被引:1,自引:0,他引:1  
We review research done on environmental changes in northwest (NW) Iberia spanning from the beginning to the late Holocene (7000–500 cal. BC). The type of archives (peat bogs, lake sediments, colluvium, soils, etc.) and proxies (pollen, element concentrations, isotopes, etc.) that were used to reconstruct changes on climate, soils, vegetation and atmospheric metal pollution are briefly described. Then we synthesize what the records suggest about the ecological history of NW Iberia. We identified four main phases: 7000–5000, 5000–3000, 3000–1500 and 1500-500 cal. BC. Each phase is determined by a set of environmental conditions, a combination of changes in climate, vegetation, soils and human impact. Human activities seem to have been involved in landscape changes in NW Iberia since at least 5000 cal. BC, with an increasing degree of anthropisation through time, which accelerated by 1500 cal. BC. The interaction between human activities and natural changes expressed as modifications in the vegetation cover, the elimination of the soil resources in many areas and its concentration in more localized, control-demanding sectors, as well as a progressive acidification and pollution of continental ecosystems. To a great extent, the present landscape in NW Iberia is the end product of these complex interactions, a cultural landscape.  相似文献   

7.
In waterlogged soils, dynamics of water influence the redox conditions and thus the mobility of elements. Irrigation of rice in Camargue (South eastern France) induces yearly dynamics of water. In order to determine the impact of irrigation on the geochemical properties of ground waters, a continuously in situ record of physico-chemical parameters (pH, Eh, temperature and electric conductivity) is performed during 1 year in an irrigated rice field. Seasonal dynamics show large Eh and pH variations. An annual irrigation cycle generates fast precipitations of Ca–Mg carbonates and Fe oxides between 50 and 110 cm depth when the soil is waterlogged. The dissolution of these minerals is initiated during a year without irrigation.  相似文献   

8.
Biolog研究表明,英国阿伯丁市城市土壤的微生物群落结构显著有别于农村土壤,并使微生物对碳源的消耗量增加,消耗速度加快。城市土壤中不仅重金属Cu,Pb,Zn,Ni的含量明显高于农村土壤,而且其化学形态的主成分分析表明,有效态Pb,Zn,Cu及有机态Ni和Cu是导致城市土壤区分于农村土壤的主要因子。相关性分析表明,Biolog的这种变化规律与重金属的上述化学形态密切相关;典型变量分析表明,重金属对城市土壤微生物群落结果的这种损伤具有长期性效应及不可恢复性。  相似文献   

9.
We present stable isotope data (δ18O, δ13C) from a detrital rich stalagmite from Kapsia Cave, the Peloponnese, Greece. The cave is rich in archeological remains and there are reasons to believe that flooding of the cave has directly affected humans using the cave. Using a combination of U–Th and 14C dating to constrain a site-specific correction factor for (232Th/238U) detrital molar ratio, a linear age model was constructed. The age model shows that the stalagmite grew during the period from ca. 950 BC to ca. AD 830. The stable oxygen record from Kapsia indicates cyclical changes of close to 500 yr in precipitation amount, with rapid shifts towards wetter conditions followed by slowly developing aridity. Superimposed on this signal, wetter conditions are inferred around 850, 700, 500 and 400–100 BC, and around AD 160–300 and AD 770; and driest conditions are inferred to have occurred around 450 BC, AD 100–150 and AD 650. Detrital horizons in the stalagmite indicate that three major floods took place in the cave at 500 BC, 70 BC and AD 450. The stable carbon isotope record reflects changes in biological activity being a result of both climate and human activities.  相似文献   

10.
This paper investigates evidence for palaeoclimatic changes during the period ca. 1500–500 cal. yr BC through peat humification studies on seven Irish ombrotrophic bogs. The sites are well‐correlated by the identification of three mid‐first millennium BC tephras, which enable the humification records at specific points in time to be directly compared. Phases of temporarily increased wetness are suggested at ca. 1300–1250 cal. yr BC , ca. 1150–1050 cal. yr BC , ca. 940 cal. yr BC and ca. 740 cal. yr BC . The last of these is confirmed to be synchronous at five sites, suggesting external forcing on a regional scale. The timing of this wet‐shift is constrained by two closely dated tephras and is demonstrated to be distinct from the widely reported changes to cooler/wetter conditions associated with a solar minimum at 850–760 cal. yr BC , at which time the Irish sites appear instead to experience drier conditions. The results suggest the possibility of either non‐uniform responses to solar forcing in northwest Europe at this time, or the existence of unrelated climate events in the early first millennium BC . The findings caution against the correlation of loosely dated palaeoclimate data if the effects of forcing mechanisms are to be understood. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
High-resolution pollen analyses ( 50 yr) from sediment cores retrieved at Chernyshov Bay in the NW Large Aral Sea record shifts in vegetational development from subdesertic to steppe vegetation in the Aral Sea basin during the late Holocene. Using pollen data to quantify climatic parameters, we reconstruct and date for the first time significant changes in moisture conditions in Central Asia during the past 2000 yr. Cold and arid conditions prevailed between ca. AD 0 and 400, AD 900 and 1150, and AD 1500 and 1650 with the extension of xeric vegetation dominated by steppe elements. These intervals are characterized by low winter and summer mean temperatures and low mean annual precipitation (Pmm < 250 mm/yr). Conversely, the most suitable climate conditions occurred between ca. AD 400 and 900, and AD 1150 and 1450, when steppe vegetation was enriched by plants requiring moister conditions (Pmm  250–500 mm/yr) and some trees developed. Our results are fairly consistent with other late Holocene records from the eastern Mediterranean region and the Middle East, showing that regional rainfall in Central Asia is predominantly controlled by the eastern Mediterranean cyclonic system when the North Atlantic Oscillation (NAO) is in a negative phase.  相似文献   

12.
Multiproxy climate records from Iceland document complex changes in terrestrial climate and glacier fluctuations through the Holocene, revealing some coherent patterns of change as well as significant spatial variability. Most studies on the Last Glacial Maximum and subsequent deglaciation reveal a dynamic Iceland Ice Sheet (IIS) that responded abruptly to changes in ocean currents and sea level. The IIS broke up catastrophically around 15 ka as the Polar Front migrated northward and sea level rose. Indications of regional advance or halt of the glaciers are seen in late Alleröd/early Younger Dryas time and again in PreBoreal time. Due to the apparent rise of relative sea level in Iceland during this time, most sites contain evidence for fluctuating, tidewater glacier termini occupying paleo fjords and bays. The time between the end of the Younger Dryas and the Preboreal was characterized by repeated jökulhlaups that eroded glacial deposits. By 10.3 ka, the main ice sheet was in rapid retreat across the highlands of Iceland. The Holocene thermal maximum (HTM) was reached after 8 ka with land temperatures estimated to be 3 °C higher than the 1961–1990 reference, and net precipitation similar to modern. Such temperatures imply largely ice-free conditions across Iceland in the early to mid-Holocene. Several marine and lacustrine sediment climate proxies record substantial summer temperature depression between 8.5 and 8 ka, but no moraines have been detected from that time. Termination of the HTM and onset of Neoglacial cooling took place sometime after 6 ka with increased glacier activity between 4.5 and 4.0 ka, intensifying between 3.0 and 2.5 ka. Although a distinct warming during the Medieval Warm Period is not dramatically apparent in Icelandic records, the interval from ca AD 0 to 1200 is commonly characterized by relative stability with slow rates of change. The literature most commonly describes Little Ice Age moraines (ca AD 1250–1900) as representing the most extensive ice margins since early Holocene deglaciation, with temperature depressions of 1–2 °C compared to the AD 1961–1990 average. Steep north–south and west–east temperature gradients are reconstructed in the Holocene records of Iceland, suggesting a strong maritime influence on the terrestrial climate of Iceland.  相似文献   

13.
Three independent varve (annually laminated) chronologies, verified by paleomagnetic dating, were used in the present biostratigraphical study to investigate the history of the Baltic basin in central Finland. Diatom analyses of the studied sediment sequences show the transition from the Ancylus Lake taxa to small-lake diatoms at the isolation boundary. These three varved profiles provide the following data and information on early Holocene events in central Finland: (i) a shoreline displacement curve between the deglaciation at ca. 9000 BC and ca. 7000 BC, (ii) relative emergence of the land area between 116 and 96 m above the present day sea level, which proceeded at a rate of ca. 2.6 cm year−1, (iii) the calendar year age for the Lake Ancylus at ca. 8250–8200 BC, and (iv) the calendar year age for the Betula/Pinus pollen zone boundary (ca. 8100 BC) and Alnus arrival (ca. 7100 BC).  相似文献   

14.
A suite of environmental proxies in annually laminated sediments from Hvítárvatn, a proglacial lake in the central highlands of Iceland, are used to reconstruct regional climate variability and glacial activity for the past 3000 years. Sedimentological analysis is supported by tephrostratigraphy to confirm the continuous, annual nature of the laminae, and a master varve chronology places proxies from multiple lake cores in a secure geochronology. Varve thickness is controlled by the rate of glacial erosion and efficiency of subglacial discharge from the adjacent Langjökull ice cap. The continuous presence of glacially derived clastic varves in the sediment fill confirms that the ice cap has occupied the lake catchment for the duration of the record. Varve thickness, varve thickness variance, ice-rafted debris, total organic carbon (mass flux and bulk concentration), and C:N of sedimentary organic matter, reveal a dynamic late Holocene climate with abrupt and large-scale changes in ice-cap size and landscape stability. A first-order trend toward cooler summers and ice-cap expansion is punctuated by notable periods of rapid ice cap growth and/or landscape instability at ca 1000 BC, 600 BC, 550 AD and 1250 AD. The largest perturbation began ca 1250 AD, signaling the onset of the Little Ice Age and the termination of three centuries of relative warmth during Medieval times. Consistent deposition of ice-rafted debris in Hvítárvatn is restricted to the last 250 years, demonstrating that Langjökull only advanced into Hvítárvatn during the coldest centuries of the Little Ice Age, beginning in the mid eighteenth century. This advance represents the glacial maximum for at least the last 3 ka, and likely since regional deglaciation 10 ka. The multi-centennial response of biological proxies to the Hekla 3 tephra deposition illustrates the significant impact of large explosive eruptions on local environments, and catchment sensitivity to perturbations.  相似文献   

15.
Field and chemical data show that soils in some parts of Bauchi State, Nigeria, are rich in illite (20–35%), montmorillonite (60–75%), and kaolinite (45–73%). These expansive clays cause the soils to shrink and swell alternatively in response to the seasonal supply of moisture; resulting in observed damaging cracks. Plasticity index (PI) determinations on these soils are high (7–13.4%) suggesting that they are potentially hazardous. The attendant hazards and huge losses to the State are blamed on the expansive nature of these soils. The hazardous conditions can be mitigated by adopting proper construction precautions as well as by using chemical additives such as lime and phosphates, to lower the PI and help to increase the strength of the soils.  相似文献   

16.
Tree-ring and peat stratigraphy data were examined back to 5000 BC in order to identify and compare humidity changes in Fennoscandia. The temporal variation in distribution of Scots pine ( Pinus sylvestris L.) was used as a measure of past lake-level fluctuations in central Sweden. The chronology, which spans 2893 BC–AD 1998 with minor gaps in AD 887–907 and 1633–1650 BC and with additional floating chronologies back to 4868 BC, was cross-dated and fixed to an absolute timescale using a chronology from Torneträsk, northern Sweden. The peat stratigraphy from the Stömyren peat bog, south-central Sweden, was transformed into humification indices to evaluate humidity changes during the past 8000 years. The peat chronology is established by four tephra datings and eight 14C datings. Synchronous periods of drier conditions, interpreted from regeneration and the mortality pattern of pine, tree-ring chronology and peat humification, were recognized at c. 4900–4800 BC, 2400–2200 BC, 2100–1800 BC, 1500–1100 BC, AD 50–200, AD 400–600 and AD 1350–1500. Possible wetter periods were encountered at 3600–3400 BC, 3200–2900 BC, 2200–2100 BC, 1700–1500 BC, 1100–900 BC, 100 BC-AD 50, AD 200–400, AD 750–900 and AD 1550–1700. The wet and dry periods revealed by the tree rings and peat stratigraphy data indicate considerable humidity changes in the Holocene.  相似文献   

17.
Climatically driven Late Pleistocene and Holocene vegetation changes were reconstructed based on pollen records from the sediments of Lake Kotokel and Cheremushka Bog, located on the eastern shore of Lake Baikal. The described paleoenvironmental record has higher resolution than records collected from Lake Baikal and unites individual events identified in prior studies of bottom and onshore cores. Remarkable shifts in landscapes and expansions of index plants are as follows. Forest tundra and/or forest steppe landscape with birch, spruce, Artemisia, and Poaceae prevailed at ca. 50–25 14C kyr BP. Tundra and/or steppe vegetation dominated by Artemisia and Poaceae was typical for the Last Glacial Maximum. The expansion of shrub birch and willow occurred at ca. 15.5 14C kyr BP. Two peaks of spruce expansion at ca. 47.5–42.4 14C kyr BP (Karginian time) and at ca. 14.5–13 ka (Bølling-Allerød warm intervals) suggest that the condition were more humid than today. A slight increase in Artemisia at ca. 11–10.5 14C kyr BP (13–12 ka) was indicative of the Younger Dryas event. An expansion of birch forests with fir at ca. 12–6.4 ka suggests higher humidity. The currently dominant Scots and Siberian pine forests with birch expanded since 6.4 ka.  相似文献   

18.
Palaeoenvironmental studies combining 14C dating, palaeobotanical and archaeological data provide information about the human reaction to Holocene environmental changes registered in the surroundings of Biržulis Lake in northwest Lithuania.Responding to water regression, early Mesolithic communities were established on the lower lake terraces, which were overgrown by predominantly birch and pine forest. The formation of a mixed forest with Ulmus (immigrated at 8100–7500 cal yr BC), Corylus (7600–7200 cal yr BC) and Alnus (7300–6900 cal yr BC) provided plenty of natural resources, which led to the increase in population during the late Mesolithic. The expansion of Tilia (6400–5900 cal yr BC) and Quercus (5900–5700 cal yr BC), as well as the subsequent flourishing of broad-leaved forest, provided inhabitants with suitable living conditions.The reduction of broad-leaved woodland and the expansion of Picea (4400–3700 cal yr BC), which suggest changing temperature and moisture conditions as well as increasing erosion activity, could have negatively influenced the early-middle Neolithic population, as evidenced by the partial abandoning of the land. The lowering of the water level and thinning of the forest structure possibly related to some dry episode, positively influenced late Neolithic groups, as intensive exploitation of the area, including the earliest attempts at agriculture, has been registered. Since 1770–1490 cal yr BC, when intensive bogging began, evidence of periodic inhabitation around the lake has been registered.  相似文献   

19.
Changing content of detrital input in laminated sediments traced by XRF scanning and microfacies analyses reflect prominent variations in sedimentation processes in the Aral Sea. A high-resolution record of titanium from a core retrieved in the northwestern Large Aral Sea allows a continuous reconstruction of wind strength and frequency in western Central Asia for the past 1500 yr. During AD 450–700, AD 1210–1265, AD 1350–1750 and AD 1800–1975, detrital inputs (bearing titanium) are high, documenting an enhanced early spring atmospheric circulation associated with an increase in intensity of the Siberian High pressure system over Central Asia. In contrast, lower titanium content during AD 1750–1800 and AD 1980–1985 reflects a diminished influence of the Siberian High during early spring with a reduced atmospheric circulation. A moderate circulation characterizes the time period AD 700–1150. Unprecedented weakened atmospheric circulation over western Central Asia are inferred during ca. AD 1180–1210 and AD 1265–1310 with a considerable decrease in dust storm frequency, sedimentation rates, lamination thickness and detrital inputs (screened at 40-μm resolution). Our results are concurrent with changes in the intensity of the Siberian High during the past 1400 yr as reported in the GISP2 Ice Core from Greenland.  相似文献   

20.
Correlations between ecological and cultural changes occurred during a short period between the end of Subboreal and the beginning of Subatlantic in the Amblés Valley (Ávila, central Spain) are analyzed, taking into account palaeopalynological and archaeological data. Plant dynamics from pollen analyses, both from archaeological sites and peat bogs, have been interpreted in relation to human settlements and the transformation of economic practices. These provided a comprehensive hypothesis on human/climate interactions at the beginning of the 1st millennium cal BC. There was an ecological crisis in the region that lasted for a century (ca. 850–760 cal BC). This was especially sharp due to both the geographical constraints of the area and its previous agrarian history. This event implied a sudden and abrupt climatic change from xeric and warm conditions (Subboreal) to more humid and cooler ones (Subatlantic). Environmental stress derived from climatic crisis could be an important factor in the explanation of the historical process, whose main consequences were both the origin of the Iron Age peasant villages and the end of the ‘dehesa’ type landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号