首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method of construction of intermediate orbits for approximating the real motion of celestial bodies in the initial part of trajectory is proposed. The method is based on introducing a fictitious attracting centre with a time-variable gravitational parameter. The variation of thisparameter is assumed to obey the Eddington–Jeans mass-variationlaw. New classes of orbits having first-, second-, and third-order tangency to the perturbed trajectory at the initial instant of time are constructed. For planar motion, the tangency increases by one or two orders. The constructed intermediate orbits approximate the perturbed motion better than the osculating Keplerian orbit and analogous orbits of otherauthors. The applications of the orbits constructed in Encke's methodfor special perturbations and in the procedure for predicting themotion in which the perturbed trajectory is represented by a sequenceof short arcs of the intermediate orbits are suggested.The use of the constructed orbits is especially advantageous in the investigation of motion under the action of large perturbations.  相似文献   

2.
The theory of superosculating intermediate orbits previously suggested by the author is developed. A new class of orbits with a fourth-order tangency to the actual trajectory of a celestial body at the initial time is constructed. Orbits with a fifth-order tangency have been constructed for the first time. The motion in the constructed orbits is represented as a combination of two motions: the motion of a fictitious attracting center with a variable mass and the motion relative to this center. The first motion is generally parabolic, while the second motion is described by the equations of the Gylden—Mestschersky problem. The variation in the mass of the fictitious center obeys Mestschersky’s first and combined laws. The new orbits represent more accurately the actual motion in the initial segment of the trajectory than an osculating Keplerian orbit and other existing analogues. Encke’s generalized methods of special perturbations in which the constructed intermediate orbits are used as reference orbits are presented. Numerical simulations using the approximations of the motions of Asteroid Toutatis and Comet P/Honda—Mrkos—Pajdu?áková as examples confirm that the constructed orbits are highly efficient. Their application is particularly beneficial in investigating strongly perturbed motion.  相似文献   

3.
Two new methods are described for finding the orbit of a small celestial body from three or more pairs of angular measurements and the corresponding time points. The methods are based on, first, the approach that has been developed previously by the author to the determination, from a minimum number of observations, of intermediate orbit considering most of the perturbations in the bodies’ motion and, second, Herget’s algorithmic procedure enabling the introduction of additional observations. The errors of orbital parameters calculated by the proposed methods are two orders of magnitude smaller than the corresponding errors of the traditional approach based on the construction of an unperturbed Keplerian orbit. The thus-calculated orbits of the minor planets 1566 Icarus, 2002 EC1, and 2010 TO48 are used to compare the results of Herget’s multiposition procedure and the new methods. The comparison shows that the new methods are highly effective in the study of perturbed motion. They are particularly beneficial if high-precision observational data covering short orbital arcs are available.  相似文献   

4.
Using alternative independent variables in lieu of time has important advantages when propagating the partial derivatives of the trajectory. This paper focuses on spacecraft relative motion, but the concepts presented here can be extended to any problem involving the variational equations of orbital motion. A usual approach for modeling the relative dynamics is to evaluate how the reference orbit changes when modifying the initial conditions slightly. But when the time is a mere dependent variable, changes in the initial conditions will result in changes in time as well: a time delay between the reference and the neighbor solution will appear. The theory of asynchronous relative motion shows how the time delay can be corrected to recover the physical sense of the solution and, more importantly, how this correction can be used to improve significantly the accuracy of the linear solutions to relative motion found in the literature. As an example, an improved version of the Clohessy-Wiltshire (CW) solution is presented explicitly. The correcting terms are extremely compact, and the solution proves more accurate than the second and even third order CW equations for long propagations. The application to the elliptic case is also discussed. The theory is not restricted to Keplerian orbits, as it holds under any perturbation. To prove this statement, two examples of realistic trajectories are presented: a pair of spacecraft orbiting the Earth and perturbed by a realistic force model; and two probes describing a quasi-periodic orbit in the Jupiter-Europa system subject to third-body perturbations. The numerical examples show that the new theory yields reductions in the propagation error of several orders of magnitude, both in position and velocity, when compared to the linear approach.  相似文献   

5.
6.
Based on the theory of intermediate orbits developed earlier by the author of this paper, a new approach is proposed to the solution of the problem of finding the orbit of a celestial body with the use of two position vectors of this body and the corresponding time interval. This approach makes it possible to take into account the main part of perturbations. The orbit is constructed, the motion along which is a combination of two motions: the uniform motion along a straight line of a fictitious attracting center, whose mass varies according to the first Meshchersky law, and the motion around this center. The latter is described by the equations of the Gylden–Meshchersky problem. The parameters of the constructed orbit are chosen so that their limiting values at any reference epoch determine a superosculating intermediate orbit with third-order tangency. The accuracy of approximation of the perturbed motion by the orbits calculated by the classical Gauss method and the new method is illustrated by an example of the motion of the unusual minor planet 1566 Icarus. Comparison of the results obtained shows that the new method has obvious advantages over the Gauss method. These advantages are especially prominent in cases where the angular distances between the reference positions are small.  相似文献   

7.
A comparative review of analytic theories for the motion of Earth satellites in quasi-circular orbits written in the spherical coordinate frame is presented. The theory of motion is developed for satellites in quasi-circular and quasi-equatorial orbits subjected to geopotential, luni-solar and solar radiation pressure force perturbations. The intermediate orbit is Keplerian and the equations of motion are solved by the Lyapunov–Poincaré small parameter method. Both resonant and non-resonant cases are considered. The results can be useful for the development of a complete theory of weakly eccentric orbits.  相似文献   

8.
The dynamic evolution of sun-synchronous orbits at a time interval of 20 years is considered. The numerical motion simulation has been carried out using the Celestial Mechanics software package developed at the Institute of Astronomy of the University of Bern. The dependence of the dynamic evolution on the initial value of the ascending node longitude is examined for two families of sun-synchronous orbits with altitudes of 751 and 1191 km. Variations of the semimajor axis and orbit inclination are obtained depending on the initial value of the ascending node longitude. Recommendations on the selection of orbits, in which spent sun-synchronous satellites can be moved, are formulated. Minimal changes of elements over a time interval of 20 years have been observed for orbits in which at the initial time the angle between the orbit ascending node and the direction of the Sun measured along the equator have been close to 90° or 270°. In this case, the semimajor axis of the orbit is not experiencing secular perturbations arising from the satellite’s passage through the Earth’s shadow.  相似文献   

9.
We propose an approach to the study of the evolution of high-apogee twelve-hour orbits of artificial Earth’s satellites. We describe parameters of the motion model used for the artificial Earth’s satellite such that the principal gravitational perturbations of the Moon and Sun, nonsphericity of the Earth, and perturbations from the light pressure force are approximately taken into account. To solve the system of averaged equations describing the evolution of the orbit parameters of an artificial satellite, we use both numeric and analytic methods. To select initial parameters of the twelve-hour orbit, we assume that the path of the satellite along the surface of the Earth is stable. Results obtained by the analytic method and by the numerical integration of the evolving system are compared. For intervals of several years, we obtain estimates of oscillation periods and amplitudes for orbital elements. To verify the results and estimate the precision of the method, we use the numerical integration of rigorous (not averaged) equations of motion of the artificial satellite: they take into account forces acting on the satellite substantially more completely and precisely. The described method can be applied not only to the investigation of orbit evolutions of artificial satellites of the Earth; it can be applied to the investigation of the orbit evolution for other planets of the Solar system provided that the corresponding research problem will arise in the future and the considered special class of resonance orbits of satellites will be used for that purpose.  相似文献   

10.
Two fully regular and universal solutions to the problem of spacecraft relative motion are derived from the Sperling–Burdet (SB) and the Kustaanheimo–Stiefel (KS) regularizations. There are no singularities in the resulting solutions, and their form is not affected by the type of reference orbit (circular, elliptic, parabolic, or hyperbolic). In addition, the solutions to the problem are given in compact tensorial expressions and directly referred to the initial state vector of the leader spacecraft. The SB and KS formulations introduce a fictitious time by means of the Sundman transformation. Because of using an alternative independent variable, the solutions are built based on the theory of asynchronous relative motion. This technique simplifies the required derivations. Closed-form expressions of the partial derivatives of orbital motion with respect to the initial state are provided explicitly. Numerical experiments show that the performance of a given representation of the dynamics depends strongly on the time transformation, whereas it is virtually independent from the choice of variables to parameterize orbital motion. In the circular and elliptic cases, the linear solutions coincide exactly with the results obtained with the Clohessy–Wiltshire and Yamanaka–Ankersen state-transition matrices. Examples of relative orbits about parabolic and hyperbolic reference orbits are also presented. Finally, the theory of asynchronous relative motion provides a simple mechanism to introduce nonlinearities in the solution, improving its accuracy.  相似文献   

11.
We suggest a new approach to solving the problem of finding the orbit of a celestial body from its three spatial position vectors and the corresponding times. It allows most of the perturbations in the motion of a celestial body to be taken into account. The approach is based on the theory of intermediate orbits that we developed previously. We construct the orbit the motion along which is a combination of two motions: the motion of a fictitious attracting center whose mass varies according to Mestschersky’s first law and the motion relative to the fictitious center. The first motion is generally parabolic, while the second motion is described by the equations of the Gylden-Mestschersky problem. The constructed orbit has such parameters that their limiting values at any reference epoch define a superosculating intermediate orbit with a fourth-order tangency. We have performed a numerical analysis to estimate the accuracy of approximating the perturbed motion of two minor planets, 145 Adeona and 4179 Toutatis, by the orbits computed using two-position procedures (the classical Gauss method and the method that we suggested previously), a three-position procedure based on the Herrick-Gibbs equation, and the new method. Comparison of the results obtained suggests that the latter method has an advantage.  相似文献   

12.
We develop a new and fast method to estimate perturbations by a planet on cometary orbits. This method allows us to identify accurately the cases of large perturbations in a set of fictitious orbits. Hence, it can be used in constructing perturbation samples for Monte Carlo simulations in order to maximize the amount of information. Furthermore, the estimated perturbations are found to yield a good approximation to the real perturbation sample. This is shown by a comparison of the perturbations obtained by the new estimator with the results of numerical integration of regularized equations of motion for the same orbits in the same dynamical model: the three-dimensional elliptic restricted three-body problem (Sun-Jupiter-comet).  相似文献   

13.
Intermediate perturbed orbits, which were proposed earlier by the first author and are calculated based on three position vectors and three measurements of angular coordinates of a small celestial body, are examined. Provided that the reference time interval encompassing the measurements is short, these orbits are close in the accuracy of approximation of actual motion to an orbit with fourth-order tangency. The shorter the reference time interval is, the better is the approximation. The laws of variation of the errors of methods for constructing such intermediate orbits with the length of the reference time interval are formulated. According to these laws, the rate of convergence of the methods to an exact solution in the process of shortening of the reference time interval is, in general, three orders of magnitude higher than that of conventional methods relying on an unperturbed Keplerian orbit. The considered orbits are among the most accurate of their class that is defined by the order of tangency. The obtained theoretical results are verified by numerical experiments on determining the orbit of 99942 Apophis.  相似文献   

14.
本文推导了天体运动方程的数值解对积分初始条件、天体质量等动力系统参数的偏导数所满足的微分方程和初始条件。  相似文献   

15.
The circular restricted problem of three bodies is investigated analytically with respect to the problem of deriving a second integral of motion besides the well known Jacobian Integral. The second integral is searched for as a correction the angular momentum integral valid in the two body case. A partial differential equation equivalent to the problem is derived and solved approximately by an asymptotic Fourier method assuming either sufficiently small values for the dimensionless mass parameter or sufficiently large distances from the barycentre. The solution of the partial equation then leads to a function of the coordinates, velocities and time being nearly constant, which means that its variation with time is about 40–300 times less than that of the pure angular momentum. By averaging over the remaining fluctuating part of the quasi-integral we are able to integrate the first order equations using a renormalization transformation. This leads to an explicit expression for the approximate solution of the circular problem which describes the motion of the third body orbiting both primaries with nonvanishing initial eccentricity (eccentric planetary type orbits). One of the main results is an explicit formula for the frequency of the perihelion motion of the third body which depends on the mass parameter, the initial distance of the third body from the barycentre and the initial eccentricity. Finally we study orbits of the P-Type, being defined as solutions of the restricted problem with circular initial conditions (vanishing initial eccentricity).  相似文献   

16.
Existence of periodic orbits inside elliptical galaxies has been investigated. Necessary conditions for regular, small amplitude periodic motion around the center of galaxy have been derived using implicit functions and solved by approximating through Taylor's series. The solution procedure requires to obtain functions of partial derivatives of dependent variables with respect to initial conditions. Derivation of these functions can be accomplished through solving a set of ordinary differential equations by proper choices of associated initial conditions. The results obtained show complete agreement with those obtained through the application of Poincaré-Lindstedt's method.  相似文献   

17.
The paper presents an efficient algorithm for the study of satellite and space debris orbits on long time intervals. The averaged equations of motion are integrated by means of the implicit midpoint method. This approach is known as a symplectic mapping technique. The perturbing forces included in the mapping are: the geopotential, the atmospheric drag, lunisolar perturbations and the direct radiation pressure (without shadow effects). The influence of the atmosphere is approximated by simple methods for the estimation of integrals. The described mapping is valid for the wide range of orbits including the resonant and the eccentric ones; it can be helpful in practical and theoretical problems. The lifetime of GPS transfer orbits is discussed as an exemplary application.  相似文献   

18.
The present study deals with numerical modeling of the elliptic restricted three-body problem as well as of the perturbed elliptic restricted three-body (Earth-Moon-Satellite) problem by a fourth body (Sun). Two numerical algorithms are established and investigated. The first is based on the method of the series solution of the differential equations and the second is based on a 5th-order Runge-Kutta method. The applications concern the solution of the equations and integrals of motion of the circular and elliptical restricted three-body problem as well as the search for periodic orbits of the natural satellites of the Moon in the Earth-Moon system in both cases in which the Moon describes circular or elliptical orbit around the Earth before the perturbations induced by the Sun. After the introduction of the perturbations in the Earth-Moon-Satellite system the motions of the Moon and the Satellite are studied with the same initial conditions which give periodic orbits for the unperturbed elliptic problem.  相似文献   

19.
We describe an approximate numerical-analytical method for calculating the perturbations of the elements of distant satellite orbits. The model for the motion of a distant satellite includes the solar attraction and the eccentricity and ecliptic inclination of the orbit of the central planet. In addition, we take into account the variations in planetary orbital elements with time due to secular perturbations. Our work is based on Zeipel’s method for constructing the canonical transformations that relate osculating satellite orbital elements to the mean ones. The corresponding transformation of the Hamiltonian is used to construct an evolution system of equations for mean elements. The numerical solution of this system free from rapidly oscillating functions and the inverse transformation from the mean to osculating elements allows the evolution of distant satellite orbits to be studied on long time scales on the order of several hundred or thousand satellite orbital periods.  相似文献   

20.
The four-planet problem is solved by constructing an averaged semi-analytical theory of secondorder motion by planetary masses. A discussion is given of the results obtained by numerical integration of the averaged equations of motion for the Sun–Jupiter–Saturn–Uranus–Neptune system over a time interval of 10 Gyr. The integration is based on high-order Runge–Kutta and Everhart methods. The motion of the planets is almost periodic in nature. The eccentricities and inclinations of the planetary orbits remain small. Short-period perturbations remain small over the entire interval of integration. Conclusions are drawn about the resonant properties of the motion. Estimates are given for the accuracy of the numerical integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号