首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
宁武煤田平朔矿区9号煤中锂的富集机理   总被引:1,自引:0,他引:1  
刘帮军 《地质与勘探》2014,50(6):1070-1075
从宁武煤田平朔矿区的9号煤中共采了58个煤样,通过光学显微镜、逐级化学提取、SEM-EDX分析、X射线粉末衍射和ICP-MS技术对这些样品进行分析。结果表明9号煤中Li的平均含量达到152 mg/kg,9号煤的点储量为36.7亿吨,Li O2的量达119.5万吨,也就是说煤层中锂的储量约为55.8万吨;逐级化学提取过程的结果表明,Li的富集主要与无机物有关,只有约5.5%的锂具有有机亲和力,这些无机矿物是高岭石、勃姆石、绿泥石族矿物、石英、方解石、黄铁矿以及无定形粘土状矿物等,在含锂煤层中,锂可能被粘土矿物吸附;根据古地理研究,9号煤中锂的最初来源可能是阴山古陆,盆地北部本溪组中的铝土矿可能是锂的直接来源。  相似文献   

2.
为了研究大同煤田南部煤中伴生元素的地球化学特征,运用矿物学、煤地球化学以及岩石学等学科的理论和研究方法,利用X射线荧光光谱分析(XRF)、电感耦合等离子质谱分析(ICPMS)、X射线衍射分析(XRD)、扫描电镜+能谱分析(SEM-EDS),对五家沟矿区5号煤中伴生元素的含量及赋存特征进行研究。结果表明,五家沟5号煤中常量元素Al、Si、Ca、Fe含量较高,占到灰分总量的95%以上。Al主要以高岭石的形式存在,Si以黏土矿物和石英的形式赋存于煤中,煤中Ca的主要载体是方解石,Fe在煤中主要以黄铁矿的形式存在。煤中微量元素Li富集,Ga、Sr、Zr、Nb、Hf、Ta轻度富集。锂和镓主要赋存于高岭石中;铌和钽赋存于黏土矿物中,部分可能赋存于伊利石中;锆和铪赋存于黏土矿物中,还有部分赋存于金红石内。  相似文献   

3.
锂(Li)是一种重要的金属能源,近年来全球锂的需求持续增长。我国煤伴生型锂矿床的发现证明煤矿可能成为锂资源的潜在来源。以贵州普安矿区20号煤为研究对象,采用工业分析、镜下鉴定、X射线荧光光谱(XRF)、电感耦合等离子体质谱(ICP-MS)、激光剥蚀?电感耦合等离子体质谱(LA-ICP-MS)等方法,分析原煤及浮沉实验获得的密度分级试样的基本性质、矿物组成、元素组成及煤中Li的赋存特征。结果表明,原煤中Li含量达134.09 μg/g,在6个密度级样品中,Li含量随煤样密度级的增加而增加(>1.8 g/cm3密度级样品中Li含量最高为212 μg/g),重力分选可使煤中Li得到一定程度的预富集。原煤主要矿物组分包括黏土矿物、黄铁矿、方解石、石英等,基于Li与Al、Si等的相关性以及矿物微区元素含量(LA-ICP-MS)等分析,推测Li可能主要以吸附态赋存于黏土矿物中。逐级化学提取实验结果表明,煤中Li的赋存特征为水溶态(20.96%)、离子交换态(32.90%)、硅酸盐/铝硅酸盐态(22.80%)、碳酸盐/磷酸盐态(10.81%)、二硫化物态(3.92%)和残渣/有机态(2.58%),说明通过离子交换法可以从煤矸石中回收Li。该研究结果为下一步分离提取煤中Li提供了一定理论指导。   相似文献   

4.
文章以沁水煤田长治首阳山矿15号煤为研究对象,运用电感耦合等离子体质谱(ICP-MS)和X射线荧光光谱(XRF)等方法对煤中的稀土元素进行测试和分析。探讨了15号煤中稀土元素的富集机理、配分模式、赋存状态以及成煤环境等地球化学特征。结果表明:(1)研究区煤层中的稀土元素含量均值为49.28μg/g,整体含量较低;(2) 15~#煤(除SYS15-2外)和夹矸中稀土元素均为轻稀土富集型(LREY),并且夹矸中轻稀土富集更加明显;(3)稀土元素主要赋存在黏土矿物中;(4)成煤环境整体上以弱还原环境为主,稀土元素物质来源主要为陆源碎屑。  相似文献   

5.
上二叠统龙潭组是重庆南武矿区的主要含煤岩系,通过采集主采煤层C25样品,运用ICP-MS(稀土元素)、电子显微镜,X射线衍射等方法对重庆南武矿区龙潭组煤的元素地球化学特征进行研究。研究发现,南武矿区晚二叠世龙潭组C25煤中Ga元素富集,平面上呈现东北高、西北低的分布规律,矿区东北部天宝煤矿和开发煤矿达到综合利用品位。统计分析表明,C25煤中Ga主要以无机态赋存于黏土矿物或硅酸铝盐矿物中。初步分析认为,南武矿区上二叠统龙潭组煤中Ga元素的富集主要受物源、沉积环境及构造热演化的控制。   相似文献   

6.
对宁武煤田轩岗矿区13个煤矿2#煤采集了98(含夹矸)个样品,运用煤地球化学以及沉积学等学科理论知识,结合X射线荧光光谱分析(XRF)、电感耦合等离子质谱分析(ICP-MS)等技术手段对样品进行测试分析。结果显示,宁武煤田轩岗矿区2#煤中锂的载体主要为硅酸盐矿物。锂元素含量总体变化呈北高南低的趋势,北部矿区沉积物源主要是来自北部阴山古陆和吕梁半岛的花岗岩、玄武岩和沉积岩类,南部矿区沉积物源主要是沉积岩类,相对于北部较为单一。  相似文献   

7.
淮北煤田煤中汞的赋存状态   总被引:6,自引:0,他引:6  
系统采集淮北煤田10、7、5、4和3煤层的29个煤样品, 采用逐级化学提取方法研究了煤中汞的赋存状态, 根据提取步骤和汞的特性, 将煤中的汞分为水溶态、离子交换态、有机态、碳酸盐结合态、硅酸盐结合态和硫化物结合态, 利用Flow Injection Mercury System(FIMS)分析了样品中总汞和不同形态中汞的含量.测试结果表明, 与华北石炭-二叠纪煤、中国煤以及美国煤含量相比较, 淮北煤田煤中汞的含量明显富集.逐级化学提取实验结果和煤中汞与硫、灰分的相关分析结果表明, 岩浆的侵入对煤中汞的赋存状态有较大的影响, 不受岩浆侵入影响的10、4和3煤层煤中的汞主要以有机态和硫化物结合态存在, 受岩浆侵入影响的5和7煤层中的汞主要以硅酸盐结合态存在.   相似文献   

8.
采用电感耦合等离子质谱(ICP-MS)、煤岩鉴定及X-衍射分析等方法分析了河东煤田北部主采8号及13号煤中稀土元素的地球化学特征及矿物组成特征,探讨了煤中稀土元素的赋存状态及主要来源。结果表明:河东煤田北部8号和13号煤中稀土总量(ΣREE)均高于华北晚古生代煤及中国煤中稀土总量平均值,稀土元素相对富集。8号和13号煤具有相似的稀土元素地球化学参数和稀土元素分布模式,且与华北地区的晚古生代煤中稀土元素地球化学特征及分布模式具有很好的相似性。呈左高右低、Eu存在明显负异常的"V"型曲线;LREE明显富集,HREE相对亏损,LREE和HREE出现较强分异;且轻稀土分异较强,而重稀土分异较弱;Ce具有极弱的负异常,基本正常。整个河东煤田北部8号煤和13号煤层形成的过程中,稀土元素的来源基本一致;且成煤时期,泥炭沼泽具有相对稳定的陆源物质供应,成煤环境均为酸性还原环境。8号和13号煤中的稀土元素可能以无机态和有机吸附态共存,且主要赋存在黏土矿物中;物质来源与整个华北地台晚古生代的沉积具有一致性,主要受阴山古陆陆源物质的影响和控制。  相似文献   

9.
运用电感耦合等离子体质谱(ICP-MS)、X射线荧光光谱(XRF)、带能谱仪的扫描电镜(SEM-EDX)、逐级化学提取(SCEP)和光学显微镜等方法,对贵州大方煤田11号煤层的地球化学和矿物学进行了研究。结果表明,大方煤田11号煤层中有高含量的脉状石英(11.4%)和脉状铁白云石(10.2%),铁白云石周边常被针铁矿所包裹,在脉状石英中发现有热液成因的黄铜矿、闪锌矿和硒方铅矿,此外,还有少量高岭石充填在脉中,这7种矿物常常同脉共存。脉状石英和脉状铁白云石分别来源于硅质和富铁的钙质低温热液流体,形成温度分别为180℃和85℃。脉状石英早于脉状铁白云石形成。根据Ca/Sr和Fe/Mn值,确定出铁白云石的形成至少经历了3个时期。这7种矿物按照从早到晚的生成顺序为硫化物、石英、高岭石、铁白云石和针铁矿。铁白云石是煤中Mn、Cu、Ni、Pb和Zn富集的主要原因,这5种微量元素的含量分别为0.09%、74.0μg/g、33.6μg/g、185μg/g和289μg/g。脉状石英是煤中铂族元素Pd、Pt和Ir的主要载体,它们在煤中的含量分别为1.57μg/g、0.15μg/g和0.007μg/g。另外,黄铜矿、闪锌矿和硒方铅矿亦是11号煤层中Cu、Zn和Pb的重要载体。  相似文献   

10.
杨建业 《地球学报》2007,28(3):277-282
运用电感耦合等离子体质谱(ICP-MS)和逐级化学提取技术(SCET)对贵州西部普安矿区晚二叠世煤中贵金属元素的含量、赋存状态和成因机理进行了研究.结果表明,贵州普安矿区2号主采煤层的矿物组成主要为低温热液流体成因的黄铁矿和陆源碎屑成因的粘土矿物;与中国煤煤相比,该煤中Rh(38 ng/g)、Pb(640 ng/g)、Ir(9 ng/g)、Pt(98 ng/g)、Au(16 ng/g)和Ag(1620 ng/g)明显富集,其中Pb、Ir、Au的含量分别是中国煤的4.3倍、9倍和5.3倍.逐级化学提取结果表  相似文献   

11.
淮南煤田深部A组煤中有害微量元素地球化学特征   总被引:1,自引:0,他引:1       下载免费PDF全文
以淮南煤田深部A 组煤为研究对象,全层刻槽采集了煤、夹矸和顶底板岩石样品,采用电感耦合等离子质谱仪 (ICP-MS) 测试分析了样品中13 种有害微量元素的含量,对比研究了其分布特征,结合Tessier 五步形态提取法和相关性分 析探讨了煤中有害微量元素的赋存形态。结果表明:(1) 与中国上陆壳中各种微量元素含量均值相比,淮南深部A 组煤中 B,As,Se,Mo,Cd,Pb,Hg 的富集系数均大于1,在A 组煤中表现为富集;A 组煤中B,As,Se,Cd 的含量均高于淮南煤 田上部B 组煤、华北煤以及中国煤中的含量均值;(2) 相关性分析和逐级提取实验结果表明,A 组煤中微量元素主要以残 渣态和铁锰氧化物结合态存在,两者质量分数之和达到55%~98%,其中Ni,Mo,Cd,Hg,Cu,Pb 和Zn 主要赋存于硫化物 矿物中,Mn 主要赋存于碳酸盐矿物中,V,Cr,Se,B 和As 主要赋存于硅铝酸盐等黏土矿物中。(3) B 元素示踪物源及沉 积环境结果显示,淮南煤田深部A 组煤成煤环境为海相咸水沉积环境,稳定的咸水沉积环境以及受海水影响等因素导致A 组煤中微量元素出现不同程度的富集。  相似文献   

12.
在离子吸附型稀土矿床中,黏土矿物被认为是离子吸附态稀土的主要吸附载体。风化壳中黏土矿物的透射电镜分析发现,黏土矿物普遍与铁氧化物形成复合体,很可能对稀土元素的富集–分异产生重要影响。本研究以广东省梅州市平远县仁居矿区的典型离子吸附型稀土矿床剖面为对象,通过提取富矿层中的细颗粒组分,采用X射线衍射、穆斯堡尔谱和透射电镜,对黏土矿物–铁氧化物复合体进行物相和形貌分析;在此基础上,采用顺序提取法测定不同化学形态的稀土总量,探究黏土矿物和铁氧化物对稀土元素富集–分异的贡献。结果表明,从全风化层到表土层,复合物从长石/伊利石–水铁矿/针铁矿复合体到高岭石/埃洛石–针铁矿/赤铁矿复合体,最终向高岭石–赤铁矿复合体转变。在表土层和全风化层的细颗粒组分中,离子交换态稀土约占25%和80%,而铁氧化物结合态稀土约占75%和20%。在表土层中, Ce的富集导致离子交换态和铁氧化物结合态稀土均富轻稀土。在全风化层中,随着深度的增加,离子交换态稀土由富轻稀土转变为富重稀土,铁氧化物结合态稀土均表现富重稀土的分异特征。离子交换态稀土总量和分异特征主要受黏土矿物–稀土界面作用和淋滤作用控制;而铁氧化物结合态稀土总...  相似文献   

13.
内蒙古准格尔煤田是煤系金属富集的典型,可以作为新的稀土元素来源,燃煤产物是煤型稀有金属提取冶炼的直接原料。运用电感耦合等离子体质谱仪(ICP-MS)、X射线衍射分析仪(XRD)、能谱扫描电镜(SEM-EDX)等对内蒙古鄂尔多斯准能矸石电厂流化床燃煤产物进行了分析测试,结果表明:(1)准能矸石电厂炉前煤稀土元素含量190.42μg/g,与世界煤相比表现为轻度富集,但在燃烧后,在粉煤灰和底灰中发生明显的分异,煤中稀土元素约80%进入粉煤灰,使得粉煤灰中稀土元素含量达到865.37μg/g,换算为稀土元素氧化物(REO)含量约为1 081μg/g,参照《稀土矿产地质勘查规范》(DZ/T 0204—2002)规定的稀土元素工业品位要求,具有开发利用价值;(2)准能矸石电厂燃煤底灰与粉煤灰中的矿物种类基本一致,仅存在含量上的差别。燃煤产物的主要组成矿物包括莫来石、石英、赤铁矿、玻璃体等。其中莫来石含量16.3%~19.8%,非晶质玻璃体含量65.7%~69.1%,粉煤灰矿物中莫来石含量与附近的国华电厂(原准格尔电厂)及其他电厂相比相对较少,而非晶态玻璃体含量较高,可能的原因是其炉前煤(黑岱沟6号...  相似文献   

14.
为研究大同煤田中侏罗统煤中伴生元素地球化学特征及地质意义,应用电感耦合等离子体质谱(ICP-MS)、X射线衍射法(XRD)、光学电子显微镜和扫描电子显微镜(SEM)等测试方法分析煤田北部9个煤层中伴生元素含量和赋存特征。结果表明:煤中微量元素含量低,其有益元素(Li、Ga)含量均远低于边界品位,不具伴生成矿开发潜力,但2号煤中Co与Zn、9号煤中Tl和11-2号煤中Be等有害元素较为富集,是世界煤平均值的3倍以上,其环境影响值得关注。煤中主要矿物是高岭石与石英,高岭石主要充填在结构镜质体中,指示其同生成因,石英往往具有很好的晶型,指示其自生成因;少量的黄铁矿和方解石充填在显微裂隙中,指示其后生成因;磷灰石与有机质结合。煤中微量元素Ni和Mo可能主要以有机质结合态存在,其他元素主要赋存在无机矿物中,Si主要以石英形式存在,部分Si和Al以及Li、Cr、Ga和Nb存于黏土矿物中,Fe和Mn以及Cd、Zn、Tl赋存于黄铁矿中;Ca和Mg以及Co主要赋存在碳酸盐矿物中;P、Be、Sr和Ba可能存在磷灰石中;Rb赋存在石盐类矿物中。垂向上看,大同组存在2个沉积旋回,每个沉积旋回由下至上,水动力条件逐渐降低,水体由浅到深,陆源碎屑供给越来越少,这2个旋回间可能经历了较强的地质作用。总体看,在成煤期,随沉积作用的进行,聚煤盆地中碎屑物质输入逐渐减少,活性物质逐渐增加。   相似文献   

15.
为了探讨煤中微量元素的赋存状态和地质成因,本文运用电离耦合等离子体质谱(ICP-MS)、电离耦合等离子体原子发射光谱(ICP-AES)、X射线荧光光谱(XRF)、冷原子吸收光谱(CV-AAS)、离子选择性电极法(ISE)、逐级化学提取试验(SCEE)等,研究了重庆长河碥矿晚三叠世须家河组2号煤层中微量元素的含量、赋存特征及其影响因素.发现该煤层中As(12.9 μg/g)、Cu(125 μg/g)、Cr(72 μg/g)、Ni(63 μg/g)、Pb(111 μg/g)等元素富集;逐级化学提取结果显示,煤层中Pb主要赋存在低温热液成因的黄铁矿脉中;Cr主要存在于粘土矿物中,Cr可能与陆源碎屑供给有关;Cu不仅与粘土矿物有关,也与煤中黄铁矿有关.表明低温热液流体和陆源碎屑供给对该煤中主要微量有害元素的含量和赋存特征起了决定作用.  相似文献   

16.
运用仪器中子活化分析、电离耦合等离子体原子发射光谱、X射线荧光光谱、X射线衍射分析、带能谱仪的扫描电镜和逐级化学提取试验研究了贵州织金煤矿区上二叠统含煤岩系30号煤层中伴生元素的含量、赋存状态和矿物特征。结果表明,煤层中有高含量的脉状石英(9.4%),其δ^30Si、δ^18O值分别为0.6%。和15.4‰,表明脉状石英来源于硅质低温热液流体;脉状石英是煤中高含量Fe(2.31%)、Cu(356μg/g)、U(8μg/g)、Pd(2.1μg/g)、Pt(2.43μg/g)和Ir(0.006μg/g)的主要载体。  相似文献   

17.
丁帅帅  郑刘根  程桦 《岩矿测试》2015,34(6):629-635
煤矸石是我国堆存量最大的工业固体废物,本文应用电感耦合等离子体发射光谱法、逐级化学提取法和相关性分析研究了淮北临涣矿区低硫煤矸石中10种微量元素的含量及赋存状态,并运用风险评价指数法评价其环境效应。结果表明,低硫煤矸石中Ba、Co、Cr、Mn、Ni、Pb、V含量均高于淮北煤和中国煤均值,Mn、V的富集系数大于1,有一定迁移风险。微量元素主要以残渣态和铁锰氧化物结合态存在,两者质量分数之和为68.87%~92.93%,其中Cd、Co、Cr、Cu、Ni、Pb、Zn赋存于硫化物矿物中,V赋存于黏土矿物中,Mn赋存于碳酸盐矿物和硫化物矿物中。10种微量元素对环境的危害性大小为:MnZnNiPbCdCuBaVCrCo,表明低硫煤矸石堆存过程中活性态Mn对生态环境造成危害的可能性最大,由Mn可能引起的煤矸石山周边地区土壤及水体污染应当重视。  相似文献   

18.
铵伊利石是伊利石层间域的K+被NH+4替代而形成的类质同象.文中运用X射线衍射分析、傅里叶红外光谱分析以及热重—热流—红外光谱同步分析等手段,对山西晋城及阳泉地区的15号煤层夹矸及煤中矿物进行了研究,发现15号煤层夹矸和煤低温灰中黏土矿物以铵伊利石和高岭石为主,铵伊利石含量为21%~74%;X射线衍射图谱上d(001)...  相似文献   

19.
以石嘴山煤田汝箕沟矿区侏罗纪的二煤、三煤和石炭井矿区二叠纪的四煤、五煤为研究对象,采用低温灰的化学组成分析和X射线衍射分析,对煤中矿物特征做对比研究。结果表明:汝箕沟矿区样品与石炭井矿区样品在化学成分、灰成分指数、Si和Al比值上,都具有明显差异;汝箕沟矿区样品X衍射图谱的波峰最大值远远小于石炭井矿区的样品值,两者的图谱形态也存在很大差异;汝箕沟矿区样品中以高岭石、伊利石、石英为主,其它很少,高岭石约占65%;石炭井矿区样品中以高岭石占绝对优势,约占85%,其他矿物含量较少。化学组成分析的结果和X射线衍射分析的结果具有较好的对应性。  相似文献   

20.
金的地球化学勘查基于金的准确测定,地球化学样品中金含量通常处于ng/g水平,需先进行分离富集,再采用电感耦合等离子体质谱法(ICP-MS)或石墨炉原子吸收光谱法(GFAAS)进行测定。当前,隐伏矿床勘查是地球化学探测技术的发展前沿,金活动态提取技术是寻找隐伏金矿的有效手段之一。相比于全量分析,金的活动态含量更低,需要解决选择性提取、高效预富集与准确测定等一系列难题。本文采用柠檬酸铵与土壤中黏土矿物及次生矿物作用促使吸附和可交换组分的金进入提取液,以硫脲和硫代硫酸钠络合金使活动态金向提取液中扩散,达到选择性提取的目的,建立了提取液中金的预富集及ICP-MS测定方法。实验确定的分析条件为:采用5g/L柠檬酸铵-2g/L硫脲-5g/L硫代硫酸钠为提取剂,提取时间24h,在酸性硫脲介质下用活性炭富集金,金吸附率可达89.6%~109.2%,灰化解吸温度为650~700℃。本方法检出限为0.05ng/g,相对标准偏差(RSD)为9.4%~10.2%,加标回收率为91.2%~93.4%。与已报道的硫酸铁-硫脲-硫代硫酸钠溶液提取再GFAAS测定的方法相比,本方法具有检出限低、测试线性范围宽、测试速度快的优势;应用于森林覆盖区黑龙江东安金矿区地球化学探测试验,金活动态异常与隐伏金矿位置一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号