首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The earthquake cycles that characterize continental-interior areas that are far from active plate boundaries have proven highly cryptic and difficult to resolve. We used a novel paleoseismic proxy to address this issue. Namely, we reconstructed Holocene Mississippi River channels from maps of floodplain strata in order to identify channel perturbations reflective of major displacement events on the high-hazard and mid-plate Reelfoot thrust fault, New Madrid seismic zone, U.S.A. Only three discrete slip events are currently documented for the Reelfoot fault ( AD 900,  AD 1450, and AD 1812). This study extends this record and, thus, illustrates the utility of stratigraphic proxies as paleoseismic tools. We concurrently offer here some of the first quantified response times for tectonically induced channel pattern changes in large alluvial rivers.

We identified at least two cycles of pervasive meandering that were interrupted by channel-straightening responses occurring upstream of the Reelfoot fault scarp. These straightening responses initiated at 2244 BC +/− 269 to 1620 BC +/− 220 and  AD 900, respectively, and each records initiation of a period of Reelfoot fault slip after millennia of relative tectonic quiescence. The second (or New Madrid) straightening response was triggered by the previously known  AD 900 fault slip event, and this initial low sinuosity has been protracted until the modern day by the latter  AD 1450 and AD 1812 events. The first (or Bondurant) straightening response began a period of several hundred to  1400 years of low river sinuosity which evidences a similar period of multiple recurrent displacement events on the Reelfoot fault. These Bondurant events predate the existing paleoseismic record for the Reelfoot fault.

These data offer initial evidence that slip events on the Reelfoot fault were temporally clustered on millennial scales and, thus, offers the first direct evidence for millennial-scale clustering of earthquakes on a continental-interior fault. This carries additional ramifications. Namely, faults that have been quiescent and non-hazardous for millennia could re-enter an enduring period of recurrent hazardous earthquakes with little warning. Likewise, the Reelfoot fault also reveals evidence of temporal clustering of earthquakes on short-term cycles (months), as well as evidence for longer-term reactivation cycles (104–106 years). This introduces the possibility that temporal clustering could be hierarchical on some continental-interior faults.  相似文献   


2.
《Engineering Geology》2000,57(3-4):179-192
Long-term in situ monitoring of slow tectonic movements has been applied to a seismoactive region of SW Bulgaria, within the epicentral zone of one of the strongest earthquakes in Europe (4 April 1904, M=7.8). The region has been found the most seismoactive in Bulgaria being of interest to many scientists. Three spatial extensometers were installed here in carefully selected sites to reflect fault movements on fissures. The extensometer TM-71 used here, enables three-dimensional detecting of even very slow movements with the accuracy of 0.01 mm and high stability over time. After 17 years of measuring, the rates of tectonic movements were established at all three monitoring points. Movements recorded at point B6 located in the seismoactive Kroupnik fault zone are of a relatively high rate. Locally, they show left-lateral strike–slips at rates of ca. 2.7 mm year−1, as well as thrusting with a mean rate of 1.9 mm year−1. Monitoring point K7 located in a fissure of the same zone on a steep slope affected by recent earthquakes has shown an uplift tendency of the block W of the Strouma Fault, with a result of gradual slope subsidence occurring from time to time. Monitoring point K5 located in a fissure of Strouma Fault zone became increasingly active during the last 2 years after 8 years of relative quiescence. Before that, only low left-lateral movements could be observed. Long-term fissure monitoring has shown quite a number of details interpretable to the dynamics of a broad region. Permanent shear displacements were found to develop after earthquakes. It was established that only a certain distinct part of local earthquakes provide such a displacement reaction at the monitoring points showing particular seismic connections.  相似文献   

3.
The Gulf of Corinth is a graben, which has undergone extension during the Late Quaternary. The subsidence rate is rapid in the currently marine part whereas uplift now affects a large part of the initially subsiding area in the North Peloponnese. In this paper, we document the rates of subsidence/uplift and extension based on new subsurface data, including seismic data and long piston coring in the deepest part of the Gulf. Continuous seismic profiling data (air gun) have shown that four (at least) major oblique prograding sequences can be traced below the northern margin of the central Gulf of Corinth. These sequences have been developed successively during low sea level stands, suggesting continuous and gradual subsidence of the northern margin by 300 m during the Late Quaternary (last 250 ka). Subsidence rates of 0.7–1.0 m kyr− 1 were calculated from the relative depth of successive topset to foreset transitions. The differential total vertical displacement between the northern and the southern margins of the Corinth graben is estimated at about 2.0–2.3 m kyr− 1.

Sequence stratigraphic interpretation of seismic profiles from the basin suggests that the upper sediments (0.6 s twtt thick) in the depocenter were accumulated during the last 250 ka at a mean rate of 2.2–2.4 m kyr− 1. Long piston coring in the central Gulf of Corinth basin enabled the recovery of lacustrine sediments, buried beneath 12–13.5 m of Holocene marine sediments. The lacustrine sequence consists of varve-like muddy layers interbedded with silty and fine sand turbidites. AMS dating determined the age of the marine–lacustrine interface (reflector Z) at about 13 ka BP. Maximum sedimentation rates of 2.4–2.9 m kyr− 1 were calculated for the Holocene marine and the last glacial, lacustrine sequences, thus verifying the respective rates obtained by the sequence stratigraphic interpretation. Recent accumulation rates obtained by the 210Pb-radiometric method on short sediment box cores coincide with the above sedimentation rates. Vertical fault slip rates were measured by using fault offsets of correlated reflector Z. The maximum subsidence rate of the depocenter (3.6 m kyr− 1) exceeds the maximum sedimentation rate by 1.8 m kyr− 1, which, consequently, corresponds to the rate of deepening of the basin's floor. The above rates indicate that the 2.2 km maximum sediment thickness as well as the 870 m maximum depth of the basin may have formed during the last 1 Ma, assuming uniform mean sedimentation rate throughout the evolution of the basin.  相似文献   


4.
We determine seismic strain rate of tectonic earthquakes along the Central America Volcanic Arc. We then compare this result to those obtained from earthquakes related to the convergence of the Cocos and Caribbean plates and to earthquakes in the back-arc region of northern Central America.

The seismic strain-rate tensor for shallow-focus earthquakes along the Central America volcanic arc since 1700, has a compressive eigenvector with a magnitude of 0.7 × 10−8 year−1, and oriented in a 357° azimuth. The extensive eigenvector is oriented in a 86° azimuth, with a magnitude of 0.82 × 10−8 year−1. When only Centroid Moment-tensor solutions (CMT) are considered, the respective eigenvectors are 1.2 × 10−8 year−1 and 1.0 × 10−8 year−1.

The compressive eigenvector from the seismic strain-rate tensor for earthquakes along the Cocos-Caribbean convergent margin is 2.0 × 10−8 year−1, plunging at 25°, and oriented in a 29° azimuth. Its magnitude and direction are similar to those of the compressive eigenvector for earthquakes along the volcanic arc. The extensive eigenvector along the convergent margin, on the other hand, has a large vertical component. The compressive and extensive eigevenvectors are 4.9 × 10−8 year−1 and 4.6 × 10−8 year−1, using only CMTs as the database.

Earthquakes along the grabens of northern Central America yield a seismic strain-rate tensor whose extensive eigenvector has a magnitude of 2.4 × 10−8 year−1, oriented in a 109° azimuth. Magnitude and direction are similar to those of the extensive eigenvector for earthquakes along the volcanic arc. The compressive eigenvector along the grabens is practically vertical.

Similarities in magnitudes and directions for compressive and extensive eigenvectors suggest to us that the strain field along the Central America volcanic arc is the result of compression along the convergent Cocos-Caribbean margin, and extension in the back-arc region, along the grabens of northern Central America. This field is resolved as strike-slip faulting along the arc.  相似文献   


5.
In eastern Indonesia, the Central Sulawesi fault system consists of complex left-lateral strike-slip fault zones located within the triple junction area between the Pacific, Indo-Australian and Eurasian plates. Seismicity in Central Sulawesi documents low-magnitude shallow earthquakes related, from NW to SE, to the NNW-trending Palu-Koro (PKF) and WNW-trending Matano fault zones. Study of the active fault traces indicates a northward growing complexity in the PKF segmentation. Left-lateral displacement of 370 ± 10 m of streams incised within fans, whose deposition has been dated at 11 000 ± 2300 years, yields a calculated PKF horizontal slip rate of 35 ± 8 mm yr−1. This geologically determined long-term slip rate agrees with the far-field strike-slip rate of 32–45 mm yr−1 previously proposed from GPS measurements and confirms that the PKF is a fast slipping fault with a relatively low level of seismicity.  相似文献   

6.
We present a marine palaeoseismology analysis of a dense network of very high resolution seismic profiles along the Gondola Fault Zone (GFZ), a right-lateral, E–W-striking, active fault system in the Adriatic foreland. This case-study aims to show how time and space variations in the activity of a dominantly right-lateral fault system can be assessed using the vertical component of slip. The GFZ has been investigated for a length of 50 km. It includes two parallel subvertical fault sets and two main anticlines. The late Middle Pleistocene to Holocene vertical component of displacement along the fault is bell-shaped, suggesting that in the long-term the fault zone acts as a single, kinematically coherent structure. Slip rates are 0–0.18 mm a−1 and vary temporally on individual segments. This variability is consistent with a model in which individual fault segments rupture independently during earthquakes with magnitudes up to 6.4 and 1.3–1.8 ka recurrence intervals.  相似文献   

7.
Within the 2500 km stretch of the Himalayas, a narrow window between longitudes 88.185°E and 88.936°E in the frontal Himalayas in North Bengal, crisscrossed by several active fault traces, presents an interesting region for crustal deformation study. We have estimated velocities of 8 GPS stations located in this area and the accumulating strain rate by two different methods. A total shortening of 11.1 ±1.5 mm yr−1 is occurring across a set of four E–W running faults: Gorubathan, Matiali, Chalsa and Baradighi. The strain rate becomes higher in the NE part of the network, reaching −(0.25 ± 0.12) μstrain yr−1 with azimuth 21°. A statistically significant extension of 10.9 ± 1.6 mm yr−1 is estimated across the Gish transverse fault with a maximum strain rate of 0.36 ± 0.08 μstrain yr−1 with azimuth 103°. The accumulating strain will be probably released through future earthquakes.  相似文献   

8.
The Aleutian island arc collides with the Kuril–Kamchatka arc in the area of the Cape Kamchatka peninsula. Field studies of neotectonic structures and apatite fission track analysis provide evidence for crustal plate shortening onshore the Cape Kamchatka peninsula. Tectonic blocks show differential mean exhumation rates varying from 0.18 ± 0.04 mm yr−1 in the north up to 1.2 ± 0.18 mm yr−1 in the south of the peninsula. A few of the fission track length data point to an unsteady exhumation rate. The blocks are separated by major dextral fault zones splaying off from Aleutian island arc fault zones. Across the western segment of the North American–Pacific Plate boundary the strain is partitioned along the fault zones and increases from north to south. Results from this study suggest that indentation and accretion of island arc fragments has recently occurred in the southeastern part of the Cape Kamchatka peninsula.  相似文献   

9.
We report in-situ produced 10Be data from the Gorge du Diable (French Western Alps) to date and quantify bedrock gorge incision into a glacial hanging valley. We sampled gorge sidewalls and the active channel bed to derive both long-term and present-day incision rates. 10Be ages of sidewall profiles reveal rapid incision through the late Holocene (ca 5 ka) at rates ranging from 6.5 to 13 mm yr−1. Present-day incision rates are significantly lower and vary from 0.5 to 3 mm yr−1 within the gorge. Our data imply either delayed initiation of gorge incision after final ice retreat from internal Alpine valleys at ca 12 ka, or post-glacial surface reburial of the gorge. Our results suggest that fluvial incision rates >1 cm yr−1 into crystalline bedrock may be encountered in transient landscape features induced by glacial-interglacial transitions.  相似文献   

10.
Active faulting in the dead sea rift   总被引:8,自引:0,他引:8  
Manifestations of Late Quaternary and Holocene faulting were studied in a 500 km long segment of the Dead Sea transform (rift). Most prominent are left-slip faults, whose characteristic physiographic features are recognizable along most of the studied segment. Where these faults bend or are stepped to the left, rhomb-shaped grabens (or pull aparts) are produced, forming depressions. In the reverse situation compressional features such as pressure ridges, domes and folds form positive topographic features. Such structures are combined on a variety of scales ranging from a few hundred meters long to tens of kilometers. Normal faults, sub-parallel to the left slip faults, produce a trough-like valley along much of the Dead Sea transform, but are most prominent along the margins of the large rhomb-grabens, e.g., the Dead Sea trough. They apparently record a small component of transverse extension. Generally, their motion is slow: young slip did not occur along some segments during the last few 104 y. Elsewhere throws of 10–20 m at least occurred in this period. The Dead Sea transform is seismically active. The instrumental and historic records indicate a seismic slip rate of 0.15–0.35 cm/y during the last 1000–1500 y, while estimates of the average Pliocene—Pleistocene rate are 0.7–1.0 cm/y. Either much creep takes place, or the slip rate varies over periods of a few 103 y.  相似文献   

11.
Bathymetric surveys during the 1991–2000 decade in two ice-contact, proglacial lakes on the eastern sector of Bering piedmont lobe captured the buildup effects of the 1993–1995 surge. Following ice-front advance of 1.0–1.5 km into Tsivat and Tsiu Lakes, the basins were significantly altered by surge-related sedimentation including the impact of a subglacial outburst into Tsivat Lake. The subsequent changes in basin shape, size, and morphology were monitored by six bathymetric surveys. Measured changes in water depth serve as a proxy for determining increments of sediment accumulation.

Upwelling, ice-front vents fed by subglacial tunnels transported suspended fine sediment directly into the lake system. The rate of suspension settling within both lakes varied from 0.6 to 1.2 m year−1 prior to the surge. Suspended load during surge years increased sixfold from 1.7 to 13.9 g l−1, accompanied by increased sediment accumulation of 2.2–3.1 m year−1. Vent-related aggradation and subsequent filling of Tsivat Lake caused sediment bypassing to Tsiu Lake, where encroachment by delta growth contributed to a postsurge rate of bottomset accumulation of 3.0 m year−1.

The total sediment influx from subglacial sources is represented by the sum of bathymetrically determined accumulation, plus an estimated volume of sediment that remained suspended, thus passing through the lake system. Total sediment flux along the eastern Bering piedmont lobe from 1991 to 2000 is approximately 227 million cubic meters.  相似文献   


12.
We explored the submarine portions of the Enriquillo–Plantain Garden Fault zone (EPGFZ) and the Septentrional–Oriente Fault zone (SOFZ) along the Northern Caribbean plate boundary using high‐resolution multibeam echo‐sounding and shallow seismic reflection. The bathymetric data shed light on poorly documented or previously unknown submarine fault zones running over 200 km between Haiti and Jamaica (EPGFZ) and 300 km between the Dominican Republic and Cuba (SOFZ). The primary plate‐boundary structures are a series of strike‐slip fault segments associated with pressure ridges, restraining bends, step overs and dogleg offsets indicating very active tectonics. Several distinct segments 50–100 km long cut across pre‐existing structures inherited from former tectonic regimes or bypass recent morphologies formed under the current strike‐slip regime. Along the most recent trace of the SOFZ, we measured a strike‐slip offset of 16.5 km, which indicates steady activity for the past ~1.8 Ma if its current GPS‐derived motion of 9.8 ± 2 mm a?1 has remained stable during the entire Quaternary.  相似文献   

13.
Progradational shoreface tongues preserve a near-complete depositional record of relative sea-level highstands, falls and lowstands. Two distinct styles of progradational shoreface tongue are examined in an extensive outcrop and subsurface dataset from Late Cretaceous strata of the Book Cliffs area, Utah, representing (i) highstand through attached lowstand progradation and (ii) highstand through detached lowstand progradation. Using this dataset, key geometrical attributes of the shoreface tongues and their internal facies architecture are identified and quantified that enable the reconstruction of relative sea-level fall history. For example, attached, wave-dominated lowstand shoreface deposits record a slow (0.2– 0.3 mm yr–1), low-magnitude (> 14 m) relative sea-level fall punctuated by minor rises. Detached, weakly wave-influenced lowstand shoreface deposits record a more rapid (0.4–0.5 mm yr–1), high-magnitude (> 45 m) relative sea-level fall synchronous with a marked change in sediment delivery and depositional process regime at the shoreline.  相似文献   

14.
青藏铁路风火山段晚第四纪断裂活动分析   总被引:2,自引:2,他引:0  
地表地质调查发现,第四纪期间在风火山逆冲-褶皱构造带以发生近东西向的伸展变形为特征。在该构造带中形成切割早期近东西向挤压变形构造带、指示近东西向伸展变形、整体沿北60°东向展布的二道沟断陷盆地。断裂活动的地质、地貌证据表明,控制该盆地晚第四纪断陷的主边界断裂位于其北缘,是一条断续延伸达24 km左右、可能兼具左旋走滑性质的正断层。根据该区晚第四纪沉积物的分布和时代,并对断裂所错动的晚第四纪地质-地貌体进行初步的年代学分析,可以初步断定该断裂的晚第四纪垂直活动速率应该介于0.2~0.4 mm/a之间。  相似文献   

15.
Dissolved load of the Loire River: chemical and isotopic characterization   总被引:5,自引:0,他引:5  
The Loire River, with one of the largest watersheds in France, has been monitored just outside the city of Orleans since 1994. Physico-chemical parameters and major and trace elements were measured between 2-day and 1-week intervals according to the river flow. The sampling site represents 34% of the total Loire watershed with 76% silicate rocks and 24% carbonate rocks.

Elements are transported mainly in the dissolved phase with the ratio of total dissolved salts (TDS) to suspended matter (SM) ranging between 1.6 and 17.4. Chemical weathering of rocks and soils are thus the dominant mechanisms in the Loire waters composition. The highest TDS/SM ratios are due to dissolved anthropogenic inputs. The database shows no link between NO3 content and river flow. The Na+, K+, Mg2+, SO42−, and Cl concentrations are seen to decrease with increasing discharge, in agreement with a mixing process involving at least two components: the first component (during low flow) is concentrated and may be related with input from the groundwater and sewage station water, the second component (during high flow) is more dilute and is in agreement with bedrock weathering and rainwater inputs. A geochemical behaviour pattern is also observed for HCO3 and Ca2+ species, their concentrations increase with increasing discharge up to 300 m3/s, after which, they decrease with increasing discharge. The Sr isotopic composition of the dissolved load is controlled by at least five components — a series of natural components represented by (a) waters draining the silicate and carbonate bedrock, (b) groundwater, and (c) rainwaters, and two kinds of anthropogenic components.

The aim of this study is to describe the mixing model in order to estimate the contribution of each component. Finally, specific export rates in the upper Loire watershed were evaluated close to 12 t year−1 km−2 for the silicate rate and 47 t year−1 km−2 for the carbonate rate.  相似文献   


16.
周口坳陷叶鲁断裂带构造特征及其演化   总被引:1,自引:0,他引:1  
叶鲁断裂带位于华北克拉通南部,是鲁山-舞阳-阜阳-淮南断裂带的重要组成部分,控制着周口坳陷谭庄、舞阳等凹陷的形成与演化。据钻井、地震剖面解释和平衡剖面分析,在秦岭-大别造山带挤压活动的影响下,叶鲁断裂带在晚侏罗世—早白垩世向NNE方向强烈逆冲,主断层面倾角约37°,伸展率可达-22 m/Ma;晚白垩世—古近纪,周口坳陷处于伸展构造环境,该断裂带发生负反转构造作用。通过三角剪切软件模拟了叶鲁断裂带主断层在周参12井区的构造演化过程。模拟显示主断层形成时的总滑动量约为6 100 m,断层传播量为9 150 m,三角剪切角为150°,p/s值为1.5。  相似文献   

17.
High-resolution shallow seismic reflection profiles across the northwesternmost part of the New Madrid seismic zone (NMSZ) and northwestern margin of the Reelfoot rift, near the confluence of the Ohio and Mississippi Rivers in the northern Mississippi embayment, reveal intense structural deformation that apparently took place during the late Paleozoic and/or Mesozoic up to near the end of the Cretaceous Period. The seismic profiles were sited on both sides of the northeast-trending Olmsted fault, defined by varying elevations of the top of Mississippian (locally base of Cretaceous) bedrock. The trend of this fault is close to and parallel with an unusually straight segment of the Ohio River and is approximately on trend with the westernmost of two groups of northeast-aligned epicenters (“prongs”) in the NMSZ. Initially suspected on the basis of pre-existing borehole data, the deformation along the fault has been confirmed by four seismic reflection profiles, combined with some new information from drilling. The new data reveal (1) many high-angle normal and reverse faults expressed as narrow grabens and anticlines (suggesting both extensional and compressional regimes) that involved the largest displacements during the late Cretaceous (McNairy); (2) a different style of deformation involving probably more horizontal displacements (i.e., thrusting) that occurred at the end of this phase near the end of McNairy deposition, with some fault offsets of Paleocene and younger units; (3) zones of steeply dipping faults that bound chaotic blocks similar to that observed previously from the nearby Commerce geophysical lineament (CGL); and (4) complex internal deformation stratigraphically restricted to the McNairy, suggestive of major sediment liquefaction or landsliding. Our results thus confirm the prevalence of complex Cretaceous deformations continuing up into Tertiary strata near the northern terminus of the NMSZ.  相似文献   

18.
赣江断裂带中生代的演化及其地球动力学背景   总被引:17,自引:9,他引:8       下载免费PDF全文
梁兴  吴根耀 《地质科学》2006,41(1):64-80
赣江断裂带是江西省境内醒目的北北东向平移断裂构造带,由一系列北北东向、北东向和北西向断裂束组成,表现为一个大规模的左行走滑脆性剪切带并兼具伸展断陷和右旋走滑的成份。赣江断裂带在重力、航磁异常呈现为显著的梯度带,是一条晚中生代的岩浆岩带,控制了以鄱阳盆地为代表的一系列白垩纪-古近纪沉积盆地的形成与发育。该带在中生代的演化可分为早-中侏罗世压扭、晚侏罗早-白垩世左行平移和晚白垩世上盘斜落的右行平移3个阶段。在侏罗纪以来太平洋板块对欧亚大陆斜向俯冲的大背景下,赣江断裂带的形成和演化与华南广为发育的燕山期陆内造山作用密切相关,北北东向断裂的发育则直接受郯庐断裂早白垩世左行走滑活动控制,因而表现出“北强南弱”和“北早南晚”的特点。白垩纪时赣江断裂的活动方式与郯庐断裂一致,可认为是后者的南延。  相似文献   

19.
The NW–SE-trending Dinar fault is an active normal fault upon which the 1 October 1995 earthquake ( M  = 6.1) occurred. The 1995 earthquake resulted in a c. 10-km-long surface rupture with the south side down-thrown by 50 cm. Investigations of two trench sites perpendicular to the 1995 rupture suggest at least two prior large earthquakes in historical times. Radiocarbon dates and historical records constrain the age of events between 1500 bc and ad 53, event 2 possibly coinciding with the earthquake that damaged Dinar (the ancient city of Apamea Kibotos) in c. 80 bc and event 1 around 1500 bc. Surface displacements determined for events 1 and 2, compared to the 1995 surface faulting, indicate that M > 6.8 earthquakes were associated with each rupture. Using the total displacement in trenches, a slip rate of about 1 mm yr−1 can be estimated for the Dinar fault. Observations suggest that the return period for large earthquakes in the Dinar area is about 1500–2000 years.  相似文献   

20.
Vertical seismic compressional- and shear-wave (P-and S-wave) profiles were collected from three shallow boreholes in sediment of the upper Mississippi embayment. The site of the 60-m hole at Shelby Forest, Tennessee, is on bluffs forming the eastern edge of the Mississippi alluvial plain. The bluffs are composed of Pleistocene loess, Pliocene-Pleistocene alluvial clay and sand deposits, and Tertiary deltaic-marine sediment. The 36-m hole at Marked Tree, Arkansas, and the 27-m hole at Risco, Missouri, are in Holocene Mississippi river floodplain sand, silt, and gravel deposits. At each site, impulsive P- and S-waves were generated by man-made sources at the surface while a three-component geophone was locked downhole at 0.91-m intervals.

Consistent with their very similar geology, the two floodplain locations have nearly identical S-wave velocity (VS) profiles. The lowest VS values are about 130 m s−1, and the highest values are about 300 m s−1 at these sites. The shear-wave velocity profile at Shelby Forest is very similar within the Pleistocene loess (12 m thick); in deeper, older material, VS exceeds 400 m s−1.

At Marked Tree, and at Risco, the compressional-wave velocity (VP) values above the water table are as low as about 230 m s−1, and rise to about 1.9 km s−1 below the water table. At Shelby Forest, VP values in the unsaturated loess are as low as 302 m s−1. VP values below the water table are about 1.8 km s−1. For the two floodplain sites, the VP/VS ratio increases rapidly across the water table depth. For the Shelby Forest site, the largest increase in the VP/VS ratio occurs at 20-m depth, the boundary between the Pliocene-Pleistocene clay and sand deposits and the Eocene shallow-marine clay and silt deposits.

Until recently, seismic velocity data for the embayment basin came from eartquake studies, crustal-scale seismic refraction and reflection profiles, sonic logs, and from analysis of dispersed earthquake surface waves. Since 1991, seismic data for shallow sediment obtained from reflection, refraction, crosshole and downhole techniques have been obtained for sites at the northern end of the embayment basin. The present borehole data, however, are measured from sites representative of large areas in the Mississippi embayment. Therefore, they fill a gap in information needed for modeling the response of the embayment to destructive seismic shaking.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号