首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The paper discusses a possible model of the ancient (Hadean-Archean) Earth’s geodynamic evolution. We believe that the early Earth was characterized by a stagnant lid regime and whole-mantle convection suggesting cells that convect through the whole mantle (from the core-mantle boundary to the lithosphere base). The lid tectonics was perturbed by asteroid-meteorite bombardments that destroyed the primary terrestrial partly granitoid crust. The destroyed crust together with the residual enriched mantle reservoirs sank into the lower mantle. In addition to the crust destruction, the bombardments led to emplacement of a huge proportion of basalt-komatiitic melts, which can be interpreted as mantle overturn events. In the Hadean, the Earth survived frequent large-scale asteroid-meteorite bombardments, which resulted in almost a complete destruction of the primary terrestrial crust. In the Early Archean, the Earth still experienced the same tectonic processes, as in the Hadean; however, meteorite impact was small-scale and the bombardments influenced only a limited area of a common, as it seems to us, subequatorial supercontinent. Those bombardments led to the sagduction of the Archean basalt-komatiiic terrestrial crust, which sank into the mantle, transforming into amphibolite-eclogite rocks giving rise to a tonalite-troondhjemite-granodiorite suite. As preserved in the zircon record, the formation of the Archean mantle-derived magmas occurred as pulses at 4.5, 4.2-4.3, 3.8-3.9, and 3.3-3.4 Ga. These peaks, most likely, correspond to the Hadean-Archean meteorite bombardments. There is evidence of formation of the subcontinental lithospheric mantle (SCLM) beneath the cratons between 3.3 and 3.5 Ga. This SCLM was markedly different from peridotites of modern ophiolites. However, the existence of ophiolitic peridotites indicates that modern style plate tectonic processes were in operation at that time, as we will discuss below. The transition from the early Earth (Hadean-Archean) tectonic style to the recent tectonics occurred between 3.4 (2.7?) and 2.0 Ga.  相似文献   

2.
The Hadean and Archean geologic history of the Earth is discussed in the context of available knowledge from different sources: space physics and comparative planetology; isotope geochronology; geology and petrology of Archean greenstone belts (GB) and tonalite-trondhjemite-granodiorite (TTG) complexes; and geodynamic modeling review to analyse plate-tectonic, plume activity, and impact processes. Correlation between the age peaks of terrestrial Hadean-Early Archean zircons and late heavy bombardment events on the Moon, as well as the Hf isotope composition of zircons indicating their mostly mafic sources, hint to an important role of impact processes in the Earth’s history between 4.4 and 3.8 Ga. The earliest continental crust (TTG complexes) formed at 4.2 Ga (Acasta gneisses), while its large-scale recycling left imprint in Hf isotope signatures after 3.75 Ga. The associations and geochemistry of rocks suggest that Archean greenstone belts formed in settings of rifting, ocean floor spreading, subduction, and plume magmatism generally similar to the present respective processes. The Archean history differed in the greater extent of rocks derived from mantle plumes (komatiites and basalts), boninites, and adakites as well as in shorter subduction cycles recorded in alternation of typical calc-alkaline andesite-dacite-rhyolite and adakite series that were generated in a hotter mantle with more turbulent convection and unsteady subduction. The Archean is interpreted as a transient period of small plate tectonics.  相似文献   

3.
The paper is focused on the fundamental problem of influence of extraterrestrial factors on the Earth’s geologic and tectonic evolution. Extraterrestrial factors played a decisive role in the Earth’s genesis, the formation of the first Hadean continental crust, and the beginning of the Archean era. Their significant influence persisted in the later epochs: Even in the Phanerozoic, extraterrestrial factors might have had a considerable influence on the environment. The sialic cores of protocontinental crust (4.4-3.9 Ga) with first-generation greenstone zones (3.8-3.2 Ga) and the global system of granite-greenstone belts (3.1-2.7 Ga) formed in the rotation-plume regime, mainly in the subequatorial hot belt. The formation of these global structures was, to a large extent, influenced by asteroid impacts, which caused the impact-triggered genesis of mantle plumes. Dramatic changes in the subsequent geologic history began at 2.7-2.0 Ga; at 2.0 Ga they terminated with the Moon’s transition to an orbit similar to the present-day one (50 ± 3 Earth’s radii), accompanied by the abrupt slowdown of the Earth’s axial rotation, the termination of formation of the layer D", and the start of recent plate tectonics, which is accompanied by the plume tectonics.  相似文献   

4.
地质历史中板块构造启动时间   总被引:1,自引:0,他引:1  
地质历史中板块构造是何时开始启动的长期存在着激烈的争论,最极端的一是认为板块构造在新元古代的800 Ma前开始,二是在冥古宙4.3 Ga就已启动,多数学者认为在太古宙末开始启动。确定板块构造启动时间主要依据以下几方面:(1)地球动力学特点,如地幔的热状态以及粘塑性地幔对流模拟表明,板块构造可能是在地球热和冷停滞状态之间演化的一个相。在太古宙较热的地球中,板片强度低,板片的频繁断离阻止了形成类似现代样式的长期俯冲体系,太古宙的板块构造是短期的、阵发性的;(2)代表俯冲的标志的蛇绿岩、蓝片岩和超高压(UHP)变质地体;(3)具有弧特征的岩石组合,如拉斑玄武岩-安山岩-英安岩-流纹岩及英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)岩套;(4)增生楔中混杂岩和大洋板块地层、前陆盆地、大陆裂谷、双变质带、造山带;(5)与俯冲带关系密切的造山型Au矿、斑岩Cu矿和浅成热液矿床、火山岩型块状硫化物矿床(VHMS),它们最早出现的年龄一致在3.5~3.1 Ga,指示了板块构造的开始;(6)世界不同地区大陆的Ni/Co、Cr/Zn比值随沉积年龄变年轻而降低,陆壳从3.0 Ga前的镁铁质转变为2.5 Ga时的长英质,表明全球板块构造的启动应在3.0 Ga的古中太古代;(7)冥古宙锆石、太古宙金刚石中矿物包裹体及Hf、O、C、N同位素组成研究表明,冥古宙地球表面存在类似板块汇聚边缘,太古宙含有大陆沉积物的海洋岩石圈俯冲进入地幔。  相似文献   

5.
W.G. Ernst   《Gondwana Research》2007,11(1-2):38
In the early Earth, accretionary impact heating, including collision with a large, Mars-sized object, decay of short-lived radioisotopes, and (after an initial thermal run-up) continuous segregation of the liquid Fe–Ni core resulted in extensive the melting of the silicate mantle and in the formation of a near-surface magma mush ocean. Progressive, continuous degassing and chemical–gravitational differentiation of the crust–mantle system accompanied this Hadean stage, and has gradually lessened during the subsequent cooling of the planet. Mantle and core overturn was vigorous in the Hadean Earth, reflecting deep-seated chemical heterogeneities and concentrations of primordial heat. Hot, bottom-up mantle convection, including voluminous plume ascent, efficiently rid the planet of much thermal energy, but gradually decreased in importance with the passage of time. Formation of lithospheric scum began when planetary surface temperatures fell below those of basalt and peridotite solidi. Thickening and broadening of lithospheric plates are inferred from the post-Hadean rock record. Developmental stages of mantle circulation included: (a) 4.5–4.4 Ga, early, chaotic magma ocean circulation involving an incipient or pre-plate regime; (b) 4.4–2.7 Ga, growth of small micro-oceanic and microcontinental platelets, all returned to the mantle prior to 4.0 Ga, but increasing in size and progressively suturing sialic crust-capped lithospheric amalgams at and near the surface over time; (c) 2.7–1.0 Ga, assembly of cratons surmounting larger, supercontinental plates; and (d) 1.0 Ga–present, modern, laminar-flowing asthenospheric cells capped by gigantic, Wilson-cycle lithospheric plates. Restriction of komatiitic lavas to the Archean, and of ophiolite complexes ± alkaline igneous rocks, high-pressure and ultrahigh-pressure metamorphic terranes to progressively younger Proterozoic–Phanerozoic orogenic belts supports the idea that planetary thermal relaxation promoted the increasingly negative buoyancy of cooler oceanic lithosphere. The Thickening of oceanic plates enhanced the gravitational instability and the consequent overturn of the outer Earth as cold, top-down oceanic mantle convection. The scales and dynamics of deep-seated asthenospheric circulation, and of lithospheric foundering + shallow asthenospheric return flow evidently have evolved gradually over geologic time in response to the progressive cooling of the Earth.  相似文献   

6.
Evidence for episodic crustal growth extending back to the Hadean has recently prompted a number of numerically based geodynamic models that incorporate cyclic changes from stagnant lid to mobile lid tectonics. A large part of the geologic record is missing for the times at which several of these cycles are inferred to have taken place. The cratons, however, are likely to retain important clues relating to similar cycles developed in the Mesoarchean and Neoarchean. Widespread acceptance of a form of plate tectonics by ~3.2 Ga is not at odds with the sporadic occurrence of stagnant lid tectonics after this time. The concept of scale as applied to cratons, mantle plumes and Neoarchean volcanic arcs are likely to provide important constraints on future models of Earth's geodynamic evolution. The Superior Province will provide some of the most concrete evidence in this regard given that its constituent blocks may have been locked into a stagnant lid relatively soon after their formation and then assembled in the next global plate tectonic interval. Perceived complexities associated with inferred mantle plume — volcanic arc associations in the Superior Province and other cratons may be related to an over estimation of plume size. A possible stagnant lid episode between ~2.9 Ga and ~2.8 Ga is identified by previously unexplained lapses in volcanism on cratons, including the Kaapvaal, Yilgarn and Superior Province cratons. If real, then mantle dynamics associated with this episode likely eliminated any contemporaneous mantle plume incubation sites, which has important implications for widespread plumes developed at ~2.7 Ga and favours a shallow mantle source in the transition zone. The Superior Province provides a uniquely preserved local proxy for this global event and could serve as the basis for detailed numerical models in the future.  相似文献   

7.
Warren B. Hamilton 《Lithos》2011,123(1-4):1-20
Archean, Paleoproterozoic, and Mesoproterozoic rocks, assemblages, and structures differ greatly both from each other and from modern ones, and lack evidence for subduction and seafloor spreading such as is widespread in Phanerozoic terrains. Most specialists nevertheless apply non-actualistic plate-tectonic explanations to the ancient terrains and do not consider alternatives. This report evaluates popular concepts with multidisciplinary information, and proposes options. The key is fractionation by ca. 4.45 Ga of the hot young Earth into core, severely depleted mantle, and thick mafic protocrust, followed by still-continuing re-enrichment of upper mantle from the top. This is opposite to the popular assumption that silicate Earth is still slowly and unidirectionally fractionating. The protocrust contained most material from which all subsequent crust was derived, either directly, or indirectly after downward recycling. Tonalite, trondhjemite, and granodiorite (TTG), dominant components of Archean crust, were derived mostly by partial melting of protocrust. Dense restitic protocrust delaminated and sank into hot, weak dunite mantle, which, displaced upward, enabled further partial melting of protocrust. Sinkers enriched the upper mantle, in part maintaining coherence as distinct dense rocks, and in part yielding melts that metasomatized depleted-mantle dunite to more pyroxenic and garnetiferous rocks. Not until ca. 3.6 Ga was TTG crust cool enough to allow mafic and ultramafic lavas, from both protocrust and re-enriched mantle, to erupt to the surface, and then to sag as synclinal keels between rising diapiric batholiths; simultaneously upper crust deformed ductily, then brittly, above slowly flowing hot lower TTG crust. Paleoproterozoic and Mesoproterozoic orogens appear to be largely ensialic, developed from very thick basin-filling sedimentary and volcanic rocks on thinned Archean or Paleoproterozoic crust and remaining mafic protocrust, above moderately re-enriched mantle. Subduction, and perhaps the continent/ocean lithospheric dichotomy, began ca. 850 Ma – although fully modern plate-tectonic processes began only in Ordovician time – and continued to enrich the cooling mantle in excess of partial melts that contributed to new crust. “Plumes” from deep mantle do not operate in the modern Earth and did not operate in Precambrian time.  相似文献   

8.
The geospheres that make up the Earth’s mantle, i.e., the upper, middle, and lower mantle, as well as dividing zones of discontinuity, are autonomous geological bodies whose geologic history is poorly known. The data on evolution of planetary magmatism and mineral transformations along the Earth’s radius, thermobaric information on the Earth’s interior, and new geodynamic reconstructions are used to outline the geologic history of deep geospheres. In broad terms, we suggest that layer D″, the lower mantle, and the Eoarchean basic protocrust were the first to be formed after differentiation of the protoplanetary material. The sialic crust appeared in the Paleoarchean. The system that comprised layer D″ the lower mantle, and discontinuity II was formed later, ~2.6 Ga ago, while the upper mantle and discontinuity I originated ca. 1.6–1.7 Ga ago. Thus, the within-mantle geospheres were formed in their present-day appearance over a long period of time.  相似文献   

9.
Comparison of initial Pb-isotope signatures of several early Archaean (3.65-3.82 Ga) lithologies (orthogneisses and metasediments) and minerals (feldspar and galena) documents the existence of substantial isotopic heterogeneity in the early Archaean, particularly in the 207Pb/204Pb ratio. The magnitude of isotopic variability at 3.82-3.65 Ga requires source separation between 4.3 and 4.1 Ga, depending on the extent of U/Pb fractionation possible in the early Earth. The isotopic heterogeneity could reflect the coexistence of enriched and depleted mantle domains or the separation of a terrestrial protocrust with a 238U/204Pb (µ) that was ca. 20-30% higher than coeval mantle. We prefer this latter explanation because the high-µ signature is most evident in metasediments (that formed at the Earth's surface). This interpretation is strengthened by the fact that no straightforward mantle model can be constructed for these high-µ lithologies without violating bulk silicate Earth constraints. The Pb-isotope evidence for a long-lived protocrust complements similar Hf-isotope data from the Earth's oldest zircons, which also require an origin from an enriched (low Lu/Hf) environment. A model is developed in which ́.8-Ga tonalite and monzodiorite gneiss precursors (for one of which we provide zircon U-Pb data) are not mantle-derived but formed by remelting or differentiation of ancient (ca. 4.3 Ga) basaltic crust which had evolved with a higher U/Pb ratio than coeval mantle in the absence of the subduction process. With the initiation of terrestrial subduction at, we propose, ca. 3.75 Ga, most of the ́.8-Ga basaltic shell (and its differentiation products) was recycled into the mantle, because of the lack of a stabilising mantle lithosphere. We argue that the key event for preservation of all ́.8-Ga terrestrial crust was the intrusion of voluminous granitoids immediately after establishment of global subduction because of complementary creation of a lithospheric keel. Furthermore, we argue that preservation of ́.8-Ga material (in situ rocks and zircons) globally is restricted to cratons with a high U/Pb source character (North Atlantic, Slave, Zimbabwe, Yilgarn, and Wyoming), and that the Pb-isotope systematics of these provinces are ultimately explained by reworking of material that was derived from ca. 4.3 Ga (i.e. Hadean) basaltic crust.  相似文献   

10.
The dominant geodynamic processes that underpin the formation and evolution of Earth’s early crust remain enigmatic calling for new information from less studied ancient cratonic nuclei.Here,we present U-Pb ages and Hf isotopic compositions of detrital zircon grains from^2.9 Ga old quartzites and magmatic zircon from a 3.505 Ga old dacite from the Iron Ore Group of the Singhbhum craton,eastern India.The detrital zircon grains range in age between 3.95 Ga and 2.91 Ga.Together with the recently reported Hadean,Eoarchean xenocrystic(up to 4.24 Ga)and modem detritus zircon grains from the Singhbhum craton,our results suggest that the Eoarchean detrital zircons represent crust generated by recycling of Hadean felsic crust formed at^4.3-4.2 Ga and^3.95 Ga.We observe a prominent shift in Hf isotope compositions at^3.6-3.5 Ga towards super-chondritic values,which signify an increased role for depleted mantle and the relevance of plate tectonics.The Paleo-,Mesoarchean zircon Hf isotopic record in the craton indicates crust generation involving the role of both depleted and enriched mantle sources.We infer a short-lived suprasubduction setting around^3.6-3.5 Ga followed by mantle plume activity during the Paleo-,Mesoarchean crust formation in the Singhbhum craton.The Singhbhum craton provides an additional repository for Earth’s oldest materials.  相似文献   

11.
《China Geology》2018,1(1):109-136
The mainland of China is composed of the North China Craton, the South China Craton, the Tarim Craton and other young orogenic belts. Amongst the three cratons, the North China Craton has been studied most and noted for its widely-distributed Archean basement rocks. In this paper, we assess and compare the geology, rock types, formation age and geochemical composition features of the Archean basements of the three cratons. They have some common characteristics, including the fact that the crustal rocks prior to the Paleoarchean and the supracrustal rocks of the Neoarchean were preserved, and Tonalite-Trondhjemtite-Granodiorite (TTG) magmatism and tectono-magmatism occurred at about 2.7 Ga and about 2.5 Ga respectively. The Tarim Craton and the North China Craton show more similarities in their early Precambrian crustal evolution. Significant findings on the Archean basement of the North China Craton are concluded to be: (1) the tectonic regime in the early stage (>3.1 Ga) is distinct from modern plate tectonics; (2) the continental crust accretion occurred mostly from the late Mesoarchean to the early Neoarchean period; (3) a huge linear tectonic belt already existed in the late Neoarchean period, suggesting the beginning of plate tectonics; and (4) the preliminary cratonization had already been completed by about 2.5 Ga. Hadean detrital zircons were found at a total of nine locations within China. Most of them show clear oscillatory zoning, sharing similar textures with magmatic zircons from intermediate-felsic magmatic rocks. This indicates that a fair quantity of continental material had already developed on Earth at that time.  相似文献   

12.
Geologists investigate the evolution of the atmosphere, crust, and mantle through time by direct study of the rock record. However, the Hadean eon (>3.85 Ga) has been traditionally viewed as inaccessible due to the absence of preserved rocks. The discovery of >4.0 Ga detrital zircons from Western Australia in the 1980s — coupled with the development of new micro-analytical capabilities — made possible new avenues of early Earth research. The prevailing view that emerged is that the early Earth may have contained a stable hydrosphere, water-saturated or (near watersaturated) granitic magmas, and volcanic emanations dominated by neutral gas species (e.g., CO2, H2O, and SO2). The Hadean Earth may have been capable of supporting life ~200 Ma after accretion and perhaps earlier. Many of these models are formulated — or have been subsequently supported — by laboratory experiments of zircon. Important petrological variables such as temperature, pressure, oxygen fugacity, and component activities (e.g., SiO2/TiO2-activities) can be controlled. These experiments are fundamental for extrapolation to ‘deep time’ because they provide a means to understand primary chemistry preserved in ancient zircons. This review paper specifically focuses on zircon experimental studies (oxygen isotope fractionations, Ti-thermometry, and redox sensitive element incorporation into zircon), which have influenced our view of the very early Earth.  相似文献   

13.
Zircon crystals precipitated from granitoid magmas contain a robust record of the age and chemistry of continental magmatism spanning some 4.375 Ga of Earth history, a record that charts initiation of plate tectonics. However, constraining when exactly plate tectonics began to dominate crustal growth processes is challenging as the geochemical signatures of individual rocks may reflect local subduction processes rather than global plate tectonics. Here we apply counting statistics to a global database of coupled U–Pb and Hf isotope analyses on magmatic zircon grains from continental igneous and sedimentary rocks to quantify changes in the compositions of their source rocks. The analysis reveals a globally significant change in the sources of granitoid magmas between 3.2 and 2.7 Ga. These secular changes in zircon chemistry are driven by a coupling of the deep (depleted mantle) and shallow (crustal) Earth reservoirs, consistent with a geodynamic regime dominated by Wilson cycle style plate tectonics.  相似文献   

14.
http://dx.doi.org/10.1016/j.gsf.2016.07.005   总被引:1,自引:1,他引:0  
The Hadean history of Earth is shrouded in mystery and it is considered that the planet was born dry with no water or atmosphere. The Earth-Moon system had many features in common during the birth stage. Solidification of the dry magma ocean at 4.53 Ga generated primordial continents with komatiite. We speculate that the upper crust was composed of fractionated gabbros and the middle felsic crust by anorthosite at ca. 21 km depth boundary, underlain by meta-anorthosite (grossular + kyanite + quartz) down to 50–60 km in depth. The thickness of the mafic KREEP basalt in the lower crust, separating it from the underlying upper mantle is not well-constrained and might have been up to ca. 100–200 km depending on the degree of fractionation and gravitational stability versus surrounding mantle density. The primordial continents must have been composed of the final residue of dry magma ocean and enriched in several critical elements including Ca, Mg, Fe, Mn, P, K, and Cl which were exposed on the surface of the dry Earth. Around 190 million years after the solidification of the magma ocean, “ABEL bombardment” delivered volatiles including H2O, CO2, N2 as well as silicate components through the addition of icy asteroids. This event continued for 200 Myr with subordinate bombardments until 3.9 Ga, preparing the Earth for the prebiotic chemical evolution and as the cradle of first life. Due to vigorous convection arising from high mantle potential temperatures, the primordial continents disintegrated and were dragged down to the deep mantle, marking the onset of Hadean plate tectonics.  相似文献   

15.
Several lines of isotopic evidence - the most direct of which is from Hadean Jack Hills zircons - suggest a very early history of crust formation on Earth that began by about 4.5 Ga. To constrain both the fate of the reservoir for this crust and the nature of crustal evolution in the sediment source region of the Jack Hills, Western Australia, during the early Archean, we report here initial 176Hf/177Hf ratios and δ18O systematics for <4 Ga Jack Hills zircons. In contrast to the significant number of Hadean zircons which contain highly unradiogenic 176Hf/177Hf requiring a near-zero Lu/Hf reservoir to have separated from the Earth’s mantle by 4.5 Ga, Jack Hills zircons younger than ca. 3.6 Ga are more radiogenic than -13ε (CHUR) at 3.4 Ga in contrast to projected values at 3.4 Ga of -20ε for the unradiogenic Hadean reservoir indicating that some later juvenile addition to the crust is required to explain the more radiogenic younger zircons. The shift in the Lu-Hf systematics together with a narrow range of mostly mantle-like δ18O values among the <3.6 Ga zircons (in contrast to the spread towards sedimentary δ18O among Hadean samples) suggests a period of transition between 3.6 and 4 Ga in which the magmatic setting of zircon formation changed and the highly unradiogenic low Lu/Hf Hadean crust ceased to be available for intracrustal reworking. Constraining the nature of this transition provides important insights into the processes of crustal reworking and recycling of the Earth’s Hadean crust as well as early Archean crustal evolution.  相似文献   

16.
本文概括性地阐述我国前寒武纪冥古宙、太古宙、元古宙三大地史阶段的重大地质事件,粗略勾绘前寒武纪地球演化的轨迹,期望了解我国与全球变化的异同,进一步突出我国前寒武纪三大地史阶段中新太古代超级地质事件及元古宙时期中国大陆块体对哥伦比亚及罗迪尼亚两个超大陆形成与破裂的地质响应。冥古宙是地球最早期的地史阶段,从太阳系形成的4 567 Ma至地球上最老的4 030 Ma的Acasta片麻杂岩。碎屑锆石保存最好的地点是西澳的Mt. Narryer和Jack Hills。目前在中国大陆至少有7个地点发现具有罕见的约4.0 Ga的碎屑锆石,这些地点并不位于克拉通区,而是赋存于造山系新元古代至古生代以碎屑岩为主的地层中。太古宙(4 030~2 420 Ma)定义为从最古老的岩石出现(4 030 Ma Acasta片麻岩)至冰碛层首次广泛分布的寒冷期之间的一段地史。最古老的岩石为英云闪长片麻岩,构成加拿大西北斯拉夫克拉通4.03~3.94 Ga Acasta片麻岩的一部分。西南格陵兰Isua带保存全球有最老的表壳岩,形成于3 810 Ma。太古宙最重大的地质事件莫过于2 780~2 420 Ma时期的新太古代超级事件。值得指出的是华北克拉通最古老、也是中国最古老的岩石出露在中国辽宁鞍山地区,约3.80 Ga英云闪长岩奧长花岗质片麻岩和3.30 Ga的表壳岩已被识别。华北克拉通太古宙有与世界各地太古宙相似的演化历史和特点,包括花岗岩绿岩带及高级变质片麻岩带、广泛的英云闪长岩奧长花岗岩花岗闪长岩(TTG)片麻岩、古陆壳的出露(略老于3.8 Ga)、广泛分布的BIF等。我国太古宙花岗岩绿岩带虽然在华北克拉通分布较广,但与南非、格陵兰、加拿大、西澳等地经典的花岗岩绿岩带相比,时代偏新,仅以新太古代为主,规模偏小,缺少大面积分布的科马提岩,且变质程度偏高,主要为角闪岩相麻粒岩相变质。演化到元古宙(2 420~541 Ma),则进入成熟的、较冷的、刚性程度较高的地球,以现代样式板块构造、超大陆旋回和更复杂的疑源类(eukaryotic)生命的发育为特征。这种变化大致出现在2 420 Ma左右,与哈默斯利型BIF的消失及地史中首次广泛出现的冰川沉积物年代相近。古元古代早期十分重要的“休伦冰川事件”、指示大氧化事件的古老红层在我国尚未被发现,与Lomagundi Jatuli (LJE) δ13C的同位素漂移有关的关门山组古元古代沉积地层的同位素年代学依据不足;古元古代磷矿和具有巨大石油潜力的2.01 Ga Shunga事件也未能鉴别。但中国最大特色是发育了与哥伦比亚和罗迪尼亚超大陆汇聚与裂解有关的良好地质记录,特别是华北克拉通保存了古元古代与哥伦比亚超大陆汇聚有关的超高温、高压麻粒岩等变质及岩浆事件,1 780 Ma以后的中元古代又保存了与哥伦比亚超大陆裂解有关的裂谷沉积及岩浆活动;而在扬子和塔里木陆块区则保存了与新元古代早期与罗迪尼亚超大陆汇聚有关的蛇绿岩、混杂岩、洋内弧、俯冲增生杂岩及大陆边缘弧,在约800 Ma以后则发育了与罗迪尼亚超大陆裂解有关的沉积及岩浆活动的地质记录,为中国和全球地质学者研究这一时期地球系统变化和成矿作用提供了客观的野外实验室和良好的范例。  相似文献   

17.
When plate tectonics began on the Earth has been long debated and here we argue this topic based on the records of Earth-Moon geology and asteroid belt to conclude that the onset of plate tectonics was during the middle Hadean(4.37-4.20 Ga). The trigger of the initiation of plate tectonics is the ABEL Bombardment, which delivered oceanic and atmospheric components on a completely dry reductive Earth, originally comprised of enstatite chondrite-like materials. Through the accretion of volatiles, shock metamorphism processed with vaporization of both CI chondrite and supracrustal rocks at the bombarded location, and significant recrystallization went through under wet conditions, caused considerable eclogitization in the primordial continents composed of felsic upper crust of 21 km thick anorthosite, and 50 km or even thicker KREEP lower crust. Eclogitization must have yielded a powerful slab-pull force to initiate plate tectonics in the middle Hadean. Another important factor is the size of the bombardment. By creating Pacific Ocean class crater by 1000 km across impactor, rigid plate operating stagnant lid tectonics since the early Hadean was severely destroyed, and oceanic lithosphere was generated to have bi-modal lithosphere on the Earth to enable the operation of plate tectonics.Considering the importance of the ABEL Bombardment event which initiated plate tectonics including the appearance of ocean and atmosphere, we propose that the Hadean Eon can be subdivided into three periods:(1) early Hadean(4.57-4.37 Ga),(2) middle Hadean(4.37-4.20 Ga), and(3) late Hadean(4.20-4.00 Ga).  相似文献   

18.
Detrital zircon grains from Beit Bridge Group quartzite from the Central Zone of the Limpopo Belt near Musina yield mostly ages of 3.35-3.15 Ga, minor 3.15-2.51 Ga components, and numerous older grains grouped at approximately 3.4, 3.5 and 3.6 Ga. Two grains yielded concordant Late Hadean U-Pb ages of 3881 ± 11 Ma and 3909 ± 26 Ma, which are the oldest zircon grains so far found in Africa. The combined U-Pb and Lu-Hf datasets and field relationships provide evidence that the sedimentary protolith of the Beit Bridge Group quartzite was deposited after the emplacement of the Sand River Gneisses (3.35-3.15 Ga), but prior to the Neoarchean magmatic-metamorphic events at 2.65-2.60 Ga. The finding of abundant magmatic zircon detritus with concordant U-Pb ages of 3.35-3.15 Ga, and 176Hf/177Hf of 0.28066 ± 0.00004 indicate that the Sand River Gneiss-type rocks were a predominant source. In contrast, detrital zircon grains older than approximately 3.35 Ga were derived from the hinterland of the Limpopo Belt; either from a so far unknown crustal source in southern Africa, possibly from the Zimbabwe Craton and/or a source, which was similar but not necessarily identical to the one that supplied the Hadean zircons to Jack Hills, Western Australia. The Beit Bridge Group zircon population at >3.35 Ga shows a general εHft increase with decreasing age from εHf3.9Ga = −6.3 to εHf3.3-3.1Ga = −0.2, indicating that Hadean crust older than 4.0 Ga (TDM = 4.45-4.36 Ga) was rejuvenated during magmatic events between >3.9 and 3.1 Ga, due to a successive mixing of crustal rocks with mantle derived magmas. The existence of a depleted mantle reservoir in the Limpopo’s hinterland is reflected by the ∼3.6 Ga zircon population, which shows εHf3.6Ga between −4.6 and +3.2. In a global context, our data suggest that a long-lived, mafic Hadean protocrust with some tonalite-trondhjemite-granodiorite constituents was destroyed and partly recycled at the Hadean/Archean transition, perhaps due to the onset of modern-style plate tectonics.  相似文献   

19.
The model of supercontinent cycles is revisited on the basis of reevaluation of existing ideas on the geodynamics and tectonics of granulite gneiss belts and areals. Granulite-gneiss belts and areals of a regional scale correspond to mantle–plume (superplume) activity and form the major components of intracontinental orogens. The evolution of geodynamic settings of the Earth’s crust origin can be imagined as a “spiral sequence”: (1) interaction of mantle plumes and “embryonic” microplate tectonics during the Paleo- Mesoarchean (~3.80–2.75 Ga); (2) plume-tectonics and local plume-driven plate-tectonics within supercontinent during Neoarchean and Proterozoic (~2.75–0.85 Ga); (3) plate tectonics in the Phanerozoic along with a reduced role of mantle plumes starting from ~0.85 Ga.  相似文献   

20.
Analysis of δ18O in igneous zircons of known age traces the evolution of intracrustal recycling and crust-mantle interaction through time. This record is especially sensitive because oxygen isotope ratios of igneous rocks are strongly affected by incorporation of supracrustal materials into melts, which commonly have δ18O values higher than in primitive mantle magmas. This study summarizes data for δ18O in zircons that have been analyzed from 1,200 dated rocks ranging over 96% of the age of Earth. Uniformly primitive to mildly evolved magmatic δ18O values are found from the first half of Earth history, but much more varied values are seen for younger magmas. The similarity of values throughout the Archean, and comparison to the composition of the “modern” mantle indicate that δ18O of primitive mantle melts have remained constant (±0.2‰) for the past 4.4 billion years. The range and variability of δ18O in all Archean zircon samples is subdued (δ18O(Zrc)=5–7.5‰) ranging from values in high temperature equilibrium with the mantle (5.3± 0.3‰) to slightly higher, more evolved compositions (6.5–7.5‰) including samples from: the Jack Hills (4.4–3.3 Ga), the Beartooth Mountains (4.0–2.9 Ga), Barberton (3.5–2.7 Ga), the Superior and Slave Provinces (3.0 to 2.7 Ga), and the Lewisian (2.7 Ga). No zircons from the Archean have been analyzed with magmatic δ18O above 7.5‰. The mildly evolved, higher Archean values (6.5–7.5‰) are interpreted to result from exchange of protoliths with surface waters at low temperature followed by melting or contamination to create mildly elevated magmas that host the zircons. During the Proterozoic, the range of δ18O(Zrc) and the highest values gradually increased in a secular change that documents maturation of the crust. After ∼1.5 Ga, high δ18O zircons (8 to >10‰) became common in many Proterozoic and Phanerozoic terranes reflecting δ18O(whole rock) values from 9 to over 12‰. The appearance of high δ18O magmas on Earth reflects nonuniformitarian changes in the composition of sediments, and rate and style of recycling of surface-derived material into magmas within the crust. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号