首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 757 毫秒
1.
2.
3.
4.
天气晴朗的日子,当入夜之后,宇宙之花逐个登场,不久苍穹上布满了无数的宇宙之花。这灿烂的星空,不禁让人陷入无限的遐思当中。遥望星空的爱好者们,一定很期待有一本书籍能够为他们答疑解惑,帮助探求闪烁星光的秘密。有这样的书籍么?有,而且曾经有一部书籍记录了当时人们知道的一切。  相似文献   

5.
Based on previous works of OPAL, we construct a series of opacity tables for various metallicities Z=0, 0.000 01, 0.000 03, 0.000 1, 0.000 3, 0.001, 0.004, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08 and 0.1. These tables can be easily used in Eggleton's stellar evolution code in place of the old tables without changing the code. The OPAL tables are used for log10(T/K) > 3.95 and Alexander's for log10(T/K) < 3.95. At log10(T/K) = 3.95, the two groups' data fit well for all hydrogen mass fractions. Conductive opacities are included by reciprocal addition according to the formulae of Yakovlev and Urpin. A comparison of 1 and 5 M models constructed with the older OPAL tables of Iglesias and Rogers shows that the new opacities have most effect in the late stages of evolution, the extension of the blue loop during helium burning for intermediate-mass and massive stars.  相似文献   

6.
7.
8.
In order to test the systematics of the Amati relation, 24 long-duration GRBs with available Eγ,iso, and Ep are separated into two subgroups according to the B-band luminosity of their host galaxies. The Amati relations in the two subgroups are found to be in agreement with each other within the uncertainties. Taking into account of the well established luminosity-metallicity relation of galaxies, no strong evolution of the Amati relation with the GRB's environmental metallicity is implied in this study.  相似文献   

9.
10.
The relationship between the k2/Q of the Galilean satellites and the k2J/QJ of Jupiter is derived from energy and momentum considerations. Calculations suggest that the Galilean satellites can be divided into two classes according to their Q values: Io and Ganymede have values between 10 and 50, while Europa and Callisto have values ranging from 200 to 700. The tidal contributions of the Galilean satellites to Jupiter‘s rotation are estimated. The main deceleration of Jupiter, which is about 99.04% of the total, comes from Io.  相似文献   

11.
12.
13.
We obtain an approximate solution $\tilde{E}=\tilde{E}(e,M)$ of Kepler’s equation $E-e\sin (E)=M$ for any $e\in [0,1)$ and $M\in [0,\pi ]$ . Our solution is guaranteed, via Smale’s $\alpha $ -theory, to converge to the actual solution $E$ through Newton’s method at quadratic speed, i.e. the $n$ -th iteration produces a value $E_n$ such that $|E_n-E|\le (\frac{1}{2})^{2^n-1}|\tilde{E}-E|$ . The formula provided for $\tilde{E}$ is a piecewise rational function with conditions defined by polynomial inequalities, except for a small region near $e=1$ and $M=0$ , where a single cubic root is used. We also show that the root operation is unavoidable, by proving that no approximate solution can be computed in the entire region $[0,1)\times [0,\pi ]$ if only rational functions are allowed in each branch.  相似文献   

14.
15.
16.
A recent article by Alexopoulos and Leontsinis presented empirical evidence that the first digits of the distances from the Earth to galaxies are a reasonably good fit to the probabilities predicted by Benford’s law, the well known logarithmic statistical distribution of significant digits. The purpose of the present article is to give a theoretical explanation, based on Hubble’s law and mathematical properties of Benford’s law, why galaxy distances might be expected to follow Benford’s law. The new galaxy-distance law derived here, which is robust with respect to change of scale and base, to additive and multiplicative computational or observational errors, and to variability of the Hubble constant in both time and space, predicts that conformity to Benford’s law will improve as more data on distances to galaxies becomes available. Conversely, with the logical derivation of this law presented here, the recent empirical observations may be viewed as independent evidence of the validity of Hubble’s law.  相似文献   

17.
In Noyelles et al. (Astron. Astrophys. 478, 959–970 (2008)), a resonance involving the wobble of Titan is hinted at. This paper studies this scenario and its consequences. The first step is to build an accurate analytical model that would help to find the likely resonances in the rotation of every synchronous body. In this model, I take the orbital eccentricity of the body into account, as well as its variable inclination with respect to Saturn’s equator. Then an analytical study using the second fundamental model of the resonance is performed to study the resonance of interest. Finally, I study the dissipative consequences of this resonance. I find that this resonance may have increased the wobble of Titan by several degrees. For instance, if Titan’s polar momentum C is equal to 0.355MR T 2 (M and R T being, respectively, Titan’s mass and radius), the wobble might be forced to 41 degrees. Thanks to an original formula, I find that the dissipation associated with the forced wobble might not be negligible compared to the contribution of the eccentricity. I also suspect that, due to the forced wobble, Titan’s period of rotation may be somewhat underestimated by observers. Finally, I use the analytical model presented in this paper to compute the periods of the free librations of the four Galilean satellites as well as the Saturnian satellite Rhea. For Io and Europa, the results are consistent with previous studies. For the other satellites, the periods of the free librations are, respectively, 186.37 d, 23.38 y and 30.08 y for Ganymede, 2.44 y, 209.32 y and 356.54 y for Callisto, and 51.84 d, 2.60 y and 3.59 y for Rhea.  相似文献   

18.
The general-relativistic Ohm’s law for a two-component plasma which includes the gravitomagnetic force terms even in the case of quasi-neutrality has been derived. The equations that describe the electromagnetic processes in a plasma surrounding a neutron star are obtained by using the general relativistic form of Maxwell equations in a geometry of slow rotating gravitational object. In addition to the general-relativistic effect first discussed by Khanna and Camenzind (Astron. Astrophys. 307:665, 1996) we predict a mechanism of the generation of azimuthal current under the general relativistic effect of dragging of inertial frames on radial current in a plasma around neutron star. The azimuthal current being proportional to the angular velocity ω of the dragging of inertial frames can give valuable contribution on the evolution of the stellar magnetic field if ω exceeds 2.7×1017(n/σ) s−1 (n is the number density of the charged particles, σ is the conductivity of plasma). Thus in general relativity a rotating neutron star, embedded in plasma, can in principle generate axial-symmetric magnetic fields even in axisymmetry. However, classical Cowling’s antidynamo theorem, according to which a stationary axial-symmetric magnetic field can not be sustained against ohmic diffusion, has to be hold in the general-relativistic case for the typical plasma being responsible for the rotating neutron star.  相似文献   

19.
The giant planetary magnetospheres surrounding Jupiter and Saturn respond in quite different ways, compared to Earth, to changes in upstream solar wind conditions. Spacecraft have visited Jupiter and Saturn during both solar cycle minima and maxima. In this paper we explore the large-scale structure of the interplanetary magnetic field (IMF) upstream of Saturn and Jupiter as a function of solar cycle, deduced from solar wind observations by spacecraft and from models. We show the distributions of solar wind dynamic pressure and IMF azimuthal and meridional angles over the changing solar cycle conditions, detailing how they compare to Parker predictions and to our general understanding of expected heliospheric structure at 5 and 9 AU. We explore how Jupiter’s and Saturn’s magnetospheric dynamics respond to varying solar wind driving over a solar cycle under varying Mach number regimes, and consider how changing dayside coupling can have a direct effect on the nightside magnetospheric response. We also address how solar UV flux variability over a solar cycle influences the plasma and neutral tori in the inner magnetospheres of Jupiter and Saturn, and estimate the solar cycle effects on internally driven magnetospheric dynamics. We conclude by commenting on the effects of the solar cycle in the release of heavy ion plasma into the heliosphere, ultimately derived from the moons of Jupiter and Saturn.  相似文献   

20.
In the framework of future space missions to Ganymede, a pre-study of this satellite is a necessary step to constrain instrument performances according to the mission objectives. This work aims at characterizing the impact of the solar UV flux on Ganymede’s atmosphere and especially at deriving some key physical parameters that are measurable by an orbiter. Another objective is to test several models for reconstructing the solar flux in the Extreme-UV (EUV) in order to give recommendations for future space missions.Using a Beer–Lambert approach, we compute the primary production of excited and ionized states due to photoabsorption, neglecting the secondary production that is due to photoelectron impacts as well as to precipitated suprathermal electrons. Ions sputtered from the surface are also neglected. Computations are performed at the equator and close to the pole, in the same conditions as during the Galileo flyby. From the excitations, we compute the radiative relaxation leading to the atmospheric emissions. We also propose a simple chemical model to retrieve the stationary electron density. There are two main results: (i) the modelled electron density and the one measured by Galileo are in good agreement. The main atmospheric visible emission is the atomic oxygen red line at 630 nm, both in equatorial and in polar conditions, in spite of the different atmospheric compositions. This emission is measurable from space, especially for limb viewing conditions. The OH emission (continuum between 260 and 410 nm) is also probably measurable from space. (ii) The input EUV solar flux may be directly measured or reconstructed from only two passbands solar observing diodes with no degradation of the modelled response of the Ganymede’s atmosphere. With respect to these results, there are two main conclusions: (i) future missions to Ganymede should include the measurement of the red line as well as the measurement of OH emissions in order to constrain the atmospheric model. (ii) None of the common solar proxies satisfactorily describes the level of variability of the solar EUV irradiance. For future atmospheric planetary space missions, it would be more appropriate to derive the EUV flux from a small radiometer rather than from a full-fledged spectrometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号