首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
中国辽宁复县金刚石中新发现的碳化钛矿物   总被引:1,自引:0,他引:1  
在我国辽宁复县金刚石中首次发现了碳化钛(TiC)矿物包裹体。该矿物包裹体呈板状,颗粒大小为50μm×35μm×8μm。碳化钛矿物的颗粒表面平整,成分纯净,能谱和电子探针分析确定其仅由Ti和C两种元素组成。利用CCD单晶衍射仪对碳化钛矿物进行了单晶德拜衍射,获得了该矿物包裹体的衍射数据,证实为碳化钛矿物包裹体。结构分析表明,产出于金刚石中的包裹体矿物碳化钛同时存在立方结构和菱面体结构两套衍射,根据X射线结构分析结果与前人对于TiC高压实验资料的对比,认为该金刚石包裹体矿物碳化钛原始形成的压力超过18 GPa。  相似文献   

2.
辽宁金刚石中的六方镍黄铁矿及钾盐包裹体   总被引:2,自引:0,他引:2  
在产于辽宁的一粒金刚石中新发现了具六方对称外形的镍黄铁矿和钾盐包裹体。金刚石呈八体,无裂缝,表面有熔蚀纹。镍黄铁矿具完好的晶表,发育平行双面{0001}及六方双锥{h0hl},根据电子探地的成分分析结果,计算的矿物化学式为(Ni,Fe,Co)8.62-9.01S8;拉曼光谱分析表明,其拉曼位移有别于一般的镍黄矿(立方对称)。钾盐(KCl)包裹体呈不规则状,可见似片状晶体,集合体成叠层状;除钾盐外,可能不存在CaCl2等包裹体。金刚石中这包裹体的发现,指示了地幔中局部存在富钾、富氯和高铁镍硫的液相(或熔体)。  相似文献   

3.
为探讨新疆坡北岩体坡七侵入体中铜镍硫化物矿(化)体的成因,采用显微镜观察、磁性胶体浸润和电子探针分析等方法,对主要的金属矿物磁黄铁矿、镍黄铁矿开展了成因矿物学研究。结果表明,浸染状、稠密浸染状矿石中,磁黄铁矿为六方(NC型)磁黄铁矿,或六方磁黄铁矿与散点状单斜(4C型)磁黄铁矿构成的不规则状交生体。六方磁黄铁矿是高温结晶后缓慢降温的产物,而不规则状交生体是流体交代六方磁黄铁矿的结果。块状矿石中的磁黄铁矿是六方与单斜变体构成叶片状/箱状交生体,其成因与快速降温和热事件干扰有关。镍黄铁矿富集Co,在各类矿石中均可分为3个世代(Pn1,Pn2,Pn3),在结晶过程中硫逸度随着温度的降低而减小。等轴晶系辉砷钴矿、自形镍黄铁矿及高温黄铜矿的晶出暗示金属硫化物结晶温度普遍偏高。  相似文献   

4.
镍铜硫化物矿石中磁黄铁矿固溶体的退火及其选矿意义   总被引:3,自引:0,他引:3  
磁黄铁矿固治体从硫化物熔体结晶后,在缓慢冷却过程中经历了显著的退火。出治和出治体的租化是固治体退火的两种方式。叶片状的单斜磁黄铁矿和“火焰状”的镍黄铁矿原始出治相在降温过程中均可发生退火和租化。分布于磁黄铁矿等矿物粒间或包于磁黄铁矿粒内的粒状镍黄铁矿,不只是高温出治的直接产物,有一部分可能是由火焰状出治体租化而成的。磁黄铁矿中单斜变体的出治和租化可使矿石的磁性发生改变,镍黄铁矿出治体的租化使含镍矿物的粒度加大。因而,退火作用对矿石的选矿工艺性能有着显著影响。  相似文献   

5.
磁黄铁矿异种鉴定及其标型特征   总被引:1,自引:0,他引:1  
磁黄铁矿除了可以作为硫矿石的主要矿石矿物之外,其中所含的镍、钴和铜往往可以达到综合利用的工业指标而具有一定的经济价值。近几年来磁黄铁矿矿物学研究资料表明,磁黄铁矿在自然界产出有两个异种:六方磁黄铁矿和单斜磁黄铁矿(以前常笼统地认为磁黄铁矿属于六方晶系)。两者在形成条件,可综合利用之金属元素的含量等方面都有所不同。因此,在生产实践中鉴别磁黄铁矿的异种类型具有一定的实际意义。现将收集到的六方磁黄铁矿和单斜磁黄铁矿的鉴别特征资料以及磁黄铁矿中具有标型意义  相似文献   

6.
蒙山矿的晶体结构   总被引:2,自引:0,他引:2  
本文对产于我国山东的新矿物蒙山矿(Mathiasite)进行了晶体结构精测。蒙山矿的晶体化学式为:(K、Ca、Sr)(Ti、cr、Fe、Mg、Zr)_(21)O_(38),三方晶系,空间群R,晶胞参数:a_o=10.3722,c_o=20.7161(六方定向),a_R=9.1403,a=69.187°(菱面体定向)。应用RASA-5RP自动转靶四圆单晶衍射仪,对蒙山矿收集了独立的1554个衍射强度。经结构解析和修正,求得了晶体中各原子的坐标、温度因子、占位度。并计算了原子的间距和键角。结构修正的偏离因子: R=0.047。蒙山矿产于金伯利岩中,形成于高温高压下。通过结构测定,确定了该矿物中Ti、Cr、Mg、K等元素的配位形式,特别是查明了Zr在这种以Ti为主的复杂氧化物中有独立的结晶学位置,并有缺席现象。以上研究成果丰富了金伯利岩中金属副矿物的矿物学和晶体化学内容。  相似文献   

7.
黄山东铜镍硫化物矿床产于东天山地区的黄山—镜儿泉韧性剪切带中,大地构造上属中亚造山带东天山觉罗塔格岛弧带。该铜镍矿所在的黄山东镁铁—超镁铁岩体呈纺锤状侵位于晚石炭世火山岩中,其边部发生了与区域剪切带总体走向一致的强烈糜棱岩化作用。矿床中的部分矿体发生强烈韧性变形,其中17号矿体完全产于韧性变形带内,岩石和矿石都发生了强烈的破碎和蚀变而形成矿石糜棱岩。在上述韧性变形带内,还发育一定规模的网脉状和细脉状富铜碳酸盐—硫化物脉。论文在野外地质和构造形迹观察的基础上,对黄山东矿床不同类型的矿石开展了细致的显微岩相和矿相学观察,识别出三种类型矿石:原生矿石、强烈变形矿石和热液叠加矿石。海绵陨铁结构的原生矿石中,脉石矿物几乎不发生蚀变和变形,矿石矿物仅发生脆性破裂;强烈变形矿石中,脉石矿物和矿石矿物均发生强烈变形,主要以纤闪石的波状消光和膝折、金云母的书斜构造、磁黄铁矿的定向拉长为特征;热液叠加矿石中的磁黄铁矿普遍发育颗粒的扁平化、重结晶,局部可见磁黄铁矿的退火平衡结构。黄山东铜镍硫化物矿床的侵位与变形时间与区域黄山-镜儿泉剪切带的韧性剪切作用时间相一致。岩体冷却过程经历的强烈韧性剪切变形作用不但造成矿石矿物的强烈韧性变形而形成矿石糜棱岩,还使伴生脉石矿物发生细粒化和热液蚀变,释放出流体和成矿元素,并叠加于变形的矿石和岩石之上,从而形成了网脉状和细脉状矿体。黄山东铜镍矿的原生硫化物固熔体铁含量较高,因而在硫化物熔体结晶过程只形成六方磁黄铁矿而无伴生单斜磁黄铁矿和黄铁矿。在热液叠加过程中,流体沿边缘和裂隙面交代早期六方磁黄铁矿,形成单斜磁黄铁矿反应边。本次研究还发现六方磁黄铁矿形成的新机制:即在高硫逸度和高氧逸度的条件下,随着体系温度的降低,单斜磁黄铁矿可从热液六方磁黄铁矿中出溶形成呈叶片状单斜—六方磁黄铁矿交生体。  相似文献   

8.
东天山是中国最重要的岩浆铜镍硫化物矿带之一,产有黄山东、黄山、香山、葫芦等大中型铜镍矿床。图拉尔根、白石泉两处镍铜矿床为近年来在新疆地区铜镍找矿中的重大发现,两者均属于与镁铁质-超镁铁质杂岩有关的岩浆熔离-贯入型矿床。矿物共生组合以磁黄铁矿 镍黄铁矿 黄铜矿为特征,磁黄铁矿系矿石中最主要组成部分。文章以X射线衍射、扫描电镜、电子探针分析并辅以常规显微镜,查明这些矿床中磁黄铁矿均系Co、Ni的最主要载体矿物,Co、Ni元素主要以游离状态的硫化物(或硫砷化物)形式存在,如镍辉砷钴矿、钴辉砷镍矿、镍黄铁矿及紫硫镍矿等矿物。它们多以微细包裹体或出溶体形式随机地分布于磁黄铁矿内部,而少量的Co、Ni元素则以类质同像方式存在于磁黄铁矿晶格之中。图拉尔根、白石泉、葫芦三矿床中磁黄铁矿在多型结构以及微量元素地球化学方面均表现出一定的差异,系由两矿床容矿岩石基性程度及成矿温度之差异引起。  相似文献   

9.
在保证镍黄铁矿单矿物测试粒度及物化性质不被破坏的前提下,通过对三个产地,四件试样的综合分析及系统分离试验,研究出用重选-强磁选-浮选-电磁选等联合分离流程提纯镍黄铁矿的全过程,分离纯度达到90%以上.本文中分别叙述了镍黄铁矿与磁黄铁矿、镍黄铁矿与黄铜矿、镍黄铁矿与黄铁矿的分离方法.  相似文献   

10.
通过差热-热重分析、X射线粉末衍射(XRD)及磁化率分析等手段,对天然黄铁矿样品在氮气中受热发生的矿物相 变过程进行了综合研究。不同温度下黄铁矿煅烧产物的XRD物相分析结果显示,低于500℃时,黄铁矿无显著变化;随着 温度的升高(500~600℃),黄铁矿开始转变为单斜磁黄铁矿,进而生成六方磁黄铁矿,磁化率显著升高;700℃~800℃的 煅烧产物主要为六方磁黄铁矿,磁化率明显下降,直至900℃进一步形成更稳定的陨硫铁(FeS),磁化率接近于零。在黄 铁矿物相开始转变的温度(500~600℃)区间,黄铁矿生成单斜磁黄铁矿的速率大于单斜磁黄铁矿转化为六方磁黄铁矿的速 率;高温(700~900℃)时,黄铁矿转化为单斜磁黄铁矿的速率低于单斜磁黄铁矿转化为六方磁黄铁矿的速率,表现为黄铁 矿直接生成六方磁黄铁矿。  相似文献   

11.
The black material observed on the surface of crystalline inclusions in diamond and also in adjacent internal fracture planes has been classified as a result of a preliminary examination of several hundred diamonds from Sierra Leone, Ghana, and South Africa (particularly the Premier Mine), as well as diamond slices of unknown origin, followed by a detailed examination of some 100 diamonds. X-ray, electron diffraction, and qualitative electron microprobe techniques were used in identifying this material as graphite, pyrrhotite and pentlandite. The possible origins of these minerals are discussed.  相似文献   

12.
Sulfide inclusions in diamonds, the most common of all inclusions, contain critical evidence about the timing and physical/chemical conditions prevailing during diamond formation. Typically, sulfide inclusions are encapsulated as a monosulfide solid solution (Mss) in the Fe-Ni-S system, with a minor amount of Cu. This Mss and the enclosing diamond have sufficiently different thermal expansion properties, so that, after encapsulation, the Mss creates a series of cracks in the diamond radiating from the sulfide. On cooling, this increase in volume permits the Mss to undergo exsolution to an assemblage of pyrrhotite + pentlandite + chalcopyrite + pyrite. The kinetics of this exsolution is so rapid that practically no Mss remains in nature. Instead, in recovered diamonds, all sulfides that originally were Mss now consist of this fine-grained assemblage. Chalcopyrite prefers to form around the edges of the inclusions and also migrates into the minute cracks in the diamonds. It is the bulk composition of the Mss as encapsulated that is important for interpretation of diamond petrogenesis (P- versus E-type diamonds) and to the commonly used Re-Os dating technique. However, this bulk composition is definitely not attainable with polished sections cut through the inclusions. The assumption that the kernel of the sulfide inclusion for Re-Os age dating represents the entire original Mss may also be incorrect, depending what has been lost, mostly chalcopyrite, which has migrated into the surrounding cracks within the diamond host.  相似文献   

13.
在中国辽宁金刚石中获得的高硅钙铁榴石(Majorite)为一单晶碎片包裹体,与其共存的金刚石包裹体还有刚玉、碳化钛、红色金刚石碎片、钙钛矿、二氧化硅等。通过电子探针成分分析,确定该高硅钙铁榴石(Majorite)成分超硅高钙缺镁,8个分析点平均值计算的矿物分子式为(Ca2.35Fe0.49Mn0.15Mg0.02)3.01(Al1.08Fe0.48Si0.44)2.00(SiO4)3,根据Kenneth等(2000)提出的计算压力的公式得到该包裹体高硅钙铁榴石(Majorite)形成的压力为14GPa,估算形成深度达400km。用四圆单晶衍射仪测定了该石榴石的晶体结构,a=1.195 15(4)nm,求得了各原子的座标、占位度和各向异性温度因子,用I>2σ(I),计算得到R1=0.077 9,WR2=0.141 6,Goodness-of-fit(F2)=1.382。在该高硅钙铁榴石包裹体中还存在微米级二氧化硅(呈四边形断面)和氧化铁(含钠)的包裹体(析离体),它们可能是斯石英和方铁矿(或似沂蒙矿)。从高硅钙铁榴石(Majorite)的成分判断,其物质来源具壳源性质,由此推断的大陆壳俯冲深度要超过400km,这与地球物理探测郯庐断裂已切穿了上地幔、进入软流圈的看法相一致。  相似文献   

14.
As a step towards resolving the genesis of inclusions in diamonds, a new technique is presented. This technique combines cathodoluminescence (CL) and electron backscatter diffraction (EBSD) using a focused ion beam–scanning electron microscope (FIB–SEM) instrument with the aim of determining, in detail, the three-dimensional diamond zonation adjacent to a diamond inclusion. EBSD reveals that mineral inclusions in a single diamond have similar crystallographic orientations to the host, within ±0.4°. The chromite inclusions record a systematic change in Mg# and Cr# from core to the rim of the diamond that corresponds with a ~80°C decrease of their formation temperature as established by zinc thermometry. A chromite inclusion, positioned adjacent to a boundary between two major diamond growth zones, is multi-faceted with preferred octahedral and cubic faces. The chromite is surrounded by a volume of non-luminescent diamond (CL halo) that partially obscures any diamond growth structures. The CL halo has apparent crystallographic morphology with symmetrically oriented pointed features. The CL halo is enriched in ~200 ppm Cr and ~80 ppm Fe and is interpreted to have a secondary origin as it overprints a major primary diamond growth structure. The diamond zonation adjacent to the chromite is complex and records both syngenetic and protogenetic features based on current inclusion entrapment models. In this specific case, a syngenetic origin is favoured with the complex form of the inclusion and growth layers indicating changes of growth rates at the diamond–chromite interface. Combined EBSD and 3D-CL imaging appears an extremely useful tool in resolving the ongoing discussion about the timing of inclusion growth and the significance of diamond inclusion studies.  相似文献   

15.
We report the first finding of diamond and moissanite in metasedimentary crustal rocks of Pohorje Mountains (Slovenia) in the Austroalpine ultrahigh‐pressure (UHP) metamorphic terrane of the Eastern Alps. Microscopic observations and Raman spectroscopy show that diamond occurs in situ as inclusions in garnet, being heterogeneously distributed. Under the optical microscope, diamond‐bearing inclusions are of cuboidal to rounded shape and of pinkish, yellow to brownish colour. The Raman spectra of the investigated diamond show a sharp, first order peak of sp3‐bonded carbon, in most cases centred between 1332 and 1330 cm?1, with a full width at half maximum between 3 and 5 cm?1. Several spectra show Raman bands typical for disordered graphitic (sp2‐bonded) carbon. Detailed observations show that diamond occurs either as a monomineralic, single‐crystal inclusion or it is associated with SiC (moissanite), CO2 and CH4 in polyphase inclusions. This rare record of diamond occurring with moissanite as fluid‐inclusion daughter minerals implies the crystallization of diamond and moissanite from a supercritical fluid at reducing conditions. Thermodynamic modelling suggests that diamond‐bearing gneisses attained P–T conditions of ≥3.5 GPa and 800–850 °C, similar to eclogites and garnet peridotites. We argue that diamond formed when carbonaceous sediment underwent UHP metamorphism at mantle depth exceeding 100 km during continental subduction in the Late Cretaceous (c. 95–92 Ma). The finding of diamond confirms UHP metamorphism in the Pohorje Mountains, the most deeply subducted part of Austroalpine units.  相似文献   

16.
Experiments at 6.0–7.1 GPa and 1500–1700°C were carried out to explore the boundary conditions of diamond nucleation and growth in pyrrhotite-carbon melt-solutions. Pyrrhotite is one of the main sulfide minerals of the pyrrhotite-pentlandite-chalcopyrite assemblage of mantle rocks and primary inclusions in diamond. Solutions of carbon in sulfide melts oversaturated with respect to diamond at the expense of the dissolution of starting graphite (thermodynamically unstable phase) are formed owing to the difference between the solubilities of graphite and diamond, which increases under the influence of temperature gradients in experimental samples. We determined the fields of carbon solutions in pyrrhotite melt showing labile and metastable oversaturation with respect to diamond, which correspond to the spontaneous nucleation of the diamond phase and diamond growth on seeds, respectively. The linear growth rate of diamond in sulfide-carbon melts is rather high (on average, 10 μ/min during the first 1–2 min from the onset of spontaneous crystallization). The nucleation density is estimated as 180 grains per cubic centimeter. Diamonds crystallized from sulfide melts show octahedral and spinel twin shapes. Diamond polycrystals were synthesized for the first time from a sulfide medium as intergrowths of skeletal (edge) or “cryptocrystalline” microdiamonds, from 1 to 100 μm in size, their spinel twins and, occasionally, polysynthetic (star-shaped) twins. During diamond growth from sulfidecarbon melts on smooth faces of cuboctahedral diamond seeds synthesized in metal systems, smooth-faced layer-by-layer step-like growth was observed on their octahedral (111) faces, whereas growth on the (100) cubic faces produced rough-surfaced layers of intergrown micropyramids, whose axes were oriented normal to the (100) face. The obtained experimental results were applied to the problem of diamond genesis under the conditions of the Earth’s mantle in the framework of the model of carbonate-silicate parental melts with blebs of immiscible sulfide melts.  相似文献   

17.
It is of great importance to understand the origin of UG2 chromitite reefs and reasons why some chromitite reefs contain relatively high contents of platinum group elements(PGEs: Os, Ir, Ru, Rh,Pt, Pd) or highly siderophile elements(HSEs: Au, Re, PGE). This paper documents sulphide-silicate assemblages enclosed in chromite grains from the UG2 chromitite. These are formed as a result of crystallisation of sulphide and silicate melts that are trapped during chromite crystallisation. The inclusions display negative crystal shapes ranging from several micrometres to 100 μm in size.Interstitial sulphide assemblages lack pyrrhotite and consist of chalcopyrite, pentlandite and some pyrite. The electron microprobe data of these sulphides show that the pentlandite grains present in some of the sulphide inclusions have a significantly higher iron(Fe) and lower nickel(Ni) content than the pentlandite in the rock matrix. Pyrite and chalcopyrite show no difference. The contrast in composition between inter-cumulus plagioclase(An_(68)) and plagioclase enclosed in chromite(An_(13)), as well as the presence of quartz, is consistent with the existence of a felsic melt at the time of chromite saturation.Detailed studies of HSE distribution in the sulphides and chromite were conducted by LA-ICP-MS(laser ablation-inductively coupled plasma-mass spectrometry), which showed the following.(Ⅰ) Chromite contained no detectable HSE in solid solution.(Ⅱ) HSE distribution in sulphide assemblages interstitial to chromite was variable. In general, Pd, Rh, Ru and Ir occurred dominantly in pentlandite, whereas Os,Pt and Au were detected only in matrix sulphide grains and were clearly associated with Bi and Te.(Ⅲ)In the sulphide inclusions,(a) pyrrhotite did not contain any significant amount of HSE,(b) chalcopyrite contained only some Rh compared to the other sulphides,(c) pentlandite was the main host for Pd,(d)pyrite contained most of the Ru, Os, Ir and Re,(e) Pt and Rh were closely associated with Bi forming a continuous rim between pyrite and pentlandite and(f) no Au was detected. These results show that the use of ArF excimer laser to produce high-resolution trace element maps provides information that cannot be obtained by conventional(spot) LA-ICP-MS analysis or trace element maps that use relatively large beam diameters.  相似文献   

18.
Abstract: Based on previous studies of kimberlite xenoliths and diamond inclusions in this region, macrocrystal garnet was analyzed with the electric microprobe technique (EPMA). The garnet is collected from the Shengli No.1 kimberlite pipe in the Mengyin area of Shandong Province, China. The results indicate that the garnet contains two kinds of multiphase inclusions: one is K-, B-, and Cl-bearing oxygen-free phase, K- and Cl-bearing oxygen-free phase, and volatile-bearing garnet inclusions (in1 and in3); and the other is chlorite, phlogopite, apatite and calcite (in2). It is suggested that the formation of garnet and its inclusions is associated with strongly reduced mantle fluid. Such a fluid was transformed from ultra-deep high-reduction oxygen-free fluid into low-reduction alkaline fluid, and finally into oxidized fluid with low oxygen fugacity. This result confirms that the Mengyin area underwent metamorphism of slightly active deep fluid, and provides evidence for searching diamond by means of indicative minerals.  相似文献   

19.
Diamond crystals 0.1–0.8 carats were synthesized in experiments conducted in a BARS split-sphere multianvil high-pressure apparatus in the systems Fe-Co-S-C and Fe-Ni-S-C at a pressure of 5.5 GPa and temperature of 1300°C. The microtextures of the samples and the phases accompanying diamond (carbides, graphite, monoslufide solid solution, pentlandite, and taenite) are examined in much detail, the properties of metal-sulfide-carbon alloys are discussed, and issues related to the genesis of sulfide inclusions in diamonds and graphite crystallization in the diamond stability field are considered. The experiments demonstrate that diamonds can be synthesized and grow in pre-eutectic metal-sulfide melts with up to 14 wt % sulfur at relatively low P-T parameters, which correspond to the probable temperatures and pressures of natural diamond-forming processes at depths of approximately 150 km in the Earth’s upper mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号