首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This paper presents the recent history of a large prealpine lake (Lake Bourget) using chironomids, diatoms and organic matter analysis, and deals with the ability of paleolimnological approach to define an ecological reference state for the lake in the sense of the European Framework Directive. The study at low resolution of subfossil chironomids in a 4-m-long core shows the remarkable stability over the last 2.5 kyrs of the profundal community dominated by a Micropsectra-association until the beginning of the twentieth century, when oxyphilous taxa disappeared. Focusing on this key recent period, a high resolution and multiproxy study of two short cores reveals a progressive evolution of the lake’s ecological state. Until AD 1880, Lake Bourget showed low organic matter content in the deep sediments (TOC less than 1%) and a well-oxygenated hypolimnion that allowed the development of a profundal oxyphilous chironomid fauna (Micropsectra-association). Diatom communities were characteristic of oligotrophic conditions. Around AD 1880, a slight increase in the TOC was the first sign of changes in lake conditions. This was followed by a first limited decline in oligotrophic diatom taxa and the disappearance of two oxyphilous chironomid taxa at the beginning of the twentieth century. The 1940s were a major turning point in recent lake history. Diatom assemblages and accumulation of well preserved planktonic organic matter in the sediment provide evidence of strong eutrophication. The absence of profundal chironomid communities reveals permanent hypolimnetic anoxia. From AD 1995 to 2006, the diatom assemblages suggest a reduction in nutrients, and a return to mesotrophic conditions, a result of improved wastewater management. However, no change in hypolimnion benthic conditions has been shown by either the organic matter or the subfossil chironomid profundal community. Our results emphasize the relevance of the paleolimnological approach for the assessment of reference conditions for modern lakes. Before AD 1900, the profundal Micropsectra-association and the Cyclotella dominated diatom community can be considered as the Lake Bourget reference community, which reflects the reference ecological state of the lake.  相似文献   

2.
During monthly investigations from 1996 to 2000, a hypolimnetic layer of phototrophic sulphur bacteria (Chromatium spp.) were observed in Lake Dudinghausen, a small dimictic lake in northern Germany. This paleolimnological study was initiated to detect if the occurrence of sulphur bacteria was related to cultural eutrophication or reflected natural conditions. Therefore, diatoms, algal pigments, okenone, geochemical proxies, and 210Pb and 137Cs were used in four sediment cores to investigate historical changes in trophic development, hypolimnetic redox conditions, anoxia and phototrophic sulphur bacteria abundances. Fossil diatoms, pigments, the ratio of chlorophyll derivatives to total carotenoids and the ratio of chlorophyll a to its derivatives suggest two phases of eutrophication coupled with hypolimnetic anoxia over the last ~80 years: a first phase from about 1923–1932 and a second from 1952 to 1982. In the first phase the ratios of Fe–Mn as well as Fe–Ca increased, suggesting seasonal anoxia. However, hypolimnetic anoxia was only weak because low levels of okenone suggest no mass development of sulphur bacteria. In contrast, sulphur bacteria increased during the early stages of the second eutrophication phase, suggesting increased temporal and spatial hypolimnetic anoxia. Surprisingly, the ratios of Fe–Mn as well as Fe–Ca decreased during this time. Possibly Fe, Mn and Ca were equally reduced through the intense anoxia. In the final stage, sulphur bacteria decreased again. As these bacteria need both anoxic conditions and a certain amount of light, the increased nutrient load probably led to low Secchi depth and therefore insufficient light conditions. In more recent years, diatoms and pigments suggest a decrease in nutrient levels. A second mass development of sulphur bacteria occurred, probably due to improved light conditions and continued anoxia in the upper hypolimnion. We conclude that the recent development of phototrophic sulphur bacteria do not represent natural conditions in Lake Dudinghausen. Furthermore, the upper sediments contain a completely new diatom flora that never occurred in older sediments of Lake Dudinghausen. Therefore, nutrient levels may eventually reach natural conditions, however they may not represent biological background reference conditions.  相似文献   

3.
Human-induced perturbations in the Lake Norrviken catchment, Sweden, over the last 100+ years have left distinctive geochemical imprints in the sediments. Disposal of sewage, industrial, and agricultural run-off into the lake since the end of the nineteenth century changed the trophic status from eutrophic to hyper-eutrophic. The primary organic matter (OM) source in the lake is in situ algal material. Total organic carbon (TOC) concentrations increased near the mid-section of a short sediment core collected from the deepest part of the lake, reflecting elevated epilimnetic productivity and consequent hypolimnetic anoxia. Accompanying shifts to lighter stable organic C and total N isotopic compositions suggest that cyanobacterial productivity increased during this period. The distribution of pigments in the core indicates a shift in the phytoplankton community to a cyanobacteria-dominated system. Moreover, pigments confirm that N2-fixing versus non-N2-fixing phytoplankton varied depending upon the external inputs of N and P. Conditions in the lake improved after sewage input was diverted and the lake is currently mesotrophic.  相似文献   

4.
The level of Kluane Lake in southwest Yukon Territory, Canada, has fluctuated tens of metres during the late Holocene. Contributions of sediment from different watersheds in the basin over the past 5,000 years were inferred from the elemental geochemistry of Kluane Lake sediment cores. Elements associated with organic material and oxyhydroxides were used to reconstruct redox fluctuations in the hypolimnion of the lake. The data reveal complex relationships between climate and river discharge during the late Holocene. A period of influx of Duke River sediment coincides with a relatively warm climate around 1,300 years BP. Discharge of Slims River into Kluane Lake occurred when Kaskawulsh Glacier advanced to the present drainage divide separating flow to the Pacific Ocean via Kaskawulsh and Alsek rivers from flow to Bering Sea via tributaries of Yukon River. During periods when neither Duke nor Slims river discharged into Kluane Lake, the level of the lake was low and stable thermal stratification developed, with anoxic and eventually euxinic conditions in the hypolimnion.  相似文献   

5.
Organic arsenical herbicides, which include monosodium methylarsonate (MSMA), have been applied to golf courses and lawns throughout Florida, USA, since the 1950s. These products convert rapidly to inorganic forms of arsenic (As) in soils and are mobilized readily. Leachates have been known to contaminate groundwater and surface waters, although past studies have not examined whether use of these products has led to significant As accumulation in lake sediments. We used paleolimnological methods to document the depositional history and inventories of total As in sediments and porewaters of Little Lake Jackson in Florida, which is adjacent to three golf courses. Six sediment cores, four of which were 210Pb dated, showed porewater total As concentrations as high as 435 μg l−1, and dry-sediment total As concentrations as high as 148 mg kg−1. Approximately 537 kg of total As is present in >19,000 metric tons of sediment (dry mass), and an additional 18 kg of As is dissolved in 10.8 × 104 m3 of porewaters. Total As content in surface sediments (mean = 47.3 mg kg−1) exceeds the consensus-based sedimentary concentration for probable toxicity effects in freshwater benthic fauna. Surface and subsurface waters flow to the lake from topographically higher areas to the west, where golf courses and residential areas are located. Total As concentrations were elevated highly in monitoring wells and in a stream that flows between the golf courses and lake, but As was below detection limits in wells that were located at the distal perimeter of the golf courses. Subsurface and surface waters exit the lake towards topographically lower areas to the east. Nearly all As in sediments remains bound in the solid phase, indicating that As sedimentary profiles largely reflect depositional history. Sedimentary As concentrations are correlated strongly with aluminum and iron, which suggests that As was scavenged from lake waters during the past. Sedimentary As concentrations increased until the 1980s, then declined somewhat to the present time. Dissolved As was scavenged efficiently from the water column when hypolimnetic waters were oxygenated persistently, but after eutrophication led to a seasonally anoxic hypolimnion in the 1980s, apparently less As was co-precipitated, and more was lost to hydrological outflow. Arsenic accumulation in sediments might be common in areas where As derived from organic arsenical herbicide applications is directed by shallow water tables towards adjacent lakes.  相似文献   

6.
Paleolimnological analyses were used to infer limnological changes during the past ~ 300 yrs in the west basin of Peninsula Lake, a small (853 ha) Precambrian Shield lake in Ontario, Canada, that has been subjected to moderate cultural disturbances (forest clearance, cottage and resort development). This study represents a pioneering attempt to use sedimentary chironomid assemblages and weighted-averaging models to quantify past hypolimnetic anoxia (expressed as the anoxic factor, AF). Impacts of forest clearance and human land-use on deepwater oxygen availability and surface water quality were assessed by comparing chironomid-inferred AF and diatom-inferred total phosphorus concentration ([TP]) to changes in terrestrial pollen and historical data. This study also discusses the ability of chironomids to quantitatively infer changes in AF.Pre-disturbance chironomid assemblages were stable and dominated by taxa indicative of oxygen-rich hypolimnetic conditions (e.g., Protanypus, Heterotrissocladius, Micropsectra type), while diatoms indicated oligotrophic lake status (diatom inferred [TP] = 5-7 g·l-1). Chironomids characteristic of lower oxygen availability (e.g., Chironomus, Procladius) increased following land-clearance, road construction, establishment of a grist mill and lakeshore development beginning ca. 1870. Increased abundances of Tanytarsus s. lat., a multigeneric group of mainly littoral chironomids, since 1900, indicated that littoral chironomids may have comprised a greater proportion of fossil assemblages during periods of eutrophication and prolonged anoxia. Abundances of meso-eutrophic diatom taxa (e.g., Fragilaria crotonensis, Asterionella formosa, Aulacoseira ambigua, A. subarctica) increased concurrent with European settlement (ca. 1870) and diatom-inferred [TP] doubled (~ 6-12 g·l-1), further indicating that naturally-oligotrophic Precambrian Shield lakes were extremely sensitive to initial land-clearance activities.Recent increases in oligotrophic diatom taxa (e.g., Cyclotella stelligera) indicate a shift to more oligotrophic conditions since ca. mid-1960s, with greatest changes since ca. 1980. The chironomids Heterotrissocladius and Micropsectra type also increased at this time suggesting greater deepwater oxygen availability. These recent water-quality improvements, possibly in response to enhanced nutrient removal from detergents and sewage, climate-related reductions in external phosphorus loads, and catchment (but not lake) acidification and reforestation, suggest that habitat for commercially-valuable cold-water fishes has improved in recent decades despite greater recreational lake-use.Paleolimnological assessment of trophic status changes in Peninsula Lake using fossil diatom and chironomid assemblages were in good agreement. Diatom inferences of [TP] and chironomid inferences of AF both suggest that Peninsula Lake was historically oligotrophic, became oligo-mesotrophic after European settlement, and returned to oligotrophy in recent yrs. Chironomid inferences of [TP] consistently underestimated the trophic status of Peninsula Lake, possibly due to its relatively large hypolimnion. These results suggest that AF represents a useful tool for quantitatively reconstructing the past trophic status of deeper, stratified lakes.  相似文献   

7.
为了了解扎龙湿地克钦湖沉积物中营养物质的分布状况,在扎龙湿地克钦湖设置了21个采样点,于2016年7月9日,采集了0~5 cm深度的沉积物样品,测定了表层沉积物样品中有机质、全氮和全磷含量;利用克里金插值法,绘制表层沉积物有机质、全氮和全磷含量的空间分布图,并分析了其空间分布特征及影响因素。研究结果表明,克钦湖0~5 cm深度沉积物中有机质和全磷含量整体上由东北向西南逐渐减小,北湖区表层沉积物中的有机质和全磷含量都大于南湖区;克钦湖中西部表层沉积物中的全氮含量较大,东南部的较小,南、北湖区表层沉积物中全氮含量平均值较接近;克钦湖表层沉积物整体呈弱碱性,北湖区表层沉积物组成以粉砂土为主,南湖区表层沉积物组成以砂土为主;表层沉积物中有机质、全氮和全磷含量与研究区的地势、植物群落分布和周边人类活动有关,粉砂土含量和pH是影响表层沉积物中有机质、全氮和全磷含量分布的主要指标。  相似文献   

8.
Geochemical anomalies and stable isotope ratios (18O, 13C) in authigenic carbonates and organic matter (13C) from a 660-year sediment core from Lake Chenghai, southern China, provide a continuous history of recent lake eutrophication. The multi-proxy geochemical and isotopic record can be divided into a three-part history of contrasting limnological development, including: (1) a clear-water, oligotrophic open lake system (1340 and 1690 AD); (2) an environmentally unstable, hydrologically closed, oligotrophic lake system (1690–1940 AD); and (3) an increasingly eutrophic, closed lake system marked by higher organic matter, nitrogen, CaCO3, and pigment concentrations, and lower 18O and 13C values in authigenic calcite (1940–1999 AD). The unanticipated lowering of 18O and 13C of authigenic calcite during eutrophication is thought to be the result of disequilibrium water–carbonate fractionation of oxygen and carbon isotopes during periods of elevated primary production, pH, and [CO3 2–] activities in the water column. The recent eutrophication of Lake Chenghai indicated by these geochemical proxies is essentially simultaneous with large-scale human migration and the application of agricultural fertilizers in the catchment area during the 20th century.  相似文献   

9.
We present a high-resolution, multiproxy reconstruction of the depositional history of Lake Arreo, northern Spain, for the last 60 years. We conducted sedimentological, geochemical and diatom analyses in short cores and made a detailed comparison with regional instrumental climate data (1952–2007), limnological monitoring of the lake (1992–2008) and recent land use changes that affect the lake catchment. Chronology is based on “floating” discontinuous varve counts and 137Cs and 14C dates. Four periods were identified in the Lake Arreo recent history: (1) prior to 1963, varved facies intercalated with fine turbidite deposits, and diatom assemblages dominated by Cyclotella taxa indicate predominantly meromictic conditions, (2) from 1964 to 1978, permanent anoxia persisted in bottom waters, as shown by similar facies and diatom assemblages as before, though detrital layers were coarser, (3) from 1979 to 1994, sediment delivery to the lake increased and laminated, clastic facies were deposited, and (4) from 1995 to 2008, dominance of massive facies and an increase in Fragilaria tenera and Achnanthes minutissima reflect relatively lower lake levels, less frequent bottom anoxia with more frequent water column mixing, similar to modern conditions. The period 1952–1979 was a time of meromixis and varved facies deposition, and was characterized by higher rainfall and less intense agricultural pressure in the watershed. There were two short humid periods (1992–1993 and 1996–1998) when monitoring data show more anoxic weeks per year and relatively higher lake levels. Increased cultivation of small landholdings in 1963, and particularly after 1979, caused a large increase in sediment delivery to the lake. The inferred lake evolution is in agreement with monitoring data that suggest a transition from dominantly meromictic conditions prior to 1993–1994 to a predominantly monomictic pattern of circulation since then, particularly after 2000. The synergistic effects of intensive water extraction for irrigation and lower rainfall since 1979, and particularly since 1994, brought the long period of meromictic conditions in Lake Arreo to an end. Water balance and sediment delivery to the lake are dominant factors that control the limnological and mixing conditions in Lake Arreo and they must be considered in management and restoration plans.  相似文献   

10.
We examined the effects of heavy pulp mill discharges on the Lake Lievestuoreenjärvi ecosystem and the later recovery of diatom and chironomid communities from age-dated short core samples. Beginning in 1927 the lake received a heavy effluent load from a sulphite pulp mill. Except for the recession during the Second World War and the temporary closure of the mill from 1967 to 1971, the industrial load, containing large quantities of nutrients, organic matter and toxic compounds, increased continuously. In the early 1980s, laboratory documents were falsified by the directors of the mill and the systematic illegal effluent overload led to a collapse of the whole lake ecosystem. In 1985, the outdated plant was finally closed down. Based on the assessment of chemical properties and biological remains of the sediment, we distinguished five developmental phases in the ecological state of the lake. In the pre-industrial phase, the pelagic and profundal benthic communities were dominated by species preferring ultraoligotrophic or oligotrophic lakes. Concomitant with the increasing discharge and deposition of chlorine compounds, resin acids, and mercury, as well as strong acidity and hypolimnetic and epilimnetic anoxia, the ecological status changed in a short period from excellent to bad. Finally, in the early 1960s, the majority of the lake was virtually dead and the aquatic life survived only in the uppermost littoral zone. Since 1985, a fast recovery in the water quality has led to a strong, but temporary eutrophy in pelagic communities. The main peak of eutrophication was caused by the invasion of a species new to the lake,Aulacoseira granulata var.angustissima. Later, the pelagic communities shifted towards oligotrophy, but the original, pre-industrial status has not been re-established. The profundal benthic communities have not achieved the pre-industrial structure, but at present indicate mesotrophy.  相似文献   

11.
The carbon cycle and biogeochemical dynamics in lake sediments   总被引:30,自引:3,他引:27  
The concentrations of organic carbon (OC) and CaCO3 in lake sediments are often inversely related. This relation occurs in surface sediments from different locations in the same lake, surface sediments from different lakes, and with depth in Holocene sediments. Where data on accumulation rates are available, the relation holds for organic carbon and CaCO3 accumulation rates as well. An increase of several percent OC is accompanied by a decrease of several tens of percent CaCO3 indicating that the inverse relation is not due to simple dilution of one component by another. It appears from core data that once the OC concentration in the sediments becomes greater than about 12%, the CO2 produced by decomposition of that OC and production of organic acids lowers the pH of anoxic pore waters enough to dissolve any CaCO3 that reaches the sediment-water interface. In a lake with a seasonally anoxic hypolimnion, processes in the water column also can produce an inverse relation between OC and CaCO3 over time. If productivity of the lake increases, the rain rate of OC from the epilimnion increases. Biogenic removal of CO2 and accompanying increase in pH also may increase the production of CaCO3. However, the decomposition of organic matter in the hypolimnion will decrease the pH of the hypolimnion causing greater dissolution of CaCO3 and therefore a decrease in the rain rate of CaCO3 to the sediment-water interface.  相似文献   

12.
Environmental change in Lake Taihu and its catchment since the early to middle part of the twentieth century has left a clear geochemical record in the lake sediments. The human activities in the lake and its catchment responsible for the change include agriculture, fishery, urbanisation, sewage and industrial waster disposal. Sediment cores were collected from Meilian Bay of northern Lake Taihu to investigate the record of anthropogenic impacts on the lake’s ecosystem and to assess its natural, pre-eutrophication baseline state. Two marked stratigraphic sediment units were identified on the basis of total phosphorus concentration (TP), pigments, total organic carbon (TOC)/total nitrogen (TN), δ13C and δ15N corresponding to stages in the lake history dominated by phytoplankton, and by aquatic macrophytes. Results show that as TP loading increased from the early 1950s the lake produced sediments with increasing amounts of organic matter derived from phytoplankton. In the early 1950s, the first evidence for eutrophication at the Meilian Bay site is recorded by an increase in C/N values and in sediment accumulation rate, but there is little change in phosphorus concentrations, pigments, δ13C and δ15N at this time. After 1990 a more rapid increase in trophic status took place indicated by increased levels of phosphorus, pigments, δ15N and by decreased δ13C and TOC/TN values in the lake sediments. The first increase in trophic status of the early 1950s results mainly from agricultural development in the catchment. In contrast, the acceleration from ca. 1990 originates from the recent development of fisheries and the urbanisation and industrialisation of the catchment.  相似文献   

13.
通过对位于中国西部的运动嵩原上的抚仙湖、星云湖及其上游的有机碳的分布状况和动态变化的调查,评估出这些湖泊的有机物对水质的影响。上游漂移来的有机碳对湖泊有机物动态变化的贡献比本湖泊生成的有机物的贡献小得多。抚仙湖主要有机物的增长是由于过去的20年间湖水水质退化、富营养化造成的。  相似文献   

14.
Organic geochemical record of environmental changes in Lake Dianchi,China   总被引:1,自引:0,他引:1  
In order to investigate the natural ecosystem of Lake Dianchi and to assess its anthropogenic impacts, a stratigraphic study of bulk and molecular compositions of organic matter was conducted using a 63-cm long sediment core. The results show that two apparent environmental changes occurred during the evolution of Lake Dianchi: (1) the first change occurred in the 43–63 cm sediment depth, and was revealed by the amount and the composition of organic matter in the stage. Natural changes were possibly major factors responsible for triggering the environmental change, but the influence of human activities could not be excluded. Subsequently, the lake entered into a relatively stable and oligotrophic stage, which maintained until 20-cm sediment depth. (2) Eutrophication started in the upper 20 cm depth. Human activities became a major factor influencing environmental changes in this stage. Vertical profiles of various organic geochemical variables in the upper 20-cm sediments show evidence that primary productivity of the lake increased progressively and that the lake started eutrophic. Especially in the uppermost 10 cm, notable excursions to less negative δ13Corg and δ15Ntotal and high TOC concentrations have recorded an abrupt change in the lacustrine environment, suggesting that the lake entered a hypereutrophic stage. In addition, enhancement of αβ-hopanes reflects the contribution of fossil fuels to the lake sediments.  相似文献   

15.
A paleolimnological evaluation of cladoceran microfossils was initiated to study limnological changes in Lake Apopka, a large (125 km2), shallow (mean depth = 1.6 m), warm, polymictic lake in central Florida. The lake switched from macrophyte to algal dominance in the late 1940s, creating a Sediment Discontinuity Layer (SDL) that can be visually used to separate sediments derived from macrophytes and phytoplankton. Cladoceran microfossils were enumerated as a means of corroborating extant eutrophication data from the sediment record. Inferences about the timing and trajectory of eutrophication were made using the cladoceran-based paleo-reconstruction. The cladoceran community of Lake Apopka began to change abruptly in both total abundance and relative percent abundance just before the lake shifted from macrophyte to algal dominance. Alona affinis, a mud-vegetation associated cladoceran, disappeared before the SDL was formed. Planktonic and benthic species also began to increase below the SDL, indicating an increase in production of both planktonic and benthic species. Chydorus cf. sphaericus, an indicator of nutrient loading, increased relative to all other cladocerans beginning in the layer below the SDL and continuing upcore. Changes in the transitional sediment layer formed before the lake switched to phytoplankton dominance, including an increase in total phosphorus concentration, suggest a more gradual eutrophication process than previously reported. Data from this study supported conclusions from other paleolimnological studies that suggested anthropogenic phosphorus loading was the key factor in the hypereutrophication of Lake Apopka.  相似文献   

16.
抚仙湖是中国云南省的一个深水湖,连接着富营养化的浅水湖--星云湖,星云湖排放含绿藻的水进入抚仙湖。两湖位于省会昆明附近,由于地方文化、集约化农业、以及旅游业的发展,两湖已经富营养化。因为湖泊体积容量的级别差异,深水湖的富营养化几乎没被注意,抚仙湖秋季下层滞水带缺氧已经关注了20年,似乎下层滞水带是深水湖富营养化的指标或趋势。抚仙湖看起来目前情况尚好,可以说寡营养,然而,外界负荷是潜在的,且是以稳定的加速度进行的。在此对浅水湖富营养化的原因进行了讨论,包括在其它云南湖泊观察到富营养化的过程,再者,对两个连相湖的藻和蓝藻碎片的大小构成进行比照。为了与深水的抚仙湖状况进行比较,简略介绍了一个日本的深湖及其径流系统。其中,涡流和它的微生态系统,在两者中相关性很好。对于以涡流生态系统的见解判断微生态系统的深水湖富营养化问题将给予概括。  相似文献   

17.
We analyzed seasonally aggregated observations of temperature, conductivity, dissolved oxygen and dissolved inorganic carbon from Soppensee (District of Lucerne, Switzerland) for the yrs 1980 to 1993. Holomictic Soppensee is characterized by a strong summer stratification with a thin epilimnion separated from an anoxic hypolimnion by a strong pycnocline formed by thermal and chemical gradients. A vertical one-dimensional model was developed to simulate the observed seasonal cycles of carbon and oxygen. The processes of net community production, mineralization of organic matter, precipitation and dissolution of calcite, gas exchange, in- and outflow, sedimentation and vertical eddy diffusion are included. According to the model, the annual net community production is estimated to about 110 g C m-2 yr-1 and the annual net primary production to about 330 to 440 g C m-2 yr-1, which is a typical value for eutrophic lakes. A mass balance of the carbon cycle indicates that most of the inflow comes from groundwater which is super-saturated with respect to atmospheric CO2. Therefore the surface waters exhibit a large capacity for calcite precipitation. The results of the model are used to constrain the conditions that favor the formation of varved sediments in Soppensee during thousands of yrs. Model calculations show that the deep waters would still turn anoxic even if the sedimentation rate of organic matter were decreased to 25%. Several physical factors such as biogenic stabilization of the deep waters due to calcite dissolution and low input of wind energy are responsible for the long term anoxia in Soppensee.  相似文献   

18.
Organic-rich sediment from Lake Louise, a dystrophic sinkhole lake in south Georgia, displays variations in C, N, P, C/N, δ13C, δ15N, biogenic silica (BSi) and diatom flora that document changes in trophic state over the past ~9,500 years. The lake initially was oligotrophic and moderately productive, but by the middle Holocene a rising regional water table, driven by eustatic sea level rise, caused expansion of wetlands around the lake and a shift to humic waters. Low rates of sediment accumulation, low C contents, rising C/N, and light δ13C and δ15N indicate this was a time of low productivity, more anoxic bottom waters and extensive recycling of littoral organic matter. These conditions persisted until ~1800 AD when a physical disturbance to the watershed, probably the Great Hurricane of 1780, resulted in a dramatic increase in productivity that has continued to the present day. We attribute this shift, recorded by a >tenfold increase in sediment accumulation rate, higher C, P, and δ15N, and lower BSi, to establishment of an inflow stream that increased nutrient delivery to the lake, raised water level, and expanded the wetland area around the lake. Since ~1930, logging, farming, and highway construction have impacted the lake, further accelerating biological productivity as well as the delivery of terrigenous sediment. Results of this study illustrate the potential of a single, catastrophic event to permanently alter the hydrology and chemistry of a lacustrine system and confirm that dystrophic lakes can be highly productive and therefore promising targets for paleolimnological study.  相似文献   

19.
This study provides a high resolution multi-proxy record of the response of an aquatic ecosystem (Alexander Lake) to forest clearance in New Zealand in the late twentieth century (ca. 1950–2006 AD). New chironomid-based transfer functions for lake water total nitrogen (TN) concentration were applied to the Alexander Lake chironomid record. A test of the significance of reconstructions based on multiple model types indicates that a model with the highest r2 and lowest root mean squared error of prediction may not necessarily perform the best when applied to a particular site. The chironomid-based TN reconstruction and other proxies suggest a complex response by a stained water (dystrophic) lake in a forested catchment to deforestation. Minor perturbations and nutrient influx may favour increased phytoplankton production, but continued light attenuation by dissolved organic carbon and humic compounds prevents proliferation of submerged macrophytes. Complete mechanical forest clearance resulted in a short term pulse of nutrients and eutrophication. The long term effect of deforestation was to increase light penetration and favour the growth of submerged macrophytes. Continued eutrophication of Alexander Lake could be due to a contribution of bird-derived nutrients. Deforestation around Alexander Lake has created a perfect moulting site for Paradise Shelducks (Tadorna variegata Gmelin). The input of total phosphorus from T. variegata could be enough to trigger blooms of Microcystis that currently occur in the lake. Changes in bird behaviour in response to changes in vegetation should therefore be considered a possible result of past (including prehistoric) and future deforestation in New Zealand.  相似文献   

20.
Lake Mattamuskeet, North Carolina, USA is a large (162 km2) and shallow (mean depth = 1 m) coastal lake, which was significantly modified to support agricultural activities following European settlement in 1850. Paleolimnological proxies measured on a 400-cm sediment core collected from Lake Mattamuskeet reveal shifts in organic matter input and primary producer community structure in response to climatic and human impacts on the lake during the late Holocene. Stratigraphic changes in organic matter content, nutrients, metals, lignin phenols and photosynthetic pigments were used to divide the sediment core into three intervals. Interval I includes sediment deposited between A.D. 360–1584 and indicates a clear-water, sand-bottom state with low algal abundance. In addition, the lake catchment area experienced two significant fires during this interval that were recorded as charcoal layers in the core around A.D. 360 and A.D. 1435 (calibrated 14C AMS dates). Trophic structure changed with the onset of Interval II (A.D. 1584–1860) when total algal abundance increased, and the primary producer community was comprised primarily of diatoms, chrysophytes, cryptophytes and cyanobacteria. During this interval there was also an increase in terrestrial organic material input into the lake as well as a shift in plant type from woody gymnosperms to non-woody angiosperms as determined from lignin data. Sediment deposited in Lake Mattamuskeet following European settlement (Interval III, A.D. 1860-present) suggests a dramatic increase in organic-matter deposition, metals, primary-producer abundance and the onset of cyanobacterial dominance. Sedimentary evidence indicates that shallow-water primary producers can respond rapidly to climate change and human development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号