首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The reliability of filter pack and annular seal emplacements, and the degree of integrity of installed seals, are two of the most important factors to be considered when both installing and later utilizing ground water monitoring wells.
Numerous, and often costly, problems of using existing methods of installing filter packs and annular seals during the construction of ground water monitoring wells have led to the development of a technique of installing these monitoring well components using a dry injection system.
The dry injection system has been used to construct monitoring wells in extremely complex overburden/bedrock environments with a variety of drilling techniques. The system has shown that a high degree of reliability in the, construction of monitoring wells and greater confidence in obtaining representative ground water samples can be achieved over existing methods of filter pack and annular seal emplacement. The system has also been more cost effective than existing methods, especially for deep boreholes and multilevel monitoring system installations.  相似文献   

2.
Injection of wastes into the deep subsurface has become a contentious issue, particularly in emerging regions of oil and gas production. Experience in other regions suggests that injection is an effective waste management practice and that widespread environmental damage is unlikely. Over the past several decades, 23 km3 of water has been injected into the Western Canada Sedimentary Basin (WCSB). The oil and gas industry has injected most of this water but large amounts of injection are associated with mining activities. The amount of water injected into this basin during the past century is 2 to 3 orders magnitude greater than natural recharge to deep formations in the WCSB. Despite this large‐scale disturbance to the hydrogeological system, there have been few documented cases of environmental problems related to injection wells. Deep injection of waste appears to be a low risk activity based on this experience but monitoring efforts are insufficient to make definitive statements. Serious uncharacterized legacy issues could be present. Initiating more comprehensive monitoring and research programs on the effects of injection in the WCSB could provide insight into the risks associated with injection in less developed sedimentary basins.  相似文献   

3.
Seepage from tailings ponds associated with an active uranium mill in Utah has resulted in contamination of ground water contained in the Dakota-Burro Canyon Formation. This aquifer is used in the area as a supply for domestic and industrial wells.
Results of very low-frequency electromagnetic surveys and ground water quality investigations at the site indicated that the flow of ground water and contaminants is primarily fracture-controlled. Pumping tests were conducted to determine the hydraulic characteristics of the fractured system. The extent of contaminant migration was then determined using an analytical model of transport in fractured aquifers.
Based on these investigations, a plan was designed to control future and remediate past ground water contamination. This plan consists of pumping from a single well intersecting the main fracture that transports contaminants off the site. The effectiveness of the plan was analytically modeled, taking account of the anisotropy of the ground water system. Subsequent monitoring of water levels in the area indicates that the plan has been effective since its inception in November 1983.  相似文献   

4.
An upsurge in oil- and gas-well drilling in northwestern Pennsylvania and western New York has been accompanied by several incidents of contamination of ground water by methane. Determining which well is causing the contamination is extremely difficult if more than one gas or oil well is present in the area.
The fact that the solubility of methane decreases as the pressure on ground water decreases provides a quantitative basis for monitoring changes in the amount of methane in the ground water. Quantitative measurements of the volume of methane given off by ground water pumped from a well as the water enters atmospheric pressure permit detection of temporal changes in the gas content which are too subtle to be detected visually. These gas volume changes may, in some cases, be correlated with variations in the pressure of methane in the annulus of nearby individual gas/oil wells and thus may provide a means of pinpointing the gas/oil well that is causing the methane contamination.
The basic principle of the gas-volume monitoring apparatus (GVMA) described in this paper is that as a measured amount of ground water enters atmospheric pressure the gas which comes out of solution is trapped and measured. The GVMA can be constructed of materials costing less than $100 and requires no special skills to assemble or operate. In a recent study conducted in a western New York village, four homeowners were able to collect quantitative gas-volume data from their household water wells daily in about one-half hour. Unlike laboratory analyses for dissolved methane, there is no cost involved in monitoring with the GVMA beyond the initial instrument cost and operator time. Another advantage is that the data are available immediately.  相似文献   

5.
Ground water circulation wells (GCWs) provide an appealing alternative to typical pump-and-treat ground water remediation systems because of the inherent resource-conservative nature of the GCW systems. GCW performance prediction is challenging because the consideration of extraction and recharge in a single well is unusual for most practitioners, the technology is relatively new, and a meaningful body of literature has not been published. A three-part evaluation process using state-of-the-practice numerical ground water flow and mass transport models was developed for application during GCW pilot studies at the former Nebraska Ordnance Plant site. A small-scale ground water flow model was developed during the pilot study planning process to predict the system performance and to locate performance-measuring monitoring wells. Key predictions included the capture zone predicted to develop upgradient of the GCW, the downgradierit GCW recharge zone, and the circulation zone centered on the GCW. The flow model was subsequently verified using ground water elevation data and contaminant concentration data collected during pilot study operation. Aquifer parameters were reestimated as a result of the verification process. Those parameter values were used as input to a larger scale model, which was used to develop a remedial alternative consisting of multiple GCW systems.  相似文献   

6.
Ground water monitoring is considered to be a significant component of the geological service in the U.S.S.R. Currently, the total number of ground water monitoring wells exceeds 30,000. They are divided into two categories, which are the first class, or basic observation wells, and the second class, or auxiliary observation wells. The main objectives of both monitoring networks are briefly described. The general scheme of ground water monitoring organization is also presented.  相似文献   

7.
The city of St. Petersburg has been testing subsurface injection of treated sewage into the Floridan aquifer as a means of eliminating discharge of sewage to surface waters and as a means of storing treated sewage for future non-potable reuse. The injection zone originally contained native saline ground water that was similar in composition to sea water. The zone has a transmissivity of about 1.2 X 106 feet squared per day (ft2/d) and is within the lower part of the Floridan aquifer. Treated sewage that had a mean chloride concentration of 170 milligrams per liter (mg/1) was injected through a single well for 12 months at a mean rate of 4.7 X 105 cubic feet per day (ft3/d). The volume of water injected during the year was 1.7 X 108 cubic feet. Pressure buildup at the end of one year ranged from less than 0.1 to as much as 2.4 pounds per square inch (lb/in2) in observation wells at the site. Pressure buildup in wells open to the upper part of the injection zone was related to buoyant lift acting on the mixed water in the injection zone in addition to subsurface injection through the injection well. Calculations of the vertical component of pore velocity in the semiconfining bed underlying the shallowest permeable zone of the Floridan aquifer indicate upward movement of native water. This is consistent with the 200- to 600-mg/l increase in chloride concentration observed in water from the shallowest permeable zone during the test.  相似文献   

8.
The possible mine will remove a gently, less than 50 feet per mile, westerly dipping Springfield coal from an area covered by glacial till and some channel sands and gravel. The area is flat, with less than 20 feet of relief in a square mile. The channel sands and gravels, the till and the bedrock are capable of yielding ground water at 5 to 75,3 to 10, and 1 to 10 gallons per minute (gpm), respectively. The ground water in the drift and the shallow bedrock is calcium-bicarbonate type, contrasting with the sodium-bicarbonate type in the deep bedrock. The surface mine will feature selective handling of overburden. The probable hydrologic consequences of the mine will be 1) a short-term, areally limited dewatering, 2) an increase in dissolved solids, 3) a change in ground water chemistry in some areas to a calcium-bicarbonate sulfate water, 4) an increase in ground water storage, and 5) a new integrated surface water system. The proposed ground water monitoring system will include seven monitoring wells in the glacial material and one in the bedrock. The primary effort in ground water monitoring to the west of the mine will be to detect changes in the quality of the ground water, whereas to the east, changes in both quality and quantity will need to be monitored intensively.  相似文献   

9.
Recent advances in high throughput/automated compositing with robotics/field-screening methods offer seldom-tapped opportunities for achieving cost-reduction in ground water quality monitoring programs. An economic framework is presented in this paper for the evaluation of sample compositing as a screening tool in ground water quality monitoring. When the likelihood of occurrence of a contaminant in a well is very small, the use of sample compositing instead of routine exhaustive sampling will lead to reduction in analytical efforts. Such reduction will be maximum when there are no contaminated wells in the network. An N-fold reduction will result when none of the wells in a network of N wells are contaminated. When 25 percent or more wells in a network are contaminated, the use of sample compositing will require, at the most, an additional 50 percent analytical effort compared to exhaustive sampling. A quantitative measure of the cost-effectiveness of sample compositing as a screening tool is shown to be dependent on two factors: a ratio (f1) of laboratory analytical cost to that of well installation and field sampling costs and a ratio (f2) of the expected number of contaminated wells to that of the total number of wells in the network. Several useful mathematical results of primary interest are derived and illustrated with case examples in the paper. Selected areas for further research are also outlined.  相似文献   

10.
A simple, inexpensive sampling pump has lately come into use in ground water monitoring. The pump is referred to as an inertial pump; its only downhole components are a foot valve connected to a length of tubing or pipe. The operating principle of the pump is based on the inertia of a column of water within the riser tubing. Ground water is drawn through the foot valve and up the riser tubing by rapid up and down movements of the tubing. This pumping method is not new, but has only recently been applied to monitoring wells. Foot valves are available in a variety of materials and sizes and can be used in monitoring wells as small as 19mm (3/4 inch) I.D. Flexible polyethylene or Teflon® tubing, and in some cases stainless steel tubing or rigid PVC pipe, is used as the riser. The inertial pump satisfies most of the criteria normally cited for an "ideal" sampling device. The pump is easy to operate, reliable, durable, portable, and virtually maintenance-free. It can be operated manually from as deep as 40m or from as deep as 60m using a motor drive. The pump is inexpensive, and therefore suitable for use as a dedicated sampling pump. Recent tests have shown the pump to be suitable for sampling volatile organics. The inertial pump has a high flow capacity and performs well in silty/sandy environments, which makes it useful for developing and purging monitoring wells. It may also be used to perform field hydraulic conductivity tests.  相似文献   

11.
The objective of this study was to assess the possible impact of deep well disposal operations, conducted between 1958 and 1974, on the ground water quality in a shallow fresh water aquifer beneath Sarnia, Ontario, Canada. Because of the breakout of formation fluids in Sarnia and Port Huron, Michigan, in the early 1970s, it had been hypothesized that liquid waste from the disposal zone in bedrock had leaked through numerous abandoned oil, gas, and salt wells in the area up to the shallow fresh water aquifer and from there to the surface.
A monitoring well network of 29 5cm (2 inch) diameter piezometers was established in the thin sand and shale aquifer system, which exists between 30 and 70m (100 and 230 feet) below ground surface. In addition, a 300m (1000 foot) deep borehole was drilled and instrumented with a Westbay multilevel casing, which permitted sampling of the disposal zone.
Ground water samples from the shallow monitoring wells and the Westbay multilevel casing were analyzed for volatiles by GC/MS. Those volatile aromatics that were conspicuously present in the deep disposal zone, e.g., ethyl toluenes and trimethyl benzene, were not detected in the shallow monitoring wells. Thus, if contaminants from the disposal zone did indeed migrate to the shallow aquifer, contamination was not widespread and probably consisted mostly of displaced chloride-rich formation waters.  相似文献   

12.
Approximately 190 kg of 2 μm‐diameter zero‐valent iron (ZVI) particles were injected into a test zone in the top 2 m of an unconfined aquifer within a trichloroethene (TCE) source area. A shear‐thinning fluid was used to enhance ZVI delivery in the subsurface to a radial distance of up to 4 m from a single injection well. The ZVI particles were mixed in‐line with the injection water, shear‐thinning fluid, and a low concentration of surfactant. ZVI was observed at each of the seven monitoring wells within the targeted radius of influence during injection. Additionally, all wells within the targeted zone showed low TCE concentrations and primarily dechlorination products present 44 d after injection. These results suggest that ZVI can be directly injected into an aquifer with shear‐thinning fluids to induce dechlorination and extends the applicability of ZVI to situations where other emplacement methods may not be viable.  相似文献   

13.
From the mid-1940s through the 1980s, large volumes of waste water were discharged at the Hanford Site in southeastern Washington State, causing a large-scale rise (>20 m) in the water table. When waste water discharges ceased in 1988, ground water mounds began to dissipate. This caused a large number of wells to go dry and has made it difficult to monitor contaminant plume migration. To identify monitoring wells that will need replacement, a methodology has been developed using a first-order uncertainty analysis with UCODE, a nonlinear parameter estimation code. Using a three-dimensional, finite-element ground water flow code, key parameters were identified by calibrating to historical hydraulic head data. Results from the calibration period were then used to check model predictions by comparing monitoring wells' wet/dry status with field data. This status was analyzed using a methodology that incorporated the 0.3 cumulative probability derived from the confidence and prediction intervals. For comparison, a nonphysically based trend model was also used as a predictor of wells' wet/dry status. Although the numerical model outperformed the trend model, for both models, the central value of the intervals was a better predictor of a wet well status. The prediction interval, however, was more successful at identifying dry wells. Predictions made through the year 2048 indicated that 46% of the wells in the monitoring well network are likely to go dry in areas near the river and where the ground water mound is dissipating.  相似文献   

14.
An Analysis of Low-Flow Ground Water Sampling Methodology   总被引:1,自引:0,他引:1  
Low-flow ground water sampling methodology can minimize well disturbance and aggravated colloid transport into samples obtained from monitoring wells. However, in low hydraulic conductivity formations, low-flow sampling methodology can cause excessive drawdown that can result in screen desaturation and high ground water velocities in the vicinity of the well, causing unwanted colloid and soil transport into ground water samples taken from the well. Ground water velocities may increase several fold above that of the natural setting. To examine the drawdown behavior of a monitoring well, mathematical relationships can be developed that allow prediction of the steady-state drawdown for constant low-flow pumping rates based on well geometry and aquifer properties. The equations also estimate the time necessary to reach drawdown equilibrium. These same equations can be used to estimate the relative contribution of water entering a sampling device from either the well standpipe or the aquifer. Such equations can be useful in planning a low-flow sampling program and may suggest when to collect a water sample. In low hydraulic conductivity formations, the equations suggest that drawdown may not stabilize for well depths, violating the minimal drawdown requirement of the low-flow technique. In such cases, it may be more appropriate to collect a slug or passive sample from the well screen, under the assumption that the water in the well screen is in equilibrium with the surrounding aquifer.  相似文献   

15.
Previous site-specific studies designed to assess the impacts of unsewered subdivisions on ground water quality have relied on upgradient monitoring wells or very limited background data to characterize conditions prior to development. In this study, an extensive monitoring program was designed to document ground water conditions prior to construction of a rural subdivision in south-central Wisconsin. Previous agricultural land use has impacted ground water quality; concentrations of chloride, nitrate-nitrogen, and atrazine ranged from below the level of detection to 296 mg/L, 36 mg/L, and 0.8 microg/L, respectively, and were highly variable from well to well and through time. Seasonal variations in recharge, surface topography, aquifer heterogeneities, surficial loading patterns, and well casing depth explain observed variations in ground water chemistry. This variability would not have been detected if background conditions were determined from only a few monitoring wells or inferred from wells located upgradient of the subdivision site. This project demonstrates the importance of characterizing both ground water quality and chemical variability prior to land-use change to detect any changes once homes are constructed.  相似文献   

16.
State-of-the-art analytical techniques are capable of detecting contamination In the part per billion (ppb) range or lower. At these levels, a truly representative ground water sample Is essential to precisely evaluate ground water quality. The design specifications of a ground water monitoring system are critical in ensuring the collection of representative samples, particularly throughout the long-term monitoring period.
The potential interfaces from commonly used synthetic well casings require a thorough assessment of site, hydrogeology and the geochemical properties of ground water. Once designed, the monitoring system must be installed following guidelines that ensure adequate seals to prevent contaminant migration during the installation process or at some time in the future. Additionally, maintaining the system so the wells are in hydraulic connection with the monitored zone as well as periodically Inspecting the physical integrity of the system can prolong the usefulness of the wells for ground water quality. When ground water quality data become suspect due to potential interferences from existing monitoring wells, an appropriate abandonment technique must be employed to adequately remove or destroy the well while completely sealing the borehole.
The results of an inspection of a monitoring system comprised of six 4-inch diameter PVC monitoring wells at a hazardous well facility Indicated that the wells were improperly installed and in some cases provided a pathway for contamination. Subsequent down hole television inspections confirmed inaccuracies between construction logs and the existing system as well as identified defects in casing materials. An abandonment program was designed which destroyed the well casings in place while simultaneously providing a competent seal of the re-drilled borehole.  相似文献   

17.
In 1984, the Illinois Department of Energy and Natural Resources was required to assess the regulations and practices of the Illinois Underground Injection Control (UIC) program as it relates to Class I hazardous waste disposal wells. Nine injection wells, including two standbys (one inactive), are currently in operation at seven sites in the state. These wells range in depth from 1540 to 5524 feet (470 to 1683m; most inject wastes into porous carbonate formations (two wells inject into a thick sandstone). In 1984, approximately 300 million gallons (1.1 billion liters) of industrial wastes were disposed of in these wells. Acids were the most common waste disposed of, although water made up 70 to 95 percent of the wastes by volume. Illinois has been granted primacy in operating this program.
The geologic environment, consisting of the unit accepting the waste and confining units lying above and below, has the capacity to accept the waste, to retain it, and to protect all underground sources of drinking water (USDW) from contamination by its injection. The geology of Illinois is relatively simple and includes disposal zones and associated confining units suitable for deep-well injection across the central two-thirds of the state.
The regulatory structure for Class I injection wells is generally adequate in concept and scope to ensure containment of injected wastes and to safeguard underground sources of drinking water in Illinois. There is a need to update and strengthen selected portions of the regulatory practices in the areas of waste sampling protocol, chemical analysis of collected waste samples, and evaluation of injection well testing and monitoring data.
A number of technologies exist that can treat and dispose of most hazardous and non-hazardous waste streams. Each of these technologies has associated with it economic, environmental and societal impacts.  相似文献   

18.
Hydrogeologic and ground water quality data obtained from a gas-driven multilevel sampler system and a polyvinyl chloride (PVC) monitoring well nest with the same aquifer communication intervals are compared. All monitoring points are in close proximity to each other. The study was conducted at an eight-acre uncontrolled hazardous waste site. The site is located in an alluvial valley composed of approximately 40 feet of alluvium overlying shale bedrock. The ground water at the site is contaminated with various organic constituents. A ground water monitoring network consisting of 26 conventional monitoring wells, nine observation well points, and six multilevel gas-driven samplers was established to characterize the hydrogeologic regime and define the vertical and horizontal extent of contamination in the vicinity of the abandoned chemical plant. As part of this study, a multilevel monitoring system was installed adjacent to a well nest. The communication zones of the multilevel samplers were placed at the same elevation as the sand packs of the well nest. The multilevel sampler system and well nest are located in a contaminated area directly downgradient of the site. A comparison of the vertical head distribution and ground water quality was performed between the well nest and the multilevel sampling system. The gas-driven multilevel sampling system consists of three gas-driven samplers that monitor separate intervals in the unconsolidated materials. The well nest, composed of two PVC monitoring wells in separate boreholes, has the same communication interval as the other two gas-driven samplers. Hydraulic head information for each multilevel sampler was obtained using capillary tubing. This was compared with heads obtained from the well nest utilizing an electric water level indicator. Chemical analyses from the PVC and multilevel sampler wells were performed and compared with one another. The analyses included organic acids, base neutrals, pesticides, PCBs, metals, volatile organics, TOX, TOC, CN, pH and specific conductance.  相似文献   

19.
The Geo Flowmeter is manufactured by K.V. Associates of Falmouth, Massachusetts, and is used to determine ground water flow direction and velocity in monitoring wells or open boreholes. It operates by emitting heat pulses and measuring subsequent temperature increases carried by the ground water movement. The meter can be used in wells as small as 2 inches in diameter and only a single well is required for determination of ground water flow direction and rate.
This paper is a case history of the use of the Geo Flowmeter in a complex hydrogeologic setting consisting of a partially above grade landfill located between a navigable waterway and a large storm water impoundment basin. Mounding effects of the landfill, tidal changes in the channel, varying water levels in the impoundment basin and a complex substrate (alternating layers of sand, silt and clay) presented a challenge for ground water interpretation and analysis. The Geo Flowmeter was lowered into existing monitoring wells surrounding the landfill to determine ground water flow direction and rate. Sensitivity of the meter was sufficient to distinguish two separate flow directions in a single well screen. Later investigation involving installation of piezometers, long-term ground water level monitoring and plotting of ground water contours verified initial findings of the meter.
This article presents numerous graphs and pictures to illustrate field use of the instrument and discusses advantages and disadvantages of its use. Actual field data collected is included to provide a basis for evaluating the accuracy of the instrument and identifying situations where it may be used.  相似文献   

20.
Vapor extraction (soil venting) has been demonstrated to be a successful and cost-effective remediation technology for removing VOCs from the vadose (unsaturated) zone. However, in many cases, seasonal water table fluctuations, drawdown associated with pump-and-treat remediation techniques, and spills involving dense, non-aqueous phase liquids (DNAPLS) create contaminated soil below the water table. Vapor extraction alone is not considered to be an optimal remediation technology to address this type of contamination.
An innovative approach to saturated zone remediation is the use of sparging (injection) wells to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below the areas of contamination. The contaminants dissolved in the ground water and sorbed onto soil particles partition into the advective air phase, effectively simulating an in situ air-stripping system. The stripped contaminants are transported in the gas phase to the vadose zone, within the radius of influence of a vapor extraction and vapor treatment system.
In situ air sparging is a complex multifluid phase process, which has been applied successfully in Europe since the mid-1980s. To date, site-specific pilot tests have been used to design air-sparging systems. Research is currently underway to develop better engineering design methodologies for the process. Major design parameters to be considered include contaminant type, gas injection pressures and flow rates, site geology, bubble size, injection interval (areal and vertical) and the equipment specifications. Correct design and operation of this technology has been demonstrated to achieve ground water cleanup of VOC contamination to low part-per-billion levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号