首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The cosmological constantΛis the simplest model for explaining the dark energy which supposedly drives the observed accelerated expansion rate of the Universe.Together with the concept of cold dark matter,it satisfactorily accommodates a wealth of observations related to cosmology.Due to its assumed constancy throughout the Universe,Λmight also affect the dynamics of the planets in the solar system,although with extremely small effects.However,modern high-precision ephemerides provide a promising tool for constraining it.Using the supplementary advances in the perihelia provided by current INPOP10a and EPM2011 ephemerides,we obtain a new upper limit onΛin the solar system when the Lense-Thirring effect due to the Sun’s angular momentum and the uncertainty of the Sun’s quadrupole moment are properly taken into account.These two factors were mostly absent in previous works dealing withΛ.We find that INPOP10a yields an upper limit ofΛ=(0.26±1.45)×10-43m-2and EPM2011 givesΛ=(-0.44±8.93)×10-43m-2.Such bounds are about 10 times less than previously estimated results.  相似文献   

2.
3.
4.
Cosmic hydrogen is reionized and maintained in its highly ionized state by the ultraviolet emission attributed to an early generation of stars and quasars. The Lyα opacity observed in absorption spectra of high-redshift quasars permits more stringent constraints on the ionization state of cosmic hydrogen. Based on density perturbation and structure formation theory, we develop an analytic model to trace the evolution of the ionization state in the post-overlap epoch of reionization, in which the bias factor is taken into account. For quasars, we represent an improved luminosity function by utilizing a hybrid approach for the halo formation rate that is in reasonable agreement with the published measurements at 2 ≤ z ≤ 6. Comparison with the classic Press-Schechter mass function of dark matter halos, we demonstrate that the biased mass distribution indeed enhances star formation efficiency in the overdense environment by more than 25 per cent following the overlap of ionized bubbles. In addition, an alternative way is introduced to derive robust estimates of the mean free path for ionizing photons. In our model, star-forming galaxies are likely to dominate the ionizing background radiation beyond z = 3, and quasars contribute equally above a redshift of z ~ 2.5. From 5 ≤ z ≤ 6, the lack of evolution in photoionization rate can thus be explained by the relatively flat evolution in star formation efficiency, although the mean free path of ionizing photons increases rapidly. Moreover, in the redshift interval z ~ 2 - 6, the expected mean free path and Gunn-Peterson optical depth obviously evolve by a factor of ~ 500 and ~50 respectively. We find that the relative values of critical overdensities for hydrogen ionization and collapse could be 430% at z ≈2 and 2% at z ≈6, suggesting a rapid overlap process in the overdense regions around instant quasars following reionization. We further illustrate that the absolute estimates of the fraction of neutral hydrogen computed from theoretical models may n  相似文献   

5.
6.
7.
We study quark and strange quark matter in the context of general relativity. For this purpose, we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times, thus we are able to obtain the space-time geometries of quark and strange quark matter. Also, we discuss the features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory, i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).  相似文献   

8.
9.
10.
A number of observations suggest that He II in the intergalactic medium(IGM) was fully ionized at z ~ 3, probably by quasi-stellar objects(QSOs). Here we construct a simple model of a QSO to study the reionization of He II and the corresponding thermal evolution of the IGM. We assume that QSOs are triggered by major mergers of dark matter halos, and the luminosity evolution of individual QSOs is described by an initial accretion stage with a constant Eddington ratio and then a powerlaw decay driven by long term disk evolution or fueling. Once a QSO is triggered, it immediately ionizes its surrounding area as an ionized bubble. The resulting changes in size and volume of the bubble are determined by the luminosity evolution of the central QSO. With the emergence of more and more bubbles, they eventually overlap each other and finally permeate the whole universe. During the He II reionization,the IGM temperature increases due to the photoheating by the ionization processes.Applying the bubble model and considering various heating and cooling mechanisms,we trace the thermal evolution of the IGM and obtain the average IGM temperature as a function of redshift, which is very consistent with observations. The increase in IGM temperature due to the reionization of He II may be determined more accurately in the future, which may put robust constraints on the QSO model and the physics of He II reionization.  相似文献   

11.
12.
As the highest, coldest and driest place in Antarctica, Dome A provides exceptionally good observing conditions for ground-based observations over terahertz wavebands. The 5 m Dome A Terahertz Explorer (DATES) has been proposed to explore new terahertz windows, primarily over wavelengths between 350 and 200 pm. DATE5 will be an open-air, fully-steerable telescope that can function by unmanned operation with remote control. The telescope will be able to endure the harsh polar environment, including high altitude, very low temperature and very low air pressure. The unique specifications, including high accuracies for surface shape and pointing and fully automatic year-around remote operation, along with a stringent limit on the periods of on-site assembly, testing and maintenance, bring a number of challenges to the design, construction, assembly and operation of this telescope. This paper intro- duces general concepts related to the design of the DATE5 antenna. Beginning from an overview of the environmental and operational limitations, the design specifications and requirements of the DATE5 antenna are listed. From these, major aspects on the conceptual design studies, including the antenna optics, the backup structure, the pan- els, the subreflector, the mounting and the antenna base structure, are explained. Some critical issues of performance are justified through analyses that use computational fluid dynamics, thermal analysis and de-icing studies, and the proposed approaches for test operation and on-site assembly. Based on these studies, we conclude that the specifications of the DATE5 antenna can generally be met by using enhanced technological approaches.  相似文献   

13.
14.
15.
The measurement of positions and sizes of radio sources in the observations of the fine structure of solar radio bursts is a determining factor for the selection of the radio emission mechanism. The identical parameters describing the radio sources for zebra structures(ZSs) and fiber bursts confirm there is a common mechanism for both structures. It is very important to measure the size of the source in the corona to determine if it is distributed along the height or if it is point-like. In both models of ZSs(the double plasma resonance(DPR) and the whistler model) the source must be distributed along the height, but by contrast to the stationary source in the DPR model, in the whistler model the source should be moving. Moreover, the direction of the space drift of the radio source must correlate with the frequency drift of stripes in the dynamic spectrum. Some models of ZSs require a local source, for example,the models based on the Bernstein modes, or on explosive instability. The selection of the radio emission mechanism for fast broadband pulsations with millisecond duration also depends on the parameters of their radio sources.  相似文献   

16.
17.
18.
19.
New physics beyond the standard model of particles might cause deviation from the inverse-square law of gravity. In many theoretical models of modified gravity, it is parameterized by the Yukawa correction to the Newtonian gravitational force in terms of two parameters α and λ. Here α is a dimensionless strength parameter and A is a length scale. Using the supplementary advances in perihelia provided by INPOP10a and EPM2011 ephemerides, we obtain new upper limits on the deviation from the inverse-square law when the uncertainty of the Sun's quadrupole moment is taken into account. We find that INPOP10a yields the upper limits as α =- 3.1× 10-11 and λ= 0.15 au, and EPM2011 gives α = 5.2 × 10-11 and λ=- 0.21 au. In both of them, α is at least 10 times less than the previous results.  相似文献   

20.
Correlation analysis of solar wind parameters, namely solar wind velocity, pro- ton density, proton temperature and mean interplanetary magnetic field (IMF) from the ACE spacecraft data near Earth, was done. To our best knowledge, this study is a novel one since we consider here only the parameters inside the solar wind, including the mean IMF and, hence, the solar wind is a self consistent system. We have proposed a Multiple Linear Regression (MLR) model for the prediction of the response variable (solar wind velocity) using the parameters proton density, proton temperature and mean IMF mea- sured as dally averages. About 60% of the observed value can be predicted using this model. It is shown that, in general, the correlation between solar wind parameters is sig- nificant. A deviation from the prediction at the solar maximum is interpreted. These results are verified by a graphical method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号