首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We examine the `Group' sunspot numbers constructed by Hoyt and Schatten to determine their utility in characterizing the solar activity cycle. We compare smoothed monthly Group sunspot numbers to Zürich (International) sunspot numbers, 10.7-cm radio flux, and total sunspot area. We find that the Zürich numbers follow the 10.7-cm radio flux and total sunspot area measurements only slightly better than the Group numbers. We examine several significant characteristics of the sunspot cycle using both Group numbers and Zürich numbers. We find that the `Waldmeier Effect' – the anti-correlation between cycle amplitude and the elapsed time between minimum and maximum of a cycle – is much more apparent in the Zürich numbers. The `Amplitude–Period Effect' – the anti-correlation between cycle amplitude and the length of the previous cycle from minimum to minimum – is also much more apparent in the Zürich numbers. The `Amplitude–Minimum Effect' – the correlation between cycle amplitude and the activity level at the previous (onset) minimum is equally apparent in both the Zürich numbers and the Group numbers. The `Even–Odd Effect' – in which odd-numbered cycles are larger than their even-numbered precursors – is somewhat stronger in the Group numbers but with a tighter relationship in the Zürich numbers. The `Secular Trend' – the increase in cycle amplitudes since the Maunder Minimum – is much stronger in Group numbers. After removing this trend we find little evidence for multi-cycle periodicities like the 80-year Gleissberg cycle or the two- and three-cycle periodicities. We also find little evidence for a correlation between the amplitude of a cycle and its period or for a bimodal distribution of cycle periods. We conclude that the Group numbers are most useful for extending the sunspot cycle data further back in time and thereby adding more cycles and improving the statistics. However, the Zürich numbers are slightly more useful for characterizing the on-going levels of solar activity.  相似文献   

2.
What the Sunspot Record Tells Us About Space Climate   总被引:1,自引:0,他引:1  
The records concerning the number, sizes, and positions of sunspots provide a direct means of characterizing solar activity over nearly 400 years. Sunspot numbers are strongly correlated with modern measures of solar activity including: 10.7-cm radio flux, total irradiance, X-ray flares, sunspot area, the baseline level of geomagnetic activity, and the flux of galactic cosmic rays. The Group Sunspot Number provides information on 27 sunspot cycles, far more than any of the modern measures of solar activity, and enough to provide important details about long-term variations in solar activity or “Space Climate.” The sunspot record shows: 1) sunspot cycles have periods of 131± 14 months with a normal distribution; 2) sunspot cycles are asymmetric with a fast rise and slow decline; 3) the rise time from minimum to maximum decreases with cycle amplitude; 4) large amplitude cycles are preceded by short period cycles; 5) large amplitude cycles are preceded by high minima; 6) although the two hemispheres remain linked in phase, there are significant asymmetries in the activity in each hemisphere; 7) the rate at which the active latitudes drift toward the equator is anti-correlated with the cycle period; 8) the rate at which the active latitudes drift toward the equator is positively correlated with the amplitude of the cycle after the next; 9) there has been a significant secular increase in the amplitudes of the sunspot cycles since the end of the Maunder Minimum (1715); and 10) there is weak evidence for a quasi-periodic variation in the sunspot cycle amplitudes with a period of about 90 years. These characteristics indicate that the next solar cycle should have a maximum smoothed sunspot number of about 145 ± 30 in 2010 while the following cycle should have a maximum of about 70 ± 30 in 2023.  相似文献   

3.
A nonlinear analysis of the daily 10.7-cm radio flux values for each of Solar Cycles 19, 20, and 21 is used to determine if the results match those of the International Sunspot Numbers for each of these cycles. Fractals and chaos are described and a brief review of utilizing fractals and chaos is given. The origin of the 10.7-cm radio flux is discussed and a short review of recent work discussing its measurement and its relation to the international sunspot number and other proxies for solar activity cycles given. The parameters used to describe chaos for the 10.7-cm radio flux are discussed. The length of the data sets for either statistical analysis or nonlinear analysis of the 10.7-cm radio flux values is considered. These results indicate that the 10.7-cm radio flux values appear to be stochastic for Cycle 19 and chaotic for Cycles 20 and 21. The International Sunspot Numbers show similar behavior for these three cycles. A day-by-day comparison of the dimensionless 10.7-cm radio flux values and the dimensionless International Sunspot Numbers differences shows a linear trend. The results remain consistent in that the 10.7-cm radio flux values indicate, as did the International Sunspot Numbers, that there is a transition from stochastic behavior for Cycle 19 to chaotic behavior in Cycles 20 and 21. The day-by-day comparison of the 10.7-cm radio flux values and the International Sunspot Numbers emphasizes that the 10.7?cm radio flux values are responding to the magnetic field associated with the sunspots.  相似文献   

4.
The main properties of the current cycle match almost completely those of average-magnitude solar cycles, and some of the features of the current cycle may indicate a change in the generation mode of magnetic fields in the solar convection zone. In this case, the Sun enters a period of intermediate and weak cycles of solar activity (SA) in terms of the Wolf numbers, which may last for 50 to 100 years. This change may result in further pollution of the Earth's environment (near-Earth space) due to the unfavorable regime of removing cosmic garbage from low-Earth orbit, the substantial increase of the radiation background in near space (the weakening of interplanetary magnetic fields will result in an increased concentration of galactic cosmic rays in the heliosphere), and other, possibly unfavorable, consequences. The main development stages of the 23rd solar-activity cycle are the following: the minimum of the 22nd solar cycle, May 1996 (W*=8.0); the beginning of the growth phase, September 1997; the maximum of the smoothed relative sunspot number, April, 2000; the global polarity reversal of the general solar magnetic field, July to December 2000; the secondary maximum of the relative sunspot number, November 2001; the maximum of the 10.7-cm radio flux, February 2002; the phase of the cycle maximum, October 1999 to June 2002; the beginning of the decrease phase, July 2002; the most powerful flare events of the current cycle, October to November 2003; and the likely point of minimum of the current SA cycle, November to December 2006.  相似文献   

5.
Sunspot number, sunspot area, and radio flux at 10.7 cm are the indices which are most frequently used to describe the long‐term solar activity. The data of the daily solar full‐disk magnetograms measured at Mount Wilson Observatory from 19 January 1970 to 31 December 2012 are utilized together with the daily observations of the three indices to probe the relationship of the full‐disk magnetic activity respectively with the indices. Cross correlation analyses of the daily magnetic field measurements at Mount Wilson observatory are taken with the daily observations of the three indices, and the statistical significance of the difference of the obtained correlation coefficients is investigated. The following results are obtained: (1) The sunspot number should be preferred to represent/reflect the full‐disk magnetic activity of the Sun to which the weak magnetic fields (outside of sunspots) mainly contribute, the sunspot area should be recommended to represent the strong magnetic activity of the Sun (in sunspots), and the 10.7 cm radio flux should be preferred to represent the full‐disk magnetic activity of the Sun (both the weak and strong magnetic fields) to which the weak magnetic fields mainly contribute. (2) On the other hand, the most recommendable index that could be used to represent/reflect the weak magnetic activity is the 10.7 cm radio flux, the most recommendable index that could be used to represent the strong magnetic activity is the sunspot area, and the most recommendable index that could be used to represent the full‐disk magnetic activity of the Sun is the 10.7cm radio flux. Additionally, the cycle characteristics of the magnetic field strengths on the solar disk are given. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Intermediate-term periodicities in solar activity   总被引:2,自引:0,他引:2  
The presence of intermediate-term periodicities in solar activity, at approximately 323 and 540 days, has been claimed by different authors. In this paper, we have performed a search for them in the historical records of two main indices of solar activity, namely, the daily sunspot areas (cycles 12–21) and the daily Zürich sunspot number (cycles 6–21). Two different methods to compute power spectra have been used, one of them being especially appropriate to deal with gapped time series. The results obtained for the periodicity near 323 days indicate that it has only been present in cycle 21, while in previous cycles no significant evidence for it has been found. On the other hand, a significant periodicity at 350 days is found in sunspot areas and Zürich sunspot number during cycles 12–21 considered all together, also having been detected in some individual cycles. However, this last periodicity must be looked into with care due to the lack of confirmation for it coming from other features of solar activity. The periodicity around 540 days is found in cycles 12, 14, and 17 in sunspot areas, while during cycles 18 and 19 it is present, with a very high significance, in sunspot areas and Zürich sunspot number. It also appears at 528 days in sunspot areas during cycles 12–21. On the other hand, it is important to note the coincidence between the asymmetry, favouring the northern hemisphere, of sunspot areas and solar flares during cycle 19, and the fact that the periodicity at 540 days was only present, with high significance, in that hemisphere during that solar cycle.  相似文献   

7.
Based on diurnal values of the total radio-flux density at 10.7 cm as well as on corresponding Zürich numbers the relation giving the radio-flux as function ofR is established. The behaviour of low and high values ofR andF 2800 during the time interval 1957–1976 is studied. Preliminary conclusions drawn by other investigators are confirmed. A prediction of the total radio-flux for the 22nd solar cycle is given.  相似文献   

8.
To understand better the variation of solar activity indicators originated at different layers of the solar atmosphere with respect to sunspot cycles, we carried out a study of phase relationship between sunspot number, flare index and solar radio flux at 2800 MHz from January 1966 to May 2008 by using cross-correlation analysis. The main results are as follows: (1) The flare index and sunspot number have synchronous phase for cycles 21 and 22 in the northern hemisphere and for cycle 20 in the southern hemisphere. (2) The flare index has a noticeable time lead with respect to sunspot number for cycles 20 and 23 in the northern hemisphere and for cycles 22 and 23 in the southern hemisphere. (3) For the entire Sun, the flare index has a noticeable time lead for cycles 20 and 23, a time lag for cycle 21, and no time lag or time lead for cycle 22 with respect to sunspot number. (4) The solar radio flux has a time lag for cycles 22 and 23 and no time lag or time lead for cycles 20 and 21 with respect to sunspot number. (5) For the four cycles, the sunspot number and flare index in the northern hemisphere are all leading to the ones in the southern hemisphere. These results may be instructive to the physical processes of flare energy storage and dissipation.  相似文献   

9.
We develop a model for estimating solar total irradiance since 1600 AD using the sunspot number record as input, since this is the only intrinsic record of solar activity extending back far enough in time. Sunspot number is strongly correlated, albeit nonlinearly with the 10.7-cm radio flux (F 10.7), which forms a continuous record back to 1947. This enables the nonlinear relationship to be estimated with usable accuracy and shows that relationship to be consistent over multiple solar activity cycles. From the sunspot number record we estimate F 10.7 values back to 1600 AD. F 10.7 is linearly correlated with the total amount of magnetic flux in active regions, and we use it as input to a simple cascade model for the other magnetic flux components. The irradiance record is estimated by using these magnetic flux components plus a very rudimentary model for the modulation of energy flow to the photosphere by the subphotospheric magnetic flux reservoir feeding the photospheric magnetic structures. Including a Monte Carlo analysis of the consequences of measurement and fitting errors, the model indicates the mean irradiance during the Maunder Minimum was about 1 ± 0.4 W m−2 lower than the mean irradiance over the last solar activity cycle.  相似文献   

10.
We reconstruct the developing history of solar 10.7 cm radio flux (F10.7) since 1848, based on the yearly sunspot number and the variations. A relationship between the maximum and the linear regression slope of the first 3 years starting from minimum of the solar cycle is considered. We put forward a method of predicting the maximum of F10.7 by means of the slope-maximum relationship. Running tests for cycles 19 to 23 indicate that the method can properly predict the peak of F10.7.  相似文献   

11.
Using the smoothed time series of maximum CME speed index for solar cycle 23, it is found that this index, analyzed jointly with six other solar activity indicators, shows a hysteresis phenomenon. The total solar irradiance, coronal index, solar radio flux (10.7?cm), Mg?ii core-to-wing ratio, sunspot area, and H?? flare index follow different paths for the ascending and the descending phases of solar cycle?23, while a saturation effect exists at the maximum phase of the cycle. However, the separations between the paths are not the same for the different solar activity indicators used: the H?? flare index and total solar irradiance depict broad loops, while the Mg?ii core-to-wing ratio and sunspot area depict narrow hysteresis loops. The lag times of these indices with respect to the maximum CME speed index are discussed, confirming that the hysteresis represents a clue in the search for physical processes responsible for changing solar emission.  相似文献   

12.
A “Solar Dynamo” (SODA) Index prediction of the amplitude of Solar Cycle 25 is described. The SODA Index combines values of the solar polar magnetic field and the solar spectral irradiance at 10.7 cm to create a precursor of future solar activity. The result is an envelope of solar activity that minimizes the 11-year period of the sunspot cycle. We show that the variation in time of the SODA Index is similar to several wavelet transforms of the solar spectral irradiance at 10.7 cm. Polar field predictions for Solar Cycles 21?–?24 are used to show the success of the polar field precursor in previous sunspot cycles. Using the present value of the SODA index, we estimate that the next cycle’s smoothed peak activity will be about \(140 \pm30\) solar flux units for the 10.7 cm radio flux and a Version 2 sunspot number of \(135 \pm25\). This suggests that Solar Cycle 25 will be comparable to Solar Cycle 24. The estimated peak is expected to occur near \(2025.2 \pm1.5\) year. Because the current approach uses data prior to solar minimum, these estimates may improve as the upcoming solar minimum draws closer.  相似文献   

13.
The results of a statistical investigation of the occurrence of umbral flashes for 40 sunspot groups are reported for the period 1966–1983. The following characteristics were chosen for the analysis: (a) position on the solar disk; (b) group area; (c) sunspot area; (d) maximum magnetic field strength of a sunspot; (e) modified Zürich class; (f) sunspot age; (g) magnetic structure; and (h) flare activity of a group. The dependence of umbral flashes on magnetic structure of a sunspot is the most essential feature. The absence of umbral flashes in the umbrae of main sunspots perhaps may be used as one of the predictors of flare activity.  相似文献   

14.
We study galactic cosmic ray (GCR) modulation during solar cycle 24. For this study we utilize neutron monitor data together with sunspot number (SSN) and 10.7 cm solar radio flux (SRF) data. We plot hysteresis curve between the GCR intensity and SSN, and GCR intensity and SRF. We performed time-lag correlation analysis to determine the time lag between GCR intensity and solar activity parameters. The time lag is determined not only for the whole solar cycle, but also during the two polarity states of the heliosphere (A<0 and A>0) in solar cycle 24. We notice differences in time lags during two polarity epochs of the solar cycle. We discuss these differences in the light of existing modulation models. We compare the results of this very weak solar activity cycle with the corresponding results reported for the previous comparatively more active solar cycles.  相似文献   

15.
S. Bravo  G. Stewart 《Solar physics》1994,154(2):377-384
A very good correlation between the evolution of polar coronal hole size and sunspot number half a solar cycle later was found by Bravo and Otaola for solar cycle 21. In this paper we use a more complete set of data to reanalyse the relationship for solar cycle 21 and investigate the same relationship for solar cycle 22. We find that the complete set of data for cycle 21 yields a slightly different time shift for the best correlation between sunspots and holes and that the time shift for cycle 22 is different from that of cycle 21. However, because of limited availability of data of cycle 22, we consider it necessary to wait until the end of this cycle in order to decide if the difference is statistically significant or not. We also found that the time between successive peaks of smoothed polar hole area and smoothed sunspot number is the same in both cycles. This may provide a useful tool for the forecasting of future sunspot maxima. The constant of proportionality between polar coronal hole area and sunspot number can be seen to be different in both cycles. We discuss this difference and interpret it in terms of a different magnitude of the polar field strength in the two cycles.  相似文献   

16.
D. J. Schove 《Solar physics》1979,63(2):423-432
Dates of solar maxima and minima extending back to c. 1610 were estimated by Wolf and Wolfer at Zürich (Waldmeier, 1961) in the nineteenth century, and those back to c. 1710 have been generally accepted. Slight modifications have already been suggested by the author (Schove, 1967) for the seventeenth century, although, in that century, even the existence of the eleven-year cycle has been questioned (Eddy, 1976). In the course of any sunspot cycle we find a pattern of the aurorae in place and time characteristic of sunspot cycles of the particular amplitude-class. These patterns since c. 1710 can be linked to the precise dates of the Zürich turning-points by a set of empirical rules. A sunspot rule is based on the Gnevyshev gap, the gap in large sunspots near the smoothed maximum. These rules are here applied to the period c. 1510–1710 to give improved determination of earlier turning-points, and approximately confirm the dates given for the seventeenth century by Wolfer and for most of the later sixteenth century by Link (1978). Some turning-points for the fifteenth century and revised sunspot numbers for the period 1700–48 are also given.  相似文献   

17.
Correlation analysis of the mean longitude distribution of sunspot groups (taken from the Greenwich Photoheliographic Results) and high-speed solar wind streams (inferred from the C9 index for geomagnetic disturbances) with the Bartels rotation period P = 27.0 days shows anti-correlation for individual cycles.In particular, the longitudes of post-maximum stable streams of cycle 18 and 19 are well anticorrelated with the preferred longitudes of sunspot groups during the maximum activity periods of these cycles. This is further analyzed using the daily Zürich sunspot number, R, between 1932 and 1980, which reveals a conspicuous similarity of cycle 18 and 19 as well as cycle 20 and 21.We conclude that there is a solar memory for preferred longitudes of activity extending at least over one, probably two cycles (i.e. one magnetic cycle of 22 years). We conjecture that this memory extends over longer intervals of time as a long-term feature of solar activity.  相似文献   

18.
本文根据1987年1月—1989年11月期间,2cm、3.4cm、6cm、10.7cm和21.2cm五个波段每日总辐射流量与日面上占主导地位的活动区黑子视面积之间的关系,对第22周上升段若干大活动区的射电缓变成分的统计特性进行了分析研究,发现有几个大活动区在日面时S-Ay图上处在平均曲线之下,当黑子面积增加时,射电流量的增加并不明显。  相似文献   

19.
INTER-CYCLE VARIATIONS OF SOLAR IRRADIANCE: SUNSPOT AREAS AS A POINTER   总被引:1,自引:0,他引:1  
Fligge  M.  Solanki  S. K. 《Solar physics》1997,173(2):427-439
Most of the present models and reconstructions of solar irradiance use the concept of Photometric Sunspot Index (PSI) to account for the influence of sunspots on solar brightness. Since PSI is based on measured sunspot areas a firm database of such areas is essential. We show, however, that a significant disagreement exists between the data provided by the Royal Greenwich Observatory (from 1874 to 1976) and newer measurements provided by the observatories of Rome, Yunnan, Catania, and the US Air Force. The overlap of the time intervals over which sunspot areas were measured at Greenwich and Rome allows us to quantify the difference between the Greenwich and other data sets. We find that the various data sets differ, at least in a statistical sense, mainly by a correction factor of between 1.15 and 1.25.The revised time series of sunspot areas correlates well with the Zürich sunspot relative numbers over the last 120 years, with the relationship between sunspot areas and sunspot numbers changing only slightly from one cycle to the next. In particular, no indication exists for any extraordinary magnetic behavior of the Sun during the last 2 decades, as might falsely be concluded if the various sunspot area data sets are uncritically combined. There are, however, some indications that cycles 15 and 16 deviate from the rest. We expect that our results should have a significant influence on the reconstruction of the historical solar irradiance.  相似文献   

20.
In this paper we present a general framework for forecasting the smoothed maximum level of solar activity in a given cycle, based on a simple understanding of the solar dynamo. This type of forecasting requires knowledge of the Sun's polar magnetic field strength at the preceeding activity minimum. Because direct measurements of this quantity are difficult to obtain, we evaluate the quality of a number of proxy indicators already used by other authors which are physically related to the Sun's polar field. We subject these indicators to a rigorous statistical analysis, and specify in detail the analysis technique for each indicator in order to simplify and systematize reanalysis for future use. We find that several of these proxies are in fact poorly correlated or uncorrelated with solar activity, and thus are of little value for predicting activity maxima.We also present a scheme in which the predictions of the individual proxies are combined via an appropriately weighted mean to produce a compound prediction. We then apply the scheme to the current cycle 22, and estimate a maximum smoothed International sunspot number of 171 ± 26, which can be expressed alternatively as a smoothed 2800 MHz radio flux (F 10.7) of 211 ± 23 × (10–22 Wm–2Hz–1), or as a smoothed sunspot area of 2660 ± 430 millionths of a solar disk. Once the actual maximum for cycle 22 has been established, we will have both additional statistics for all the proxy indicators, and a clearer indication of how accurately the present scheme can predict solar activity levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号